Title

Native Species Vulnerability to Introduced Predators: Testing an Inducible Defense and a Refuge from Predation

Document Type

Article

Publication Date

2003

Abstract

To manage the impacts of biological invasions, it is important to determine the mechanisms responsible for the effects invasive species have on native populations. When predation by an invader is the mechanism causing declines in a native population, protecting the native species will involve elucidating the factors that affect native vulnerability. To examine those factors, this study measured how a native species responded to an introduced predator, and whether the native response could result in a refuge from predation. Predation by the green crab, Carcinus maenas, has contributed to the decline in numbers of native soft-shell clams, Mya arenaria, and efforts to eradicate crabs have proven futile. We tested how crab foraging affected clam burrowing, and how depth in the sediment affected clam survival. Clams responded to crab foraging by burrowing deeper in the sediment. Clams at shallow depths were more vulnerable to predation by crabs. Results suggest soft-shell clam burrowing is an inducible defense in response to green crab predation because burrowing deeper results in a potential refuge from predation by crabs. For restoring the native clam populations, tents could exclude crabs and protect clams, but when tents must be removed, exposing the clams to cues from foraging crabs should induce the clams to burrow deeper and decrease vulnerability. In general, by exposing potential native prey to cues from introduced predators, we can test how the natives respond, identify whether the response results in a potential refuge, and evaluate the risks to native species survival in invaded communities.

Share

COinS