Year of Graduation


Level of Access

Open Access Thesis

Embargo Period


Department or Program

Earth and Oceanographic Science

First Advisor

Collin Roesler

Second Advisor

Eileen Johnson


With warming global temperatures and changes to large-scale ocean circulation patterns, warm water intrusion into Arctic fjords is increasingly affecting fragile polar ecosystems. This study investigated how warm Atlantic water intrusion and the tidewater glacial melting it causes impacted water mass formation and primary productivity in Kongsfjorden, Svalbard. Data were collected over a 2-week period during the height of the melt season in August near the Kronebreen/Kongsvegen glacier complex, the most rapidly retreating glacier in Spitsbergen. Since 1998, intruding waters have warmed between 4 and 5.5˚C, which has prevented sea ice formation and changed the characteristics of fjord bottom waters. Increased glacial melting in the last decade has changed the characteristics of surface waters in the fjord. Modeled light fields suggest that suspended sediment in this glacial meltwater has reduced the euphotic zone close to the ice face, preventing high primary production in both the consistent and intermittent sediment-laden meltwater plumes. However, measurements collected close to terrestrially terminating glaciers indicate that extremely high primary production can occur in conditions of low turbidity. The results of this study support a three-part model of the effects of warm-water intrusion on water mass formation and primary production, where changes in sea ice coverage and tidewater glacial dynamics affect the optical light field. This model allows for spatial predictions for the most likely impacts of warm water intrusion on primary production in Spitsbergen, and could be extrapolated out to explore potential phytoplankton response in other regions susceptible to warm-water intrusion.