Bowdoin College

Bowdoin Digital Commons

Honors Projects Student Scholarship and Creative Work

2024

Statistically Principled Deep Learning for SAR Image
Segmentation

Cassandra Goldberg
Bowdoin College

Follow this and additional works at: https://digitalcommons.bowdoin.edu/honorsprojects

b Part of the Artificial Intelligence and Robotics Commons

Recommended Citation

Goldberg, Cassandra, "Statistically Principled Deep Learning for SAR Image Segmentation" (2024). Honors
Projects. 517.

https://digitalcommons.bowdoin.edu/honorsprojects/517

This Open Access Thesis is brought to you for free and open access by the Student Scholarship and Creative Work
at Bowdoin Digital Commons. It has been accepted for inclusion in Honors Projects by an authorized administrator
of Bowdoin Digital Commons. For more information, please contact mdoyle@bowdoin.edu, a.sauer@bowdoin.edu.

https://digitalcommons.bowdoin.edu/
https://digitalcommons.bowdoin.edu/honorsprojects
https://digitalcommons.bowdoin.edu/students
https://digitalcommons.bowdoin.edu/honorsprojects?utm_source=digitalcommons.bowdoin.edu%2Fhonorsprojects%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.bowdoin.edu%2Fhonorsprojects%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bowdoin.edu/honorsprojects/517?utm_source=digitalcommons.bowdoin.edu%2Fhonorsprojects%2F517&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mdoyle@bowdoin.edu,%20a.sauer@bowdoin.edu

Statistically Principled Deep Learning for SAR Image Segmentation

An Honors Paper for the Department of Computer Science

By Cassandra Goldberg

Bowdoin College, 2024
©2024 Cassandra Goldberg

1ii

BOWDOIN COLLEGE

Abstract

Department of Computer Science

Statistically Principled Deep Learning for SAR Image Segmentation
by Cassandra Goldberg

This project explores novel approaches for Synthetic Aperture Radar (SAR) image segmenta-
tion that integrate established statistical properties of SAR into deep learning models. First, Per-
lin Noise and G° sampling methods were utilized to generate a synthetic dataset that effectively
captures the statistical attributes of SAR data. Subsequently, deep learning segmentation archi-
tectures were developed that utilize average pooling and 1x1 convolutions to perform statistical
moment computations. Finally, supervised and unsupervised disparity-based losses were incor-
porated into model training. The experimental outcomes yielded promising results: the synthetic
dataset effectively trained deep learning models for real SAR data segmentation, the statistically-
informed architectures demonstrated comparable or superior performance to benchmark models,
and the unsupervised disparity-based loss facilitated the delineation of regions within the SAR
data. These findings indicate that employing statistically-informed deep learning methodologies
could enhance SAR image analysis, with broader implications for various remote sensing appli-
cations and the general field of computer vision. The code developed for this project can be found
here: https://github.com/cgoldber/Statistically-Principled-SAR-Segmentation.git.

https://github.com/cgoldber/Statistically-Principled-SAR-Segmentation.git

Acknowledgements

I would like to express my deepest gratitude to my project advisor, Professor Jeova Farias, for
his invaluable guidance, mentorship, and encouragement throughout this research endeavor. His
expertise was instrumental in shaping this project, and I always genuinely looked forward to our
weekly meetings, where I was continually inspired by his kindness and infectious passion for the
subject matter.

Thank you to the Bowdoin Computer Science Department for providing me with the oppor-
tunity to undertake this research project. I also want to shout out DJ Merrill, Bowdoin’s Director
of High Performance Computing (HPC), for patiently fielding my endless barrage of emails and
helping me to navigate all of the computational challenges I faced throughout this project.

I am incredibly appreciative of my friends and family for their constant support, whether it
was through lending a patient ear, offering words of encouragement, or simply being a source
of joy in my life. Sorry that I still don’t know how to help you troubleshoot your day-to-day
computer issues!

Finally, to my resilient computer: thank you for enduring the countless hours of code debug-
ging, model training, and occasional frustration-induced keyboard-pounding temper tantrums. I
truly could not have done it without you!

vii

Contents

Abstract iii
Acknowledgements v
1 Introduction 1
1.1 Motivation o e e e e e e e e e 1

1.2 Proposal e 1

2 Background 3
2.1 Synthetic Aperture Radar (SAR) o 3
211 SARData e e e e 3

212 Applications 4

2.2 Relevant Statistics o L e e e e e e e 5
2.2.1 Fundamental Statistics Concepts 5

2.2.2 Parameter Estimation 6

2.2.3 StochasticDistances e e 7

2.2.4 Statistical Characteristicsof SAR 7

2.3 Deep Learning and Computer Vision, 8
23.1 Deep LearningBasics o oo oL 8

2.3.2 Convolutional Neural Networks 10

233 ImageSegmentation L 0L 12

2.4 Techniques for SAR Parameter Estimation and Segmentation 14
2.4.1 Statistical Techniques L L o 14

242 Deep Learning Techniques 14

3 Methodology 17
3.1 Synthetic Dataset Generation, 17
3.2 Statistically-Motivated Segmentation Architectures 19
3.3 Disparity-Based Loss 24

4 Results 27
41 ExperimentalSetup 27
4.1.1 Datasets o i e e e e e e e 27

412 DataPreprocessing e e 28

413 Hyperparameters for Model Training 28

414 Evaluation Metrics e e e 28

42 Generated SyntheticDataset 0 oL 29
4.3 Statistically-Motivated Architecture Performance. 32
43.1 Architectures Trained on Synthetic Data: Quantitative 32

4.3.2 Architectures Trained on Synthetic Data: Qualitative 33

4.3.3 Architectures Trained and Tested on Optical SAR Imagery 37

434 Architectures Trained on Synthetic Data and Tested on Optical SAR Imagery 39
44 Disparity-Based Loss Performance 39

viii

4.4.1 Supervised Approach: Combining Cross-Entropy and Disparity-Based Losses 39

4.4.2 Unsupervised Approach: Disparity-Based Loss 41
5 Discussion 43
5.1 SyntheticDataset 43
5.2 Statistically-Motivated Segmentation Architectures 43
52.1 Benchmark Architectures 43
5.2.2 Architectures Employing Branches in Parallel with an Autoencoder. 44

5.2.3 Architectures Employing Statistically-Motivated Computations in the En-
coderofaU-Net 44

524 Architectures Employing Statistically-Motivated Computations in the Skip
ConnectionsofaU-Net 45
5.2.5 Architectures Employing Larger Kernels in the Encoder 45
52.6 Poorly PerformingModels 45
5.2.7 Architecture Performance When Trained and Tested on Optical SAR Imagery 46
5.2.8 Synthetically-Trained Model Performance on Optical SAR Imagery 47
53 Disparity-Based Loss 47
53.1 Supervised Approach L o o 47
532 Unsupervised Approach, 48
6 Conclusion 49
6.1 Overview e 49
6.2 Future Recommendations 50
A Architectures Tested 51
Al HelperBlocks e 51
A.2 Experimental EncoderBlocks 0 0L 54
A3 High-Level Architectures. 55

Bibliography 61

Chapter 1

Introduction

1.1 Motivation

Remote sensing offers a comprehensive perspective of the Earth’s surface from distant vantage
points, serving as an extremely valuable tool for environmental monitoring. Synthetic Aperture
Radar (SAR), one form of remote sensing, operates by emitting wave signals from an airborne
platform and capturing reflections to produce high-resolution images. Since this technique func-
tions regardless of weather conditions and sunlight, it delivers extremely valuable remote sensing
insights. Another noteworthy characteristic of SAR lies in its exhibition of established statistical
properties that have been rigorously defined and explored in previous research endeavors.

Historically, SAR analysis has relied predominantly on statistical models, achieving notable
success in this domain. Recent advancements in deep learning strategies have emerged as versa-
tile and effective tools for analyzing remote sensing data. Such algorithms are much quicker than
traditional models and can be applied to a variety of tasks. However, the current state-of-the-art
in deep learning SAR image segmentation encounters challenges posed by the limited availability
of labeled data. Another challenge arises from the intrinsic speckle characteristics of SAR data,
which can degrade the quality of segmentation results and hinder model performance.

Given SAR’s widespread usage, improving techniques for SAR analysis is crucial for advanc-
ing environmental monitoring, disaster management, urban planning, defense, security, and sci-
entific research. Advancements in SAR image analysis also have broader implications for the
field of computer vision. These advancements contribute to the development of more robust and
versatile computer vision algorithms, which can then be applied to a wide range of domains be-
yond remote sensing, including medical imaging, autonomous vehicles, robotics, and augmented
reality.

1.2 Proposal

This project aims to combine the strengths of both statistical and deep learning segmentation tech-
niques by developing deep learning models for SAR image segmentation that incorporate known
statistical principles of SAR. The methodology involves leveraging well-established probabilistic
models to generate synthetic data, integrating moment-based features with 1x1 convolutions for
a statistically sound network design, and employing losses that consider pixels in the context of
their distribution. Beyond potentially improving model performance and efficiency, incorporating
statistical knowledge into the architectures can also help enhance the crucial aspect of algorithmic
explainability, a quality which is notoriously deficient in many deep learning models.

Chapter 2

Background

2.1 Synthetic Aperture Radar (SAR)

2.1.1 SAR Data

To generate SAR images, a sensor is mounted on a spacecraft (satellite, airplane, etc) and captures
signals from Earth’s surface remotely. As opposed to passive sensors, which simply receive a sig-
nal, SAR data is acquired through active radars that emit signals, which are then reflected back to
gather insights into the dielectric and textural characteristics of the ground. Since the emitted elec-
tromagnetic signal is chosen and therefore known, terrain information can be deduced by compar-
ing the emitted and received signals’ amplitude and phase. In addition, because SAR uses active
sensors to illuminate the area under observation with signals, they do not rely on sunlight and can
operate with low visibility. The wavelength of the emitted signal can also be deliberately chosen
to enable penetration through various materials such as clouds, allowing SAR data to be collected
in any weather conditions. In addition, since SAR sensors travel while mounted to a moving
spacecraft, they can emulate a large antenna aperture by capturing data from various angles and
points in time, combining them to provide multiple perspectives of the same surface. The number
of perspectives concatenated together to generate a single data point is referred to as the number
of looks. Moreover, polarizations in SAR systems denote different orientations of the radar’s trans-
mitting and receiving antennas relative to the ground. These orientations, such as horizontal (H),
vertical (V), and dual (HH, VV, HV), offer varied insights into the observed area’s surface prop-
erties. Since SAR sensors can be attached to small satellites and provide high-resolution images
at any time of day regardless of the weather conditions, they have gained prominence for remote
sensing applications (Frery, Wu, and Deniz, 2022).

FIGURE 2.1: SAR sensor process and outputs (Frery et al., 1997).

4 Chapter 2. Background

Earth’s surface is rough and uneven. Therefore, the received signal, or backscatter, will return
with a varying degree of coherence based on the surface it reflected off of, as demonstrated by
Figure 2.2. Therefore, the backscatter returns a fraction of the incident energy, which is described
as a complex wave. These complex backscattered signals constructively and destructively inter-
fere with each other, which results in pixels that ‘should” be dark appearing lighter and vice versa.
This granular quality is known as speckle. To reduce speckle, multiple images are often taken of
the same area, either at different times or from different angles, and are averaged together. Due
to this averaging process, the multi-look images may appear more blurry, but have less speckle
(Frery, Wu, and Deniz, 2022).

