Climate change and dissolved organic carbon export to the Gulf of Maine

Thomas G. Huntington, United States Geological Survey
William M. Balch, Bigelow Laboratory for Ocean Sciences
George R. Aiken, United States Geological Survey
Justin Sheffield, Princeton University
Lifeng Luo, Michigan State University
Collin S. Roesler, Bowdoin College
Philip Camill, Bowdoin College

Abstract

Ongoing climate change is affecting the concentration, export (flux), and timing of dissolved organic carbon (DOC) exported to the Gulf of Maine (GoM) through changes in hydrologic regime. DOC export was calculated for water years 1950 through 2013 for 20 rivers and for water years 1930 through 2013 for 14 rivers draining to the GoM. DOC export was also estimated for the 21st century based on climate and hydrologic modeling in a previously published study. DOC export was calculated by using the regression model LOADEST to fit seasonally adjusted concentration discharge (C-Q) relations. Our results are an analysis of the sensitivity of DOC export to changes in hydrologic conditions over time since land cover and vegetation were held constant over time. Despite large interannual variability, all rivers had increasing DOC export during winter and these trends were significant (p < 0.05) in 10 out of 20 rivers for 1950 to 2013 and in 13 out of 14 rivers for 1930 to 2013. All rivers also had increasing annual export of DOC although fewer trends were statistically significant than for winter export. Projections for DOC export during the 21st century were variable depending on the climate model and greenhouse gas emission scenario that affected future river discharge through effects on precipitation and evapotranspiration. The most consistent result was a significant increase in DOC export in winter in all model-by-emission scenarios. DOC export was projected to decrease during the summer in all model-by-emission scenarios, with statistically significant decreases in half of the scenarios.