Year of Graduation
2023
Level of Access
Open Access Thesis
Embargo Period
5-18-2023
Department or Program
Neuroscience
First Advisor
Patsy Dickinson
Second Advisor
Daniel Powell
Abstract
This project sought to answer the following question: what is the relationship between the extent of neuromodulation in a nervous system, and the behavioral demands on that system? A well-characterized CPG neuronal circuit in decapod crustaceans, the stomatogastric nervous system (STNS), was used as a model circuit to answer this question. The stomatogastric ganglion (STG) in the STNS is responsible for muscular contractions in the stomach that aid in digestion. It has been shown that the neural networks in the STG are subject to neuromodulation. One feature of neuromodulation is that it enables circuit flexibility, which confers upon a system the ability to produce variable outputs in response to specific physiological demands. It was hypothesized that opportunistic feeders require more extensively modulated digestive systems compared to exclusive feeders, because opportunistic feeders require a greater variety of digestive outputs to digest their varied diets. In this study, Chionoecetes opilio and Libinia emarginata, the opportunistic feeders, showed greater neuromodulatory capacity of the STNS than Pugettia producta, the exclusive feeder. The hypothesis that neuromodulatory capacity of the STNS correlates with dietary diversity was supported. The results detailed in this study lend credence to the idea that evolutionary basis for neuromodulatory capacity of a system is related to the behavioral demands on that system.