Antenna Antenna Antenna

9, Backscattered signal Backscattered signal

Altitude Altitude % Altitude

Incident angle
9=
= }- Surface

t Surlace) g imacal W e —_ roughness -.q b. .v Surtace

Smooth surface Rough surface roughness
(strong diffuse backscatter)

Y

Intermediate surface roughness
(little backscatter) (moderate diffuse backscatter)

Fig 1: Original Image Spck]e Noisy Image

FIGURE 2.2: Backscatter and speckle noise (Frery et al., 1997; Maity et al., 2015).

2.1.2 Applications

SAR technology offers a powerful tool for monitoring and understanding the Earth’s surface and
its dynamic processes. Its ability to provide high-resolution, all-weather, day-and-night imaging
makes it invaluable for a wide range of applications. Some examples include (Frery, Wu, and
Deniz, 2022):

¢ Environmental Monitoring: SAR can be used to help track environmental changes like de-
forestation, land cover shifts, soil moisture, coastal erosion, and flooding.

¢ Agriculture and Forestry: SAR is utilized to aid farmers in crop monitoring, yield prediction,
and forestry management by assessing vegetation health and land cover.

* Disaster Management: SAR can rapidly map disaster-affected areas, aiding in damage as-
sessment, search and rescue, and recovery efforts.

¢ Urban Planning and Infrastructure Monitoring: SAR is used to monitor urban growth, land
use changes, and infrastructure stability, detecting subsidence and deformation.

¢ Maritime Surveillance: SAR is used to detects ships, monitors maritime borders, and aids in
search and rescue operations at sea.

* Defense and Security: SAR provides high-resolution imaging for surveillance, reconnais-
sance, and intelligence gathering.

2.2. Relevant Statistics 5

2.2 Relevant Statistics

2.2.1 Fundamental Statistics Concepts

Random Variables:

Random variables (Goodfellow, Bengio, and Courville, 2016) represent the numerical outcome
of some random process. They can be discrete, where their value can only be a countable number
of possible outcomes or continuous, where they can take on any value within a given range.

Probability Distributions:

Probability distributions describe how likely the possible outcomes of a given random vari-
able are. For discrete random variables, the probability distribution is described by a probability
mass function (PMF), which gives the probability of each possible value. For continuous random
variables, the probability distribution is described by a probability density function (PDF), which
gives the relative likelihood of different outcomes within a range. The area of a curve under a PDF
over a certain interval represents the likelihood that the random variable falls within that interval.

Moments:

Statistical moments are quantitative measures that provide valuable insights into the charac-
teristics of a probability distribution (Larsen and Marx, 2005) . Moments describe various aspects
of the distribution’s shape, central tendency, spread, and symmetry.

The moment-generating function (MGF) is a fundamental tool in probability theory that pro-
vides a systematic way to generate moments of a random variable. The MGF of a random variable

X, denoted as Mx(t), is defined as the expectation of the exponential function etX:
Mx(t) = EleX] = [e*p(x;0) dx, @1)

where p(x;0) is the PDF or PMF of X, parameterized by 6.
The MGF provides a unified framework for understanding the moments of a distribution.
Moments of X can be derived from the derivatives of Mx(t) with respect to t:

d?’l

Un = WMX(t) (2.2)

t=0
Specific Instances of Moments:

1. First Moment (Mean): The mean (i) represents the central tendency of the data and is calcu-
lated by averaging all data points:

N
H=5 Z:xi. (2.3)

2. Second Moment (Variance): The variance (¢?) measures the spread of the data around the
mean and is calculated as the average of the squared differences between each data point
and the mean:

0" =5 Lxi—) (2.4)

3. Third Moment (Skewness): Skewness (y) quantifies the asymmetry of the probability distri-

bution: N 5
_ 1 Xi —
'y—NZ< = > (2.5)

=1

6 Chapter 2. Background

4. Fourth Moment (Kurtosis): Kurtosis (x) measures the peakedness or flatness of a distribution
compared to a normal distribution:

1 (xi—y>4
N = o

1

Log Cumulants:
Cumulants (Larsen and Marx, 2005) are statistical measures derived from moments. The cumulant-
generating function (CGF) Kx(t) is defined as the logarithm of the moment-generating function:

Kx(t) = 1I1Mx(t), (27)

where Mx(t) is the moment-generating function of the random variable X.
Once the CGF is obtained, log cumulants can be computed directly from its derivatives with
respect to the parameter t. Specifically, the nth log cumulant «x,, is given by:

di’l
KVl - ﬁKX(t) t:0. (28)

2.2.2 Parameter Estimation

Parameter estimation, a core task in statistics and machine learning, entails determining the values
of unknown parameters within a statistical model (Larsen and Marx, 2005). This process aims
to find the most suitable values for these parameters to ensure that the model aligns with the
observed data.

Maximum Likelihood Estimation:

Maximum Likelihood Estimation (MLE) (Larsen and Marx, 2005) is a statistical method used
to estimate the parameters of a probability distribution by maximizing the likelihood function.
Often, it actually involves maximizing a log-likelihood function to simplify the calculations and
ensure numerical stability. By constructing a likelihood function representing the probability of
the data for different parameter values, MLE estimates are obtained by maximizing this function,
typically using optimization techniques. The likelihood function may not always have a closed-
form expression, requiring numerical optimization methods for estimation. The equation for MLE
is as follows:

O = arg max L(60|data), (2.9)

where 9MLE is the maximum likelihood estimate of the parameter 6 and £ (0 | data) is the likelihood
function, representing the probability of observing the given data under the parameter 6.

Method of Moments:

The Method of Moments (MoM) is a technique used in statistics to estimate the parameters
of a statistical model by equating sample moments with theoretical moments (Larsen and Marx,
2005). While sample moments are statistics calculated from the observed data, theoretical moments
are quantities calculated from the assumed distribution and are defined in terms of the parameters
of the distribution. To estimate parameters using the MoM, if a distribution has k parameters, then
the first k sample moments are equated to the first k theoretical moments. This creates a system of
equations that can be solved for the parameters.

For example, for a normal distribution with parameters y (mean) and ¢? (variance), the first
and second theoretical moments are:

Theoretical mean (first moment): u

Theoretical variance (second central moment): ;42 + 02

2.2. Relevant Statistics 7

To estimate the parameters using the method of moments, these theoretical moments are
equated to their corresponding sample moments:

Sample mean (first moment): X

Sample variance (second central moment): 2

Equating these provides the method of moments estimators for y and o2:

p=X

i 2.10
o*=8*— X2 210

MoM is advantageous due to its simplicity and ease of implementation, as it directly matches
sample moments to theoretical moments, providing intuitive parameter estimates without the
need for complex optimization algorithms.

Method of Log Cumulants:

The method of log cumulants (MoLC) is another moment-based procedure for estimating pa-
rameters (Larsen and Marx, 2005). Similar to the process of MoM, it involves calculating the cu-
mulants of a distribution, taking their natural logarithms, and using those transformed cumulants
to estimate the parameters of the distributions. In certain distributions, leveraging log cumulants
can streamline moment equations, enhancing the efficiency of variables and simplifying the pro-
cess of solving the equation system. Past work has shown a close relation between log cumulants
and the log of statistical moments of the same order, as well as their capacity for efficient SAR
processing (Rodrigues et al., 2016). Therefore, a common practice is to take the natural log of the
SAR data prior to computing its moments.

2.2.3 Stochastic Distances

Stochastic distances (Nascimento, Cintra, and Frery, 2010) are metrics used to quantify the dis-
similarity or similarity between probability distributions. Unlike deterministic distances, which
measure the difference between fixed points, stochastic distances consider entire distributions,
accounting for uncertainty and randomness inherent in probabilistic models. Within the SAR
context, these distances have found applications in parameter estimation (Gambini et al., 2015),
segmentation (Marques, Medeiros, and Nobre, 2012), and change detection (Nascimento, Frery,
and Cintra, 2019).

2.2.4 Statistical Characteristics of SAR

The data generated from SAR images are often modeled using the Generalized Gamma (G°) dis-
tribution (Frery, Wu, and Deniz, 2022; Frery et al., 1997). This distribution depends on roughness
(«), scale (7y), and look (L) parameters. It has gained prominence due to its simplicity in sampling
(Frery, Wu, and Deniz, 2022) and its ability to generate realistic synthetic SAR imagery (Rodrigues
et al., 2016, Nobre et al., 2016, Fan and Neto, 2023).

The choice of the G° distribution stems from the multiplicative relationship between backscat-
ter (2), reflected signal (X), and speckle (Y) in SAR imagery (Frery, Wu, and Deniz, 2022):

Z=XxY. (2.11)

The signal, X, is modeled by the I'(1, L) distribution, reflecting the sum of independent ran-
dom processes inherent in SAR data acquisition. The speckle, Y, is typically modeled by the
F_l(l, L) distribution. Because the backscatter, Z, is the product of X and Y, its distribution is
often represented by the G° distribution, G°(«, 7, L).

8 Chapter 2. Background

In practical terms, each pixel in SAR imagery can be thought of as sampled from a distinct
GY distribution defined by some «, 7y, and L parameters. For effective synthetic SAR generation,
different roughness («) parameters are utilized to convey different regions within the imagery, as
illustrated in Figure 2.3.

FIGURE 2.3: G? distribution sampling with various roughness () parameters
(y = —a 4+ 1 by convention and L = 1).

For SAR images, typical parameter values are « € [-1.5,—-15|, vy = —a—1,and L = 1,3,8
(Gambini et al., 2015).

Furthermore, SAR image data has exhibited a notable capacity for efficient processing through
direct application of computational methods to its moments (Neto et al., 2019; Rodrigues et al.,
2016). Prior research indicates that neural network models can effectively exploit these moment-
based features, particularly for tasks like parameter estimation (Fan and Neto, 2023). These tech-
niques are discussed in more detail in Section 2.4.

2.3 Deep Learning and Computer Vision

2.3.1 Deep Learning Basics

Deep learning, a subset of machine learning within the broader field of Artificial Intelligence (AI),
uses multi-layered neural network models to process input data x, and produce an optimal out-
put, y (Goodfellow, Bengio, and Courville, 2016). Each neural network comprises of perceptrons,
which are fundamental building blocks that receive input signals either from the external world
or previous layers in the network, perform computations, and produce an output.

Weights

Bias —» (-1 .
\ \A-l Wy

Qut
(% /’*{ Wh-1 Weighted Activation

el Sum Function

Inputs

FIGURE 2.4: Diagram illustrating the computation carried out by a perceptron.

Perceptrons, or units, utilize weights to gauge the significance of input signals and compute a
weighted sum of the inputs plus a bias term. The output of this weighted sum is then constrained

2.3. Deep Learning and Computer Vision 9

through an activation function, enabling non-linear relationships in the network. One commonly
used activation function is the Rectified Linear Unit (ReLU), which returns 0 for any negative input
and the input value itself for any positive input. The output of a single perceptron, obtained
through a forward pass is represented by the equation:

y = a(wix) + WXz + ... + WyXy + W), (2.12)

where x is an input vector of size n, w is the perceptron’s weight vector of size n, wy is the bias
term, and a is the activation function.

A neural network (Goodfellow, Bengio, and Courville, 2016) is constructed out of multiple
layers of perceptrons, with each layer potentially containing multiple units. A feed-forward network,
which is common in deep learning, consists of connections in only one direction and is typically
fully-connected, meaning that each output of the previous layer is used as the input for every unitin
the next layer. The input layer receives external signals, the output layer generates final predictions,
and the layers in between are hidden layers. An example of a typical feed-forward neural network
is shown in Figure 2.5.

Olnpllt layer
o} lidden layer
.{'}u'.n.n layer

Input Dim. #1 Qutput #1
Input Dim. #2 Output #2
Input Dim. #D Output #K

FIGURE 2.5: Feed-forward neural network.

The output of one forward pass through a typical feed-forward neural network with L hidden
layers is represented as:
y= aL(WLaL,l(WL,l ...ao(W()x))). (213)

The network learns to optimize its predictions by adjusting its weights, or parameters, through
a process called backpropagation. Initially, the weights are randomly assigned. Then, for each
known (X,y) tuple, X is sent through the network and the model outputs a corresponding y
prediction. The y prediction is evaluated against the true y, or ground truth, using a loss function.
This loss is then propagated back through the network, which involves computing the gradients
of the loss function with respect to the weights in the network. In standard gradient descent,
the network then ’learns’” to predict better next time by adjusting each weight in the opposite
direction to minimize the loss after iterating through the entire training dataset, or over one epoch.
This algorithm is often repeated over multiple epochs.

This process is also typically enhanced with optimization algorithms such as stochastic gradi-
ent descent, which updates the model’s parameters using gradients estimated from mini-batches
rather than the entire training dataset at each iteration, or Adaptive Moment Estimation (ADAM),
which uses exponentially decaying learning rates and momentum to enhance training (Kingma
and Ba, 2017). Additional common deep learning techniques are batch normalization and dropout.
Batch normalization involves normalizing the input of each layer across a mini-batch to improve
training stability. Dropout involves randomly shutting off individual neurons at a set probability
to prevent overfitting,which occurs when the model memorizes the training data.

10 Chapter 2. Background

Following training, the model is typically evaluated on a validation dataset sourced from the
same data as the training dataset, yet remains unseen by the model during training. These tests
can be used to help detect overfitting and to tune a model’s hyperparameters (number of units,
number of epochs, etc). Often, the model is then tested on a distinct test dataset to assess its gener-
alization capabilities.

Deep learning commonly uses tensors as the fundamental data structure for representing and
processing data. Tensors are multi-dimensional arrays, and they are well-suited for representing
the input data, weights, biases, and activations in neural networks.

2.3.2 Convolutional Neural Networks

Convolutional Neural Networks (Goodfellow, Bengio, and Courville, 2016), or CNN, are a type of
deep learning network that are primarily used for processing visual data. In CNNs, convolutional
layers are able to learn spatial information by sliding learnable filters, or kernels, across the input
data. By computing dot products at each position, the network is able to detect local patterns
or features. The kernel size of a convolutional operation refers to the height and width of the
kernel, and the stride refers to how many spatial location the kernel slides before making another
computation. Figure 2.6 displays an example of a convolutional operation being applied to a
two-dimensional input:

Input Filter Result
alal2|s5]s]3 N
1 1] =% i
mpl 6 (2 (4O | 3 | 7
' sk 1] 0| —
214 |5 |4]s5]|2 —_—
1 0 =1
5 B 5 4 7 8
= = Parameters: o
S| 7T %2 [Size: f=3 (6] =01+ 20+ 51+
5 8 5 3 8 4 Stride: s=1 61 + 2°0 + 4*(-1) +
’ Padding: p=0 4*1 + 5'0 + 4°(-1)

n,xmn,= 6x6

FIGURE 2.6: Convolution operation example (Kumar, 2020).

Convolutional layers may learn multiple filters in order to obtain various, distinct feature in-
formation. The programmer may decide how many filters they want to learn, and consequently,
the number of channels outputted by the operation. Channels in image processing refers to the
different dimensions or layers of information contained within an image. A simple example of
the concept of channels is RGB color images, where each channel corresponds to red, green, or
blue, with varying intensities defining the overall color of each pixel. Below, Figure 2.7a provides
an example of how RGB images can be represented by channels, and Figure 2.7b depicts how
convolutional operations work when the input and/or the kernel has more than two channels:

2.3. Deep Learning and Computer Vision 11

Filter
Input image) ——f= Feature maps
Depth = S "\ Conwlution 4
= = _ output
8790|909 - VRN
93(93(87|¢ }] o T \
o1 |91| 90" - s B .
7/
y
7 Filter depth = Feature map depth =
" the depth of the input The number of filters
Width
(A) RBG image (Niemietz, 2008). (B) Example of convolutional operation with multiple channel dimensions.

FIGURE 2.7: Channels in deep learning.

Conceptually, CNNs differ from fully connected networks in their local connectivity. Rather
than each unit receiving inputs from all units in the previous layer, CNN units have limited con-
nectivity, allowing them to focus on local regions of the input. This design, along with parameter
sharing—where the same set of filter parameters is used across different spatial locations—makes
CNNs computational efficient and capable of learning intricate features.

In addition to convolutional layers, CNN architectures often incorporate pooling layers to
downscale spatial inputs while preserving essential information. Common pooling methods in-
clude average pooling and max pooling, which reduce the dimensionality of feature maps, aiding in
computation and mitigating overfitting. There are no learnable parameters within average and
max pooling layers. An example of average and max pooling being applied to a two-dimensional
input matrix is displayed in Figure 2.8.

g 03
o\\\'\g
-2/0]-2]3 W 2 |-1
0 2 1 4 2x2 kernel size
13|02 \ 24
Mmax =
0lol-22 Pooling 32

FIGURE 2.8: Average and max pooling operation examples.

Another common tool employed in convolutional deep learning is applying padding (Du-
moulin and Visin, 2018). Padding refers to the addition of extra pixels of value 0 around the
input image or feature map. This enables the programmer to control the output dimensions by
adjusting the amount of padding added around the input. It also helps in enabling deeper net-
work architectures and preventing information loss at the edges of the input. Figure 2.9 provides
a visualization of applying padding to a convolutional operation:

FIGURE 2.9: Example of convolutional operation that employs padding (Dumoulin
and Visin, 2018).

12 Chapter 2. Background

Unlike typical convolutional layers, as well as average and max pooling layers, transpose con-
volutions are used to increase the spatial dimensions of an input. They involve sliding a kernel
over the input feature map with padding to produce an output feature map with higher spatial
dimensions. An example of a transpose operation is shown in Figure 2.10, where A is the input, B
is the kernel, and the operation uses a stride of 1:

A= B =
IO OEE OO0 OO0

ARTB = ED+D+@@D+DEZ
L0 80 [t L

FIGURE 2.10: Transpose convolution operation example.

[¢]
o]

~
..“\ .Oo .H

]

Ix1 convolutions, standard convolutional layers with a kernel size and stride of 1, have unique
properties. A 1x1 convolutional layer is functionally similar to a fully-connected layer, since it
operates on the entire spatial extent of its input feature map, just like a fully-connected layer
operates on the entire input vector. Moreover, the 1x1 convolutional layer preserves the weight
sharing properties of convolutional layers, which are important for capturing spatial hierarchies
and reducing the number of parameters in the network. Therefore, despite its small size, the 1x1
convolutional layer can perform complex transformations and feature extraction similar to fully-
connected layers, making it a powerful tool in convolutional neural network architectures.

2.3.3 Image Segmentation

Image segmentation (Goodfellow, Bengio, and Courville, 2016) is a computer vision task where
an image is divided into distinct segments, with each pixel assigned a specific label. It aims to
identify and delineate different regions within an image, providing a representation for further
analysis. In the context of SAR, image segmentation analysis can clearly delineate boundaries that
may be unclear from far away, such as bodies of water, forests, oil plumes, and more.

Input Image Segmentation Map
L TR I

~

Segmentation
Technique

FIGURE 2.11: Image Segmentation (Liu et al., 2018)

For image segmentation, the most commonly used deep learning architecture is the U-Net
(Ronneberger, Fischer, and Brox, 2015), which has also been broadly applied to other computer
vision tasks on SAR data (Zhu et al., 2021). As pictured in Figure 2.12, the U-Net architecture
contains an encoder (the left side of the U-Shape), a bottleneck (the bottom of the U-Shape), a
decoder (the right side of the U-Shape), and a final convolutional layer.

2.3. Deep Learning and Computer Vision 13

1 64 64 128 64 64 2
Input
image Output
ey = wp =l =l Segment
Map

2 =) 2N £
T E HEE K
8 el g il ¢ o

! 3 256 198

o]
@
™~

’256 256 512 256 '
= — = -p
S E o Wl 3 mmp Conv 3X3, ReLU
O - - - mmp Copy and crop
¥ oo a2
. up-conv 2X2
ol bt 1024 512
B SN S — T - - S § maxpool 2x2
4 4 2 N t mmp conv 1X1
Bl B B |

FIGURE 2.12: Typical U-Net architecture used for image segmentation tasks (Ron-
neberger, Fischer, and Brox, 2015).

As displayed in Figure 2.13a, the encoder utilizes convolutional and max-pooling layers to
gradually reduce the spatial dimensions of the input while increasing the number of channels.
Each convolutional layer applies learnable filters to capture local patterns and features in the in-
put. At the center of the U-Net is the bottleneck. This layer captures the most abstract features
of the input image at a minimal spatial resolution. It typically contains multiple convolutional
layers to extract high-level representations. The decoder blocks of the U-Net, shown in Figure
2.13b, utilize a transpose convolution to up-sample the feature maps from the bottleneck layer,
gradually increasing the spatial dimensions while decreasing the number of channels. The goal of
the decoder is to reconstruct the original spatial resolution of the input image.

1
Input |

nput Qutput
Output . P = P 1

_______ ranspose R
1Conv_Block! Max Pool ! | COrlvoﬁ.ltion ‘ ! ! !
! komol_sizo =3 | > TR ! St —>!Conv_Block! 1
'] 1 T TeT—— ol 1

) \ _______ om:c\ . \ 303 kemel ._ks_mgl_flz_a :3_|
e dm=a Ouﬁk P— — 1 ne —_— oul,c\;—¢ 0u|} [:
dim=a dim=a/2 I dim =a dim=2-a dm=2a

(A) Encoder Block (B) Decoder Block

FIGURE 2.13: Fundamental Blocks in Typical U-Net

The final convolution of a U-Net, usually also followed by a softmax activation function, pro-
duces the segmentation map. This map consists of one channel per region, with each value indi-
cates the probability that the pixel in the corresponding position belongs to that region. A typical
U-Net also employs skip connections, directly concatenating feature maps from the encoder to
the corresponding decoder at the same spatial resolution. While the U-Shape enables the network
to learn global features and establish relationships between distant parts of the image, the skip
connections help alleviate the problem of information loss during down-sampling and provide
spatial context for the final segmentation. They also help mitigate the vanishing gradient prob-
lem, which occurs when the gradients of the loss function become extremely small as they are
backpropagated through many layers in a network.

Typical U-Nets are fully-convolutional, meaning they are composed entirely of convolutional
layers. Since convolutional layers share weights across spatial locations and therefore require less
parameters than fully connected layers, fully-convolutional networks train extremely quickly.

14 Chapter 2. Background

The Autoencoder is almost identical to the U-Net, and can also be used for segmentation tasks.
Its primary distinction is that it does not contain skip connections and in many implementations,
the data is flattened into a one-dimensional latent representation at the bottleneck.

2.4 Techniques for SAR Parameter Estimation and Segmentation

2.4.1 Statistical Techniques

Historically, traditional statistical techniques were used to perform segmentation on SAR data.
Non-parametric methods such as Maximum Likelihood Estimation (MLE), Method of Moments
(MoM), and Method of Log-Cumulants (MoLC), were used to approximate parameters. These
parameters were then fed in as inputs into segmentation algorithms, such as thresholding-based
techniques, to generate segmentation maps. These techniques found success in some domains,
especially for data that exhibited extremely homogeneous regions. However, they had trouble
analyzing SAR data that contained more heterogeneous regions (Frery, Wu, and Deniz, 2022).
Cheng et al. (2013) was able to address these issues by combining MoLC and MoM. His ap-
proach yielded algebraic expressions that enabled more accurate parameter estimation, which
were particularly crucial in scenarios where conventional methods failed. Subsequently, Ro-
drigues et al. (2016) applied MoLC estimation specifically to SAR image segmentation tasks. Their
methodology involved computing the roughness of individual pixels, and combining the results
to generate a roughness map for the entire SAR image. By inputting these roughness maps into
statistical segmentation algorithms, they were able to achieve improved segmentation outcomes.

2.4.2 Deep Learning Techniques

Amid the recent advancements in deep learning, parametric neural network models have emerged
as effective tools for a wide variety of SAR analysis tasks. A significant advantage of deep learning
methods over traditional statistical techniques is their capacity to process substantial volumes of
data efficiently. This efficiency is largely facilitated by the parallel processing capabilities offered
by modern GPUs, enabling deep learning algorithms to analyze SAR images with unparalleled
speed and scalability. Some example application areas are terrain classification, despeckling, pa-
rameter estimation, and image segmentation. The interested reader can consult Zhu et al. (2021),
a comprehensive survey of deep learning applications in the context of SAR. Notably, due to the
U-Net’s ability to capture intricate spatial dependencies within SAR imagery, it has been widely
adopted for SAR image segmentation tasks (Nava et al., 2022; Hartmann et al., 2021; Ren et al.,
2021; Mazza et al., 2019).

Additionally, recent advancements by Fan and Neto (2023) have showcased the potential
of neural network-based algorithms in estimating roughness parameters when trained on G-
modeled synthetic SAR data. Their architecture is depicted in Figure 2.14:

_. . | —

ey Moment
padding
[—
Input dm=a OUtpUt
Stack
2nd Channelwise 1x1 Conv
— > _ _
Image VOL.00 Moment
Sxagemol ch=hid1
potiogst che3 out_c —
dim=a dim =2 dim=a om=e
dim=a
Avg Pool | —> |[Moment| —
3 formel

Sirido=1

—
dim=a

FIGURE 2.14: Architecture introduced in Fan and Neto (2023) that uses method of
moments-inspired computations to estimate SAR roughness parameters.

2.4. Techniques for SAR Parameter Estimation and Segmentation 15

Their network drew inspiration from the statistical method of moments computation process
outlined in Section 2.2.1 and was implemented as follows: the input undergoes a replication pro-
cess resulting in three identical copies. One copy remains unchanged, while another has all pixel
values squared, and the third has all pixel values cubed. Subsequently, these copies are each
subjected to separate average pooling layers, employing a kernel size and stride of 3, along with
padding to maintain consistent width and height dimensions. Mirroring the numerical moment
computation procedure, the first copy is meant to capture the mean of the pixel values (first mo-
ment), the second is meant to capture the variance (second moment), and the third is meant to
capture the skewness (third moment). These moment representations were then sent through
three 1x1 convolution layers, taking advantage of the fact that 1x1 convolutions functionally act
like fully connected layers, yet still allow the network to be fully-convolutional. The output of
these convolutional layers were the roughness parameters of the input image, which could then
be transformed into roughness maps and input into segmentation algorithms to generate segmen-
tation maps. This algorithm was shown to outperform traditional estimation methods in terms of
accuracy, speed, and reliability. The efficiency of the methodology introduced in Fan and Neto
(2023), only requiring synthetic data for training, is particularly advantageous in the context of
SAR, where large, high-quality datasets are scarce. In instances where they are available, they
tend to be either highly specialized to a particular domain or lack segmentation labels due to the
labor-intensive nature of creating these maps.

17

Chapter 3

Methodology

The fundamental framework common to all machine learning problems involves crafting a model
capable of translating inputs, denoted as X, into optimal outputs, represented by y. Within the do-
main of deep learning, this typically entails constructing a sophisticated neural network model.
This project is organized into three primary sections, each corresponding to a distinct aspect of
machine learning algorithms: input, model, and output. The goal of the input section is to gener-
ate synthetic data that faithfully replicates the statistical characteristics observed in real SAR data.
In the model section, the objective is to devise models that accurately map inputs to their respec-
tive outputs while integrating considerations of statistical moments. Finally, the output section
aims to develop a loss function that takes advantage of the known statistical properties of SAR
to guide the model more effectively toward precise predictions of y. Collectively, the overarching
objective of all project sections is to enhance SAR image segmentation capabilities by leveraging
its well-established statistical properties.

3.1 Synthetic Dataset Generation

This portion of the project focused on generating high-quality synthetic SAR data. To generate
images with shapes that looks like the terrains in real SAR data, PyTorch’s pyperlin library (Paszke
et al., 2019) was employed to generate Perlin Noise. Perlin Noise is a type of fractal noise that
is widely used for natural-looking textures and terrains (Perlin, 1985). Perlin noise is based on
random processes, so an infinite amount of unique synthetic data could theoretically be generated.
After producing a noise map, a threshold was imposed to create a segmentation map with two
distinct regions. The scope of this project was limited to data with only two regions, a deliberate
simplification aimed at enabling a more focused investigation into other aspects of the project.

Various hyperparameters were experimented with to alter the segmentation maps’ smooth-
ness and amount of detail. Figure 3.1 shows the effect of altering the Perlin Noise’s persistance
parameter, which controls the smoothness of the boundary and is usually between 0 and 1. A ran-
dom seed was set to ensure consistency and facilitate comparison across different hyperparameter
settings.

Molse Map Segmentation Map Molse Map Segmentation Map

ala' wla

0.1 0.5

Molse Map Segmentation Map
o v n -

Persistence Parameter

FIGURE 3.1: Perlin Noise generated from varying persistence parameter values and
the corresponding segmentation maps yielded from applying thresholding.

18 Chapter 3. Methodology

For the synthetic dataset, two hundred segmentation maps were generated using Perlin Noise
with a persistence parameter of 0.5. Some examples are displayed in Figure 3.2.

] ® .
M
FIGURE 3.2: Examples of ground truth segmentation maps generated for synthetic
dataset.

»

s 3

A

Since the Generalized Gamma (G') is known to accurately model SAR data and its inherent
speckle noise (see Section 2.2.4), pixel values were sampled from G° to generate the synthetic data.
To produce synthetic data associated with a ground truth segmentation map, pixels correspond-
ing to region 1 of the ground truth were sampled using one roughness parameter (1), while pixels
corresponding to region 2 of the ground truth were sampled using a different roughness parame-
ter (x2). Figure 3.3 shows three examples of synthetic data generated from the same segmentation
map with different roughness parameter combinations. When the « values are closer together, the
regions are less visually discernible.

Ground Truth: 'I i

al =-1.5, a2 =-11, L=1 al=-5a02=-9, L=1 al=-9, a2 =-11, L=1

FIGURE 3.3: Examples of synthetic data generated from the same ground truth label
with different roughness parameter combinations.

Various roughness combinations were experimented with in an attempt to create a dataset that
accurately represents the diversity of SAR data, yet is still interpretable enough that a segmenta-
tion model can discern the distinct regions. Another hyperparameter that was experimented with
was the number of looks, which, as discussed in Section 2.1.1, is the number of radar pulses that
are integrated to form a single image pixel.

To assess the synthetic dataset’s diversity and capacity to train SAR segmentation models, a
standard U-Net was trained on the synthetic dataset and subsequently tested on synthetic and
real test SAR images.

3.2. Statistically-Motivated Segmentation Architectures 19

3.2 Statistically-Motivated Segmentation Architectures

Building upon the work in Fan and Neto (2023) that used a network architecture to emulate statis-
tical moment computation and compute roughness parameters, this part of the project focused on
designing and experimenting with similarly statistically-principled architectures that can directly
transform input SAR data into binary segmentation maps.

The models were first all trained on the synthetic dataset. Subsequently, their performance
was quantitatively assessed using synthetic validation data, followed by qualitative evaluation
using both synthetic validation data and real SAR test data. Next, the models were trained and
tested on the SARBuD Dataset, which, as discussed in more detail in Section 4.1.1, contains labeled
segmentation data derived from real SAR images, but with notable limitations. Finally, the models
trained on synthetic data underwent quantitative testing on the SARBuD Dataset.

All eighteen of the architectures developed for this project can be found in Appendix A. For
modularity, Section A.1 of the Appendix contains representations of blocks of code that were used
in various architectures. Section A.2 of the Appendix contains representations of the various en-
coder blocks that were experimented with as encoders for U-Shape architectures. Section A.3 of
the Appendix contains representations of the high-level architectures that transform images into
a corresponding segmentation.

The current state-of-the-art for segmentation tasks, the Unet (Architecture A.3.1), was used
as a benchmark for the other architectures that were experimented with. Another benchmark
architecture utilized was the Autoencoder (Architecture A.3.2), which in this implementation is
identical to the typical Unet, but does not employ skip connections.

The three_moments block, depicted in Figure 3.4, served as a foundational element across nu-
merous architectures, incorporating the key statistical principles that this project aims to integrate
into the designs.

AvgPool —

3x3 kamel
sirige=1

padding=1 \
in_c

3x3 kemel
sirige=1
padding=1

e Avg Pool | ——

3x3 kemel
sirige=1
padding=1

|
|
|
|
|
|
|
|
|
|
Avg Pool | —— !
|
|
|
|
|
|
|
|
|
|

x

FIGURE 3.4: Three_Moments block.

Given that statistical moments can be utilized for parameter estimation (see Section 2.2.2),
the rationale is that the outputs of the three_moments block represent the first three statistical
moments of the input and therefore contain the necessary information for generating precise seg-
mentations of the input image. In Fan and Neto (2023), a similar architecture, along with 1x1
convolutions, was employed to estimate distribution parameters within SAR data. Subsequently,
these parameters were processed by traditional (non-deep learning) segmentation algorithms.

20 Chapter 3. Methodology

This project aimed to employ the same architectural techniques to train a model capable of im-
plicitly estimating the parameters and translating them into meaningful segmentations, all within
a fully-convolutional network. The elimination of post-processing segmentation algorithms could
potentially result in a significantly faster segmentation process.

The 3Moms model, depicted in Figure 3.5, closely resembles the model introduced in Fan and
Neto (2023), with some adjustments made to the channel dimensions. These modifications were
aimed at producing a segmentation map that matches the input dimension, rather than a single
roughness parameter.

—
Input am=a Output
(G S - -

---------- Channelwise \Convoluhon ‘ Tan \Convoluhon \ Tan \Convoluhon \ Sigmoid s

Image | — > 1 Three_Moments ' — — gr:: nnnnnn
} Three_Moments - R e —_—

. : h3\ i

im = a im = a

ch=! dm=a out_¢ =1 —y
= &
dm=a re— dm=a
im = a

FIGURE 3.5: 3Moms segmentation architecture.

Given the effectiveness of the U-Net in various segmentation contexts, many of the architec-
tures primarily focused on integrating statistical moment computation within the framework of
the standard U-Net. The general U-shape block, illustrated in Figure 3.6, features encoder blocks
that reduce the height and width dimensions of the input, decoder blocks that restore the height
and width dimensions of the latent representation to their original size, and skip connections that
allow the decoder blocks to access high-resolution feature maps from earlier stages of the network.
A U-Shape architecture proves effective for segmentation tasks due to its ability to compress the
input into a smaller spatial dimension, facilitating the learning of relationships between spatially
distant pixels. The statistical computations employed in this project operate locally within their
window, and 1x1 convolutions, while enacting global learning, can not inherently capture spatial
relationships between pixels. Therefore, compression within the architecture likely remains cru-
cial to ensure that the model can accurately classify pixels from disparate regions of the image into
the same region.

Output |
o, | Convolution | 1
Skip | Decoder_Block 1 —» . TS 1

n_c=1% i
dim=a l Y nay e e e |
im = a
1
s Skip \Decoder_Block 1 —>
At —— T oooToosh o s \
Gm=al2 | I g2\,
dm=a/2

FIGURE 3.6: UShape block.

All of the architectures that incorporate the UShape block use the same decoder block, illus-
trated in Architecture A.1.3, which consists of a transpose convolution and two 1x1 convolutions.
The statistical architecture experiments were often implemented in the encoder blocks.

For example, the AE_Avg model is an autoencoder that utilizes Encoder_Avg as its encoder (Fig-
ure 3.7). Encoder_Avg consists of an average pooling layer, reducing the height and width dimen-
sions by half, and then two 1x1 convolutions. The intuition behind this design is that the encoders

3.2. Statistically-Motivated Segmentation Architectures 21

will be able to learn a representation of the first moment, and then pass that representation along
to eventually be interpreted in the segmentation.

Input Output fe==-sm--mccccacccacas-asaa==a
|l Input Output 1
1 Autoencoder \ P put
]l aeaccaecomom== 1
I 1 !, |segmentaton o\ — . |[—L ------ 1
Image 1wl Encoder Avg !, Man 1 Avg Pool II \Conv_Blocki %.
hid1 = 64 1 1 T e > 1 kernel_size=1 ! >

I iz =128 stive=2 in,;\, ' N l 1

— hid3 = 256 1 — 1 \ P e=====- out’,C\
dim=a : nlo|=5|z | dim=a |IrLC dm=a dam=alz aim a,zl

(A) AE_Avg (B) Encoder_Avg

FIGURE 3.7: AE_Avg segmentation architecture and its corresponding encoder.

As depicted in Figure 3.8, the Unet_1Mom model, which uses Encoder_1Mom, is very similar to
the AE_Avg model. In contrast to Encoder_Block_Avg, the average pooling layer in Encoder_1Mom
applies padding to maintain the same height and width dimensions. Subsequently, the data un-
dergoes 1x1 convolutions before passing through a max pooling layer, resulting in an output with
halved height and width dimensions. This approach mirrors the encoder structure of the encoder
in a typical U-Net (Architecture A.1.2), where convolutions precede dimension reduction through
max pooling. Despite this alteration, the statistical rationale aligns with that of Encoder_Avg.

Input Output

encader = — |Segmentation

1
1
1
1 L [[—
Avg Pool b ! Max Pool
= Conv_Blocki lax Pool
e, ! — fpett . [L, |
- pacding=1 l “swoe=z
hid3 = 256 1 —_ e aove— T o \c\ PN
1 ut_c N1

dm=a bot =512 dim=a dim=a d " dmoalo

(A) Unet_1Mom (B) Encoder_1Mom

Image —

FIGURE 3.8: Unet_1Mom segmentation architecture and its corresponding encoder.

The Unet_3Moms_1 architecture (Figure 3.9a), and its corresponding Encoder_3Moms_1 (Archi-
tecture A.2.3), is very similar to the Unet_3Moms_2 architecture (Figure 3.9), and its corresponding
Encoder_3Moms_2 (Architecture A.2.4).

Input Output Input Output
EmmEmEm_—_————-—— e e m e e - === -
! UShape ' ! UShape '
Image | ——> | encoder= | Seg”:::"m Image | ——* | snooder= :-E;c;d;r_-aﬁo-n'l;_z-': —_ Seg";e::"m
! hid1 =64 1 ! n=ss ‘l
I nhiz =128 1 I nioz=128 1
| — | hida =256 | | — | hid3 =356 |
dim=a) b=z -l dim=a dim=a) b=z -l dim=a
(A) Unet_3Moms_1 (B) Unet_3Moms_2

FIGURE 3.9: Unet_3Moms_1 and Unet_3Moms_2 segmentation architectures.

In both Encoder_3Moms_1 and Encoder_3Moms_2, the input is fed through the Three_Moments
block. Since the input to an encoder block may have any number of in_c channels, the corre-
sponding output tensors will also have in_c channels. Instead of stacking 3 * in_c channels, the
next step is to transform the tensor so that it only contains 3 channels, one for each moment.
Encoder_3Moms_1 and Encoder_3Moms_2 accomplish this in different ways. Encoder_3Moms_1 uti-
lizes the Average_Across_Channels block, illustrated in Figure 3.10a, averaging all of the pixels
that are in the same spatial location across channels for each moment tensor and then stacking
them. Encoder_3Moms_2 utilizes the Convolve_To_1Chan block, illustrated in Figure 3.10b, send-
ing each moment tensor through a 1x1 convolution with an output channel dimension of 1, and
then stacking the outputs.

22 Chapter 3. Methodology

. [Input
W= 1 e—
I Reu 5 . 1 Convolution ReLu
4 Average Across — - PR
1 _>_—| ch = P—— 1 ine Y — out c=1%———
dim=a dim=a 1 dim=a dim=a
! e Output — Output
s " Stack
. iR | | f o S|ac|k ; 1 | Convolution || ReLu Chan:;wise
4 _, [Average Across Shannelwise) —t
o S I v
in_c “ 1
1 dim =a o=t dm=a ch=3 ! - dim=a oues 1X’d'_‘ o=
dim=a - im =a =
- 1 dim=a
1 [—
1T " I | Convolution || ReLu
e Channels - s
in_e™H 1 . \ -
1 ch=1 ne ¥ out c=1%————
L dm=a dmea 1 dim=a dim=a
(A) Average_Across_Channels (B) Convolve_to_1Chan

FIGURE 3.10: Blocks for transforming three moment representations into one tensor
with three channels.

Obtaining a tensor with three channels representing the three moments, both Encoder_3Moms_1
and Encoder_3Moms_2 then employ the same architecture as in Encoder_1Mom, sending the data
through two 1x1 convolutions and a max pooling layer. Ideally, these encoders would be able
to preserve statistical information about the input data that, when combined with the relative
spatial information gained from compressing the image in the bottleneck, could subsequently be
leveraged for more effective reconstruction of a segmentation map later on.

Models Unet_3moms_3chans_1 (Architecture A.3.8) and Unet_3moms_3chans_2 (Architecture
A.3.9) are identical to models Unet_3moms_1 and Unet_3moms_2 respectively, with the only dif-
ference being the channel dimensions throughout the U-Shape. Emulating the standard U-Net
architecture, both Unet_3moms_1 and Unet_3moms_2 expand the data’s channel dimensions within
the encoders, peaking at 512 channels at the bottleneck, before subsequently reducing the chan-
nel dimensions within the decoders. In models Unet_3moms_3chans_1 and Unet_3moms_3chans_2,
however, the input and output tensors of the encoder and decoder blocks are always three. The
rationale behind this decision is that if the encoders are only expected to learn about the first three
statistical moments of the input, only three channels might be necessary to retain this information.
With much fewer weights to train, this approach could greatly enhance training speed.

In the subsequent experimental architectures, statistical moment computations were integrated
into the skip connections of the standard U-Net architecture, rather than in the encoders. Given
that typical skip connections preserve low-level feature information, replacing them with moment
computations that encapsulate broader window-scope statistical properties may aid in minimiz-
ing redundancy and promoting homogeneity within the outputted segmentation maps.

One example of such architectures is model Unet_3Moms_Skip_1, as depicted in Figure 3.11:

1
Input ; UShape , Output
"""" 1
: encoder = .Encoder Standard | 1
] ememeeememen 0 2meeeeeem--—--- Eo;w- B-lot-‘;k- I Segmentation
Image | 5= IThree Moments| —> 'Average Across_ Channelm—’ | kernel_size = 1 i Map
y, === ===== beao oo eaem-a=a=-= | kemelsize=1_ 1
1 hid1 = 64]
'd_—' , Poz=128 | di
im=a =
! | im = a

FIGURE 3.11: Unet_3Moms_Skip_1 segmentation architecture.

This architecture employs the typical U-Net encoder block. The skip connections feed the in-
put data through a Three_Moments block to compute representations of statistical moments, an
Average_Across_Channels block to reduce the tensor to three dimensions, and then two learnable

3.2. Statistically-Motivated Segmentation Architectures 23

1x1 convolutions to output a tensor with the same number of channels as the input channel di-
mension of the corresponding decoder block. Model Unet_3Moms_Skip_2 (Figure A.3.11) is almost
identical, with the only difference being that it utilizes the Convolve_to_1Chan block instead of
the Average_Across_Channels block to reduce the tensor to three channels.

Model Unet_3Moms_Skip_BigKern (Architecture A.3.12) is also similar to model Unet_3Moms_Skip_2,
except it employs a kernel size of 7 in the convolutional operation of the encoder, as opposed to
the typical kernel size of 3. To provide a benchmark for this architecture, model Unet_BigKern
(Architecture A.3.13) is a typical U-Net (with typical skip connections), and also employs a kernel
size of 7 in the convolutional operation of its encoder.

Instead of replacing every skip connection with moment computations, AE_Concat_3Moms only
uses the moment computation once as a parallel branch that is eventually concatenated with the
output of an autoencoder (and synthesized with a 1x1 convolution), as shown in Figure 3.12. In
previously-discussed architectures, the Average_Across_Channels or Convolve_to_1Chan block
was necessary to maintain three channels corresponding to the first three moments, potentially
abstracting the computations away from the statistical foundations that they were inspired by.
Here, since the input into the Three_Moments block only has one channel to begin with, such
blocks are not necessary and the more simplistic moment computation is more statistically-sound.

Output

Stack =
Channelwise |Convolution | | retu
T — T

ch=1

Input

Image

dim=a dim =a dim = a

Stack |
Channelwise |

[P]
1Conv_Block,

! komel_size =1 |

1

_______ oS

ch=1%

—_

dim=a

FIGURE 3.12: AE_Concat_3Moms segmentation architecture.

To provide a benchmark for model AE_Concat_3Moms, model AE_Concat_Skip (Architecture
A.3.15) was developed, which mirrors the former but incorporates a conventional skip connection
between the input image and output of the decoder.

Given that a crucial aspect of the U-Net’s functionality relies on compressing the input into
a lower-dimensional representation to facilitate global learning, model 3Moms_Concat_BigShrink
(Figure 3.13) seeks to incorporate this principle with a more computationally efficient architecture.
This model significantly reduces the input’s size with a max pooling layer, resulting in a tensor
one-eighth the original height and width, which is equivalent to the bottleneck’s spatial dimen-
sions in this project’s Unet. Subsequently, the tensor undergoes a convolutional layer followed
by a transpose convolution to restore its original size. Additionally, to provide the network with
statistical information regarding the image, this output is concatenated with the output of the im-
age processed through the moment computation architecture, akin to the approach in architecture
AE_Concat_3Moms.

24 Chapter 3. Methodology

Tr
Max Pool | Convolution | | Batch Norm + ReLU Convolution
e || i -
sssss e it i oy i
=

dim=a/8 !
dim=a/8 ch=1>———
Input dm=a

Stack (- N
Channelwise | Convolution | | ReLu
" - 1%1 kemel Map
oh=2" —— ch=1%
Stack P ,
Channelwise
— __,1Conv_Block: N
! kemnel_size = 1 :
1
ch=1%

dim=a

—
dim =a dim=a
dim=a

ch=1%

dim=a

FIGURE 3.13: 3Moms_Concat_BigShrink segmentation architecture.

Model 3Moms_Concat_SmallShrink employs the same architecture as 3Moms_Concat_BigShrink,
but only halves the input image in the max pooling layer.

The final architecture developed was model 3Moms_B4_Unet, depicted in Figure 3.14. In this
model, moment computation is employed for image pre-processing before inputting it into a stan-
dard U-Net. The idea behind this approach is that providing the U-Net with broader information
about the input’s distribution of pixels could lead to more homogeneous segmentation maps that
focus on the high-level regions.

Input a=—— | Qutput
= 1
im=a | UShape '
Stack Femm——- , . b

mage Channelwise \Conv_Block, | encoder = : Encoder_Standard : ' Segmentation

— > — — — oIS —
1 kernel_size = 1 :) hes ' Mep

< L < | niga=2se !

— oh = 1> ch=3 ch=1r— | s ' —

dm=a = re— im=a e e e e e dim=a
ch= I& [—

dim=a

FIGURE 3.14: 3Moms_B4_Unet segmentation architecture.

3.3 Disparity-Based Loss

As discussed in Section 2.2.3, stochastic distances provide a measure for the distance between
probability distributions. They have found applications in various SAR contexts and if used for
deep learning, are typically incorporated into the loss function. Although stochastic distances
were not yet implemented, this project pursued a preliminary approach incorporating the Eu-
clidean distance between the average pixel values of distinct regions into the loss function. This
type of approach, similar to those used in stochastic distance applications, will be referred to as
disparity-based, meaning that it relies on the assumption that an optimal segmentation will exhibit
maximized deviation in the original pixels between the various perceived regions in the predicted
segmentation. In the context of SAR, this means that distinct regions would be expected to ex-
hibit maximized disparity between their corresponding roughness parameters. A major benefit of
disparity-based losses is that no labels are required, which is extremely valuable for SAR applica-
tions where there are few high-quality, labeled datasets. This initial method serves as a starting
point and has the potential for further enhancement into a more statistically-driven approach in
the future.

The equation for computing the average pixel values of the input data for each perceived
region in the predicted segmentation map is displayed below:

3.3. Disparity-Based Loss 25

where flj is the average pixel value corresponding to predicted region 0, fI; is the average pixel
value corresponding to predicted region 1, wy is the tensor corresponding to the 0th channel of
the predicted segmentation, w; is the tensor corresponding to the 1st channel of the predicted
segmentation, x; is the input data at pixel 7, and 7 is the number of pixels. Notably, by taking the
natural log of x before computing the weighted sums, the equations in 3.1 resemble the first log
moment of the perceived regions, which as noted in Section 2.2.2, are known to relate directly to
the distribution’s parameters.
To compute the loss employed in training, the Euclidean distance was taken between the two
averages:
ED = |11 — fiol[%, (3.2)

where ED is the Euclidean distance.

This Euclidean distance was incorporated into the loss function in both a supervised and un-
supervised approach. For the supervised approach, ED was combined with the typical binary
cross-entropy (BCE) loss linearly as follows:

Supervised Loss = BCE — k x ED, (3.3)

where k is the Euclidean distance loss coefficient. The ED is subtracted from the BCE, since ex-
hibiting a large ED indicates a good segmentation performance, and should therefore correspond
to a lower loss value. When k = 1, the two loss computations are factored into the sum equally,
when k < 1, the overall loss prioritizes the BCE, and when k > 1, the overall loss prioritizes the
Euclidean distance component. Various coefficients were experimented with to investigate how
changing the relative importance of both losses impacts the model’s accuracy and efficiency.

The unsupervised approach relies entirely on the ED metric to evaluate loss:

Unsupervised Loss = —ED. (3.4)

Note that the negative sign is still necessary to encourage increased average pixel divergence
between regions.

Throughout this section, the standard U-Net was trained on these loss functions to evaluate
their relative performance.

27

Chapter 4

Results

4.1 Experimental Setup

4.1.1 Datasets

The synthetic dataset, whose generation is detailed in Section 3.1, comprises 825 256x256 images,
with 80% allocated for training and the remaining 20% for testing.

Additionally, real SAR data samples from diverse sources were utilized. For example, many
of the experiments make use of SAR data samples depicting San Francisco and an oil spill. Both
images are commonly used in SAR analysis literature, including Fan and Neto (2023). The San
Francisco data is 512x1024 and the oil spill data is 512x512. They are stored as TIFF files, which
is a versatile, high-quality image format that supports lossless compression, multiple layers, and
various color spaces (Frery, Wu, and Deniz, 2022). Therefore, it can preserve SAR'’s intensity data,
which is crucial for effective analysis. Various real SAR data images were also retrieved from
Capella Space’s open-source datasets (Capella, 2021). Capella Space is a private aerospace com-
pany specializing in SAR satellite technology. Their SAR images are extremely high resolution, so
for the purposes of this project, they were cropped to 1024x1024 to accommodate Bowdoin HPC’s
base memory usage limits. They are also stored as TIFF files. Since the San Francisco, oil spill, and
Capella data samples do not have labels, they can only be used for qualitative analysis.

Another dataset used in this project is the SARBuD Dataset (Wu et al., 2021; Wu et al., 2022),
which contains 20, 000 optical SAR images with associated binary segmentation maps. Each image
is a 256x256 JPEG file. Unlike TIFF files, JPEG formats use lossy compression, which sacrifices
some image quality to achieve smaller file sizes. These compression techniques can have the effect
of corrupting SAR’s statistical characteristics, which is often unideal for analyses, especially in this
case where the statistical properties of SAR are of the utmost importance. Figure 4.1 illustrates
samples from the aforementioned real SAR data sources:

San Francisco Oil Spill Capella SARBuUD

FIGURE 4.1: Real SAR data samples from various sources.

28 Chapter 4. Results

4.1.2 Data Preprocessing

As discussed in Section 2.2.2, there is a close relationship between log cumulants and the log of
statistical moments of the same order. Consequently, taking the natural log of SAR data before pro-
cessing has been shown to stabilize subsequent training. Therefore, data preprocessing involved
taking the natural log and then applying standard normalization to the images before training.

The real SAR test images underwent resizing before processing, imposing a constraint that
height and width dimensions were the nearest power of 28. Otherwise, the U-Shape architectures
face problems when they attempt to reduce a tensor of odd height or width by half.

4.1.3 Hyperparameters for Model Training

Binary cross-entropy (BCE) was employed as the loss function for model training (besides, of course,
when the loss function was the subject of experimentation). BCE is a commonly used loss function
in binary classification tasks. It is defined by the formula:

N
Ly Z yilog(9s) + (1 = yi) log(1 = 9:)], (4.1)
z:l
where y represents the ground truth labels (0 or 1), i represents the predicted probabilities, and N
is the number of samples. By minimizing the value outputted from this loss function, algorithms
penalize deviations between predicted probabilities and true labels, helping the model learn to
accurately classify pixels as foreground or background. The machine learning library used to im-
plement this project, PyTorch (Paszke et al., 2019), also automatically applies a softmax function to
the raw y prediction before computing the cross-entropy. Softmax is a mathematical function that
converts a vector of real numbers into a probability distribution. The softmax equation, defined
in Equation 4.2 calculates the probability s; of the i-th class given the input vector z and ensures
that all probabilities sum up to 1:

e%i

5; = (42)

]1e

All models in this project were trained using an initial learning rate of 0.001, 70 epochs, a
batch size of 8§, and the ADAM Optimizer. Some architectures also employ batch normalization
and dropout (all UShape architectures employ dropout with probability 0.5 at the bottleneck). The
models were trained using the NVidia Turing GeForce RTX 3080 10 GB available through Bow-
doin’s HPC.

The hyperparameters were chosen through random experimentation using the U-Net archi-
tecture. Extensive hyperparameter tuning was not necessary, since the focus was on ensuring
consistency across hyperparameters for fair comparison across architectures and loss functions,
rather than striving for the highest possible model performance.

4.1.4 Evaluation Metrics

Throughout the project, segmentation performance was evaluated using the Intersection over Union
(IOU) metric:

4.2. Generated Synthetic Dataset 29

_ Area of Intersection @
Area of Union ‘

FIGURE 4.2: Intersection over Union metric.

[V,

IOU provides a quantitative measure of the spatial overlap of the regions in the prediction
and ground truth, as well as how accurately the pixel values line up. A perfect segmentation will
produce an IOU of 1 and a predicted segmentation with no regional overlap with the ground truth
will produce an IOU of 0.

Qualitative analyses were also extremely valuable in this context. By aligning a segmentation
map side-by-side with the original data, one can infer how accurately the segmentation model
identified key regions and shapes in the SAR imagery.

4.2 Generated Synthetic Dataset

For each ground truth label out of the 200 generated segmentation maps, corresponding synthetic
SAR images were produced by sampling from different combinations of roughness parameters.
Specifically, for each label, data was generated by sampling from the G° distribution with all
permutations of 11 « values ranging from —1.5 to —11. The dataset and segmentation maps were
limited to two regions, constituting a binary segmentation task.

To evaluate whether a segmentation model could be trained on this data, a standard U-Net
was first trained and texted on one combination of roughness parameters at a time. Table 4.1a
presents the average test IOUs and Table 4.1b presents the average inference times of a U-Net
model trained exclusively on the corresponding a combinations.

TABLE 4.1: IOU and inference times for U-Nets trained on one combination of
roughness parameters («x) at a time (L=1).

-3 | 0.973 -3 | 1413
a -5 0981 0951 a -5 | 1.290 1.293
2 9 098 0976 0.956 2 -9 1236 1318 1.282
-11 | 0986 0979 0.966 0.831 -11 | 1.237 1337 1.292 1.361
15 3 5 9 |16 8 S5 B
1 (11
(A) Average IOU (B) Average Inference Time

Figure 4.3 provides a qualitative evaluation of these experiments, displaying a segmentation
map produced from models trained on each roughness parameter combination. In the pairs of
images corresponding to each roughness parameter combination, the leftmost image displays an
example image generated by sampling from the G distribution with those roughness parameter
(«) values, and the rightmost image displays the predicted segmentation. The top right corner of
the Figure contains the ground truth segmentation.

30 Chapter 4. Results

Ground Truth

»

FIGURE 4.3: Synthetic data generation preliminary results trained on two as at a
time (L = 1).

Based on the metrics in Table 4.1 and the qualitative results Figure 4.3, U-Nets were able to train
effectively on synthetic data samples generated from one combination of roughness parameters at
a time. Moreover, models trained on more distinct # parameters performed better.

While the previous experiments provide a good indication of each roughness combination’s
capacity to train a U-Net, the exact roughness parameters in real SAR data varies and is unknown.
Therefore, to emulate the diverse quality of SAR images that might be encountered in the real
world, a U-Net was then trained on the entire synthetic dataset, which contains various combina-
tions of roughness parameters. The quantitative results, including the average IOU and average
inference time, of the U-Net’s performance on the integrated roughness synthetic dataset is dis-
played below:

TABLE 4.2: Metrics from models trained on a large variety of « combinations (L = 1).

Average IOU: 0.822
Average Inference Time (ms): 1.342

A corresponding qualitative result is displayed in Figure 4.4, which shows example segmen-
tation maps produced by a U-Net trained on integrated roughness combinations and tested on
synthetic data generated by specified roughness parameters. Below each data-segmentation pair
is the IOU of the particular corresponding segmentation displayed above it.

4.2. Generated Synthetic Dataset 31

g0

Ground Truth

»

10U = 0.950

10U = 0.978 10U = 0.794

IOU = 0.980 10U = 0.967 IOU = 0.828

[

10U = 0.981 10U = 0.976 10U = 0.920 10U = 0.569

1.5 3 al 5 9

FIGURE 4.4: Synthetic data generation preliminary results trained on all « combina-
tions at once (L = 1).

Although the U-Net performed worse when trained on a diverse combination of roughness
parameters, it was still able to discern the various regions for most test examples, again having
more difficulty when the a parameters were closer together.

Another dataset generation hyperparameter that was experimented with was the number of
looks (L). Figure 4.5 shows the results of various U-Nets that were trained on individual datasets
generated by sampling from the G° distribution using different Ls, while maintaining a constant
a1 = —1.5and a; = —3.0. Below each data-segmentation pair is the average IOU over the entirety
of each experiment.

Looks

Pred

10U = 0.9726 10U = 0.9760 10U = 0.9769 IOU = 0.9775

FIGURE 4.5: Synthetic data generation preliminary results trained on varying look
parameter.

32 Chapter 4. Results

As shown in Figure 4.5, the performance of the U-Net is slightly better when trained on a
larger number of looks, though not by a very large margin.

Finally, since the ultimate goal of synthetic data is to train a model that can be used on real SAR
data, a U-Net trained on the integrated roughness synthetic dataset was tested on real SAR data.
Figures 4.6a and 4.6b display the model’s performance on real SAR data depicting San Francisco
and an oil spill respectively.

SAR Data Pred

Google Mp Screenshot of Location

SAR Data

Pred

o -..ti\iul o
HH Polanzatlon HV Polarization vV Polarlzatlon

(A) San Francisco (B) Oil Spill

FIGURE 4.6: Test reults of U-Net trained on synthetic data and tested on real SAR
data.

Based on these segmentations, it appears that the U-Net trained on the integrated roughness
dataset was able to discern regions in real SAR data. However, there is some granularity in the
segmentation maps, which is especially evident in Figure 4.6b.

4.3 Statistically-Motivated Architecture Performance

4.3.1 Architectures Trained on Synthetic Data: Quantitative

The quantitative performance of all of the architectures trained and tested on the synthetic dataset
are displayed in Table 4.3. The metrics include final test cross-entropy loss, final test IOU, and
average training time per epoch. The best-performing architectures, with respect to final test cross-
entropy loss and IOU, are denoted by stars, where the architectures signified by * * x, **, and *
symbols, achieved the best, second-best, and third-best scores respectively.

4.3. Statistically-Motivated Architecture Performance 33

TABLE 4.3: Performance of architectures on synthetic dataset.

Architecture Name Final Test Cross- | Final Test IOU Training Time
Entropy Loss Per Epoch (s)
Unet 0.292 0.861 726.98
Autoencoder* 0.133 0.943 1115.59
3Moms 0.586 0.561 25.07
AE_Avg 0.234 0.812 412.81
Unet_1Mom 0.248 0.828 638.39
Unet_3Moms_1 0.501 0.585 655.76
Unet_3Moms_2 0.344 0.776 664.64
Unet_3Moms_3Chans_1 0.52 0.641 75.52
Unet_3Moms_3Chans_2 0.504 0.64 77.64
Unet_3Moms_Skip_1 0.353 0.858 850.34
Unet_3Moms_Skip_2 0.361 0.851 863.62
Unet_3Moms_Skip_BigKern | 0.16 0.92 1365.97
Unet_BigKern 0.134 0.924 1242.11
AE_Concat_3Moms *** 0.107 0.945 1127.49
AE_Concat_Skip** 0.118 0.944 1119.83
3Moms_Concat_BigShrink 0.578 0.528 30.79
3Moms_Concat_SmallShrink | 0.536 0.584 31.42
3Moms_B4_Unet 3.988 0.622 737.32

As detailed in Table 4.3, the Unet trained on the synthetic dataset was able to achieve a final
test cross-entropy loss of 0.29, a final test IOU of 0.86 and took 726.98 s to train on average per
epoch. The Autoencoder, achieved a final test cross-entropy loss of 0.13 and a final test IOU of
0.94, outperforming the Unet with respect to these metrics.

The only two models that outperformed the Autoencoder with respect to both final test cross-
entropy loss and final test IOU were models AE_Concat_3Moms and AE_Concat_Skip, with model
AE_Concat_3Moms exhibiting superior quantitative performance on the synthetic data among all of
the architectures. They both also trained slightly faster than the Autoencoder.

While not quite matching the performance of the Autoencoder, albeit by a small margin, both
the Unet_3Moms_Skip_BigKern and Unet_BigKern models vastly outperformed the standard Unet
with respect to both loss and IOU. However, they exhibited the largest training time per epoch
out of all of the other models.

Besides the previously mentioned front-runners, only the AE_Avg, Unet_1Mom, Unet_3Moms_2,
Unet_3Moms_Skip_1, and Unet_3Moms_Skip_2 models obtained final test cross-entropy losses and
final test IOUs comparable to the Unet, and all but the ladder two outpaced the Unet with respect
to training time.

4.3.2 Architectures Trained on Synthetic Data: Qualitative

This section showcases visual representations of three validation images, each with varying levels
of anticipated segmentation difficulty, that have undergone segmentation by the top eight per-
forming architectures. When analyzing the performance of the varying architectures, it is useful
to compare the quantitative measures (final test cross-entropy loss, final test IOU, training time),
as well as observe examples of segmentation maps produced by the models, since the the visual
information can reveal aspects of the performance that are not obvious through the quantitative
metrics. At the top of each figure, alongside the synthetic data example, is the associated ground
truth segmentation map.

34 Chapter 4. Results

The synthetic image in Figure 4.7 was expected to be ‘easy’ to segment, as the two regions
have the most distinct « values of the three examples: a1 = —2 and ap = —11. This is also evident
visually, as the eye can clearly discern the dark and light regions, despite the noise.

Synthetic Data Ground Truth

" X
: ‘.
D 0y
%
'E’ Unet Autoencoder Unet_1Mom Unet 3Moms_Skip 1
Q
5 w
[oT]
]
[%s]
LLJ
o Unet_3Moms_Skip_BigKern Unet_BigKern AE_Concat_3Moms AE_Concat_Skip
FIGURE 4.7: Segmentations for synthetic data generated froma; = —2and a, = —11

across architectures.

The synthetic data example in Figure 4.8 was expected to be of ‘medium’ difficulty for the
models to segment, with « values: a; = —2 and ap = —4. Visually, the various regions are not
hard to discern, but not as clear as the previous data example.

-

Synthetic Data Ground Truth

- L]
v
c
2
)
E -
c Unet Autoencoder Unet_ 1M0m Unet_3Moms_Skip_1
T = _KIP_
e | | |
[<F]
w
Unet73Mom575k|p73|gKern Unet B|g|(ern AE Concat_. 3M0m5 AE_Concat_Skip

FIGURE 4.8: Segmentations for synthetic data generated from a;=-2 and ap=-4 across
architectures.

4.3. Statistically-Motivated Architecture Performance 35

The synthetic data example in Figure 4.9 was expected to be 'hard’ for the models to segment,
as the two regions have the least distinct a values of the three examples: #; = —6 and ap = —7.
Evidently, it is very difficult to discern the various regions with the human eye.

L4

l at

X

Synthetic Data Ground Truth

o

" |

c A

o ~

s]

8

cC Unet Autoencoder Unet_1Mom

]

=

[=Ts]

M)

173

Unet_3Moms_Skip_Bigkern Unet_BigKern AE_Concat_3Moms AE_Concat_Skip
FIGURE 4.9: Segmentations for synthetic data generated from a; = —6and ay = -7

across architectures

The relatively successful validation examples in Figures 4.7, 4.8, and 4.9 support the quantita-
tive results for these eight highest-performing architectures. The Unet_3Moms_Skip1 and Unet_1Mom
models’ segmentations of the ‘easy” and ‘medium’ examples appear slightly less accurate than the
other architectures, while the Autoencoder, Unet, and Unet_BigKern models appear to produce
the most successful segmentations of the “difficult” example.

The segmentation maps displayed in Figures 4.10, 4.11, and 4.12 present the results of testing
the top eight performing models on real SAR data depicting San Francisco, an oil spill, and Capella
data, respectively.

Real SAR Data

male S0t ol

E, -
E Unet Autoencoder Unet_3Moms_Skip_1
[

[}

=

]

[} 2 b

w -

35 REFg el Fhcad
Unet_3Moms_Skip_BigKern Unet_BigKern AE_Concat_3Moms AE_Concat_Skip

FIGURE 4.10: Segmentations for real SAR data of San Francisco across architectures.

36 Chapter 4. Results

Real SAR Data

.Z"!
T =

wvy o i

S »

& 4

© .l"zuA LR
b= Autoencoder Unet_1Mom
(]

£ g
& ? o
W

. S

= 1
b _4-~ - 3

Unet_3Moms_Skip_Bigkern U net_BigKem AE_Concat_3Moms AE_Concat_Skip

FIGURE 4.11: Segmentations for real SAR data depicting oil spill across architec-
tures.

-2

Real SAR Data

Segmentations

ol (i W
Unet_3Moms_Skip_BigKern Unet_BigKern AE_Concat_3Moms AE_Concat_Skip

FIGURE 4.12: Segmentations for real SAR data from Capella dataset across architec-
tures.

The architectures appear to all produce segmentations with varying degrees of success and
fine-grained detail. Specifically, the autoencoder-based models produced much more homoge-
neous segmentation maps, particularly the Unet_Concat_3Moms, while models incorporating skip
connections, such as model Unet_1Mom, produced segmentation maps with much more detail.

4.3. Statistically-Motivated Architecture Performance 37

4.3.3 Architectures Trained and Tested on Optical SAR Imagery

Table 4.4 displays metrics of eight models that were trained and tested on optical SAR imagery
from the SARBuD dataset. These architectures are the eight models that performed the best on
the synthetic dataset. The best-performing architectures, with respect to final test cross-entropy
loss and IOU, are denoted by stars, where the architectures signified by * * *, %, and * symbols,
achieved the best, second-best, and third-best scores respectively.

TABLE 4.4: Performance of best architectures trained and tested on real SAR dataset

(SARBuD).
Architecture Name Final Test Cross- | Final Test IOU Training Time
Entropy Loss Per Epoch (s)

Unet* 0.197 0.777 22200.32
Autoencoder 0.25 0.736 33754.87
AE_Avg 0.429 0.514 12564.2
Unet_1Mom 0.966 0.429 19221.04
Unet_3Moms_Skip_1** 0.199 0.778 25904.16
Unet_3Moms_Skip_2*** 0.175 0.785 26181.81
Unet_3Moms_Skip_BigKern**| 0.182 0.777 41332.65
Unet_BigKern 0.281 0.73 37719.52
AE_Concat_3Moms 0.296 0.639 34168.75
AE_Concat_Skip 0.296 0.668 33863.97

Based on Table 4.4, the Unet_3Moms_Skip_2, Unet_3Moms_Skip_1, Unet_3Moms_Skip_BigKern,
and Unet models performed the best, with respect to final test cross-entropy loss and IOU, on
the SARBuD dataset. However, these metrics do not match the performance of the architectures
trained and validated on the synthetic dataset.

Figure 4.13 shows a qualitative example of the models” performance on a validation image
from the SARBuD dataset that the models did not see during training.

t
SAR Data Ground Truth

e ~ &

¥

[‘\-ﬂ;
Autoencoder Unetil,Mom Unet 3Moms_Skip 1

AE:Concat-_SMoms

r

Segmentations

-

AE_Concat_Skip

-~ =
e -
Unet_3Moms_Skip_Bigkern Unet_BigKern

FIGURE 4.13: Segmentations for validation SARBuD image across architectures
trained on SARBuD.

38 Chapter 4. Results

Mirroring the quantitative metrics, the Unet_3Moms_Skip_1 and Unet_3Moms_Skip_BigKern
models appeared to have produced the most accurate segmentation maps, while the Unet_1Mom
model had the most trouble.

Figures 4.14 and 4.15 provide test examples displaying how well the architectures trained on
the SARBuD dataset performed on real SAR data samples from alternative sources.

Real SAR Data

Preht
kip_1

Autoencoder

Segmentations

o

AE_Concat_Skip

. - = L3
Unet_BigKern AE_Concat_3Moms

FIGURE 4.14: Segmentations for real SAR data of San Francisco across architectures
trained on SARBuD.

Real SAR Data

%)
c
S e]
-E; Ly ‘h’ : .
E' Unet Autoencoder Unet_1Mom Unet_3Moms_Skip_1
7]
=
[=T4]
(3]
[¥p]
Unet_3Moms_Skip_BigKern Unet_BigKern AE_Concat_3Moms AE_Concat_Skip

FIGURE 4.15: Segmentations for real SAR data of oil spill across architectures trained
on SARBuD.

Especially compared to the synthetically-trained models, the architectures trained on the SAR-
BuD dataset were less successful in discerning regions of real SAR data. Particularly in Figure
4.14, the Unet_1Mom, Unet_3Moms_Skip_1, and Unet_3Moms_Skip_BigKern architectures appeared
to produce slightly more successful segmentations than the other architectures.

4.4. Disparity-Based Loss Performance 39

4.3.4 Architectures Trained on Synthetic Data and Tested on Optical SAR Imagery

Table 4.5 showcases the final test cross-entropy losses and final test IOU of eight models that were
trained on the synthetic dataset, and tested on the SARBuD dataset. These architectures are the
eight models that performed the best on the synthetic dataset. The best-performing architectures,
with respect to final test cross-entropy loss and IOU, are denoted by stars, where the architec-
tures signified by * * *, x*, and * symbols, achieved the best, second-best, and third-best scores
respectively.

TABLE 4.5: Performance of architectures trained on synthetic dataset and tested on
SARBuD dataset.

Architecture Name Final Test Cross- | Final Test IOU
Entropy Loss
Unet 3.536 0.3
Autoencoder 2.695 0.367
AE_Avg 3.264 0.271
Unet_1Mom 3.099 0.291
Unet_3Moms_Skip_1 *** 0.846 0.444
Unet_3Moms_Skip_2 2.407 0.341
Unet_3Moms_Skip_BigKern**| 2.052 0.378
Unet_BigKern 2.426 0.36
AE_Concat_3Moms* 2.502 0.379
AE_Concat_Skip 2.775 0.352

All of the synthetically-trained models performed badly when tested on the SARBuD dataset.

4.4 Disparity-Based Loss Performance

441 Supervised Approach: Combining Cross-Entropy and Disparity-Based Losses

Table 4.6 showcases the standard U-Net’s quantitative performance across various Euclidean dis-
tance loss coefficients. When the coefficient is 0, the loss function is entirely cross-entropy loss.
When the coefficient is < 1, the loss function emphasizes cross-entropy loss more than the Eu-
clidean distance loss. When the coefficient is > 1, the loss function emphasizes the Euclidean
distance loss more than the cross-entropy loss. The Euclidean loss coefficients that led the U-Net
towards the best results, with respect to final test IOU, are denoted by stars, where the coefficients
signified by * * x, ¥*, and * symbols, led to the best, second-best, and third-best scores respectively.

TABLE 4.6: U-Net trained incorporating Euclidean distance between region average
pixel values into loss function.

Euclidean Distance | Final Test IOU Training Time
Loss Coefficient Per Epoch (s)
0 0.865 746.81

0.001** 0.861 747.15

0.01* 0.852 747.8

0.1* 0.852 748.82

1 0.454 747.25

10 0.851 747.37

100 0.212 747.24

40 Chapter 4. Results

As shown in Table 4.6, the U-Net generally performed worse as the disparity-based portion of
the combined loss was given a greater weight.

Figure 4.16 showcases the U-Net’s validation performance on a synthetic data sample that it
had not yet seen before. The data was sampled from a1 = —2 and &y = —4, which has previously
been regarded as a ‘medium’ difficulty image to segment.

)

Synthetic Data Ground Truth

22%2%5 R0

0.001

I

Euclidean Distance Loss Coefficient

FIGURE 4.16: U-Net segmentation on validation synthetic data across Euclidean dis-
tance loss coefficients (data sampled from ay = —2 and ap = —4).

Similar to the quantitative results, the best segmentation maps were produced by U-Nets that
gave the disparity-based loss the least weight.

The models that were trained with varying Euclidean distance loss coefficients were then
tested on real SAR data samples. Figures 4.17 and 4.18 display the segmentation results of the
U-Nets tested on SAR data of San Francisco and from the Capella dataset respectively.

Real SAR Data

100

B

Euclidean Distance Loss Coefficient

FIGURE 4.17: Segmentations for real SAR data of San Francisco across Euclidean
distance loss coefficients.

4.4. Disparity-Based Loss Performance 41

100

Euclidean Distance Loss Coefficient

FIGURE 4.18: Segmentations for real SAR data from Capella dataset across Euclidean
distance loss coefficients.

Once again, the models’ performance worsened when the Euclidean loss coefficient was greater.
However, when the loss coefficient was given the greatest weight of 100, it appeared to have been
able to discern the regions in an extremely general sense.

4.4.2 Unsupervised Approach: Disparity-Based Loss

When the U-Net was trained and tested on synthetic data and only considered the Euclidean dis-
tance between the average pixel values of the predicted regions as the loss function, it achieved a
final test IOU of 0.71. Its training also ended with a final test loss of -0.29, though the interpreta-
tion of this loss cannot be compared to the previously documented cross-entropy loss values. The
training took about 746.79 s per epoch on average, which is functionally equivalent to the training
time results for the typical cross-entropy loss.

Figure 4.19 displays the performance of the U-Net using the unsupervised Euclidean distance
loss on various synthetic data samples that come from the training dataset, but the model did not
train on.

Label

R
L

Original Image

Label

Original Image

A) 0‘1_'2 and ap=-11 (B) 0612-2 and nr=-4

Original Image Label
“

FIGURE 4.19: U-Net segmentation performance on validation synthetic data sam-
ples using unsupervised Euclidean distance loss.

(C) a1=-6 and ap=-7

Figure 4.20 displays the performance of the U-Net using the unsupervised Euclidean distance
loss on various test data samples containing real SAR data from various sources. To provide
a benchmark for comparison, the predicted segmentation produced by a U-Net guided by the

42 Chapter 4. Results

unsupervised disparity-based loss was placed alognside the predicted segmentation produced by
a U-Net guided by typical cross-entropy loss.

SAR Data

Disparity-Based

(A) San Francisco

SAR Data Disparity-Based SAR Data

A O LA S
(B) Oil Spill (C) Capella

SAR Data Cross-Entropy

- s O
2 T

(4 q . ‘.o.’-F
LK

[A e

(D) SARBUD

FIGURE 4.20: U-Net segmentation on real SAR test data samples using unsupervised
Euclidean distance loss.

Figures 4.19 and 4.20 indicate that the disparity-based loss is effective when used as the sole
loss metric. The resulting segmentation maps, however, are extremely fine-grained.

43

Chapter 5

Discussion

5.1 Synthetic Dataset

The test results displayed in Table 4.1 and Figure 4.3 indicate that the synthetic dataset exhibits a
diverse range of visual interpretability, with increased difficulty when the roughness («) param-
eters in one image are close together, particularly for « values that are more negative. This trend
is also visible in the qualitative results, as well as in the average IOU metrics. However, even in
the worst case, 1 = 9 and ap» = —11 , the model still achieves an IOU of around 0.83, and the
segmentation map still retains the general trends of the ground truth, if not the small details.

As anticipated, Table 4.2 and Figure 4.4 indicate that the U-Net trained on a dataset consisting
of various combinations of roughness parameters had more difficulty discerning various regions,
particularly for data samples generated from similar roughness values. However, the average IOU
of 0.82 is still relatively high and the increased diversity of the training dataset likely resulted in a
model that was more versatile and effective for discerning regions in real SAR data. Moreover, it
is worth noting that the average inference time for the U-Net trained on the synthetic dataset was
quite fast, especially compared to statistical models which take at least a few seconds to generate
a segmentation map.

Additionally, as depicted in Figure 4.5, increasing the number of looks did result in more suc-
cessful U-Net performance, but not so much so to make a very significant impact. Since the U-Net
performed relatively well on data generated using one look in all of these tests, the rest of the
project will assume a look parameter (L) of 1.

The qualitative test results in Figure 4.6a and Figure 4.6b are especially promising, indicating
that a U-Net trained on synthetic data was able to discern the regions of real SAR data in a general
sense. Although this attests to the dataset’s efficacy in training a model for applied segmentation
tasks, the granularity of the segmentation map in Figure 4.6b suggests the potential for further
improvements.

5.2 Statistically-Motivated Segmentation Architectures

5.2.1 Benchmark Architectures

As noted in the Results Section, it is important to consider examples of predicted segmentation
maps (using both synthetic and real test SAR data) when comparing the performance of seg-
mentation architectures, in addition to the quantitative measures. The significance in doing so is
apparent when considering the relative performance of the two benchmark architectures: the Unet
and the Autoencoder. As displayed in Table 4.3, the Autoencoder appears to have outperformed
the Unet with respect to both final test cross-entropy loss and final test IOU. This conclusion is sup-
ported by the qualitative validation results in Figure 4.9, where it appears that the Autoencoder
was able to better discern the general shape of the synthetic input data’s ground truth segmenta-
tion map. However, it is more clear in the test images in Figures 4.10, 4.11, and 4.12 that the pri-
mary distinction between the architectures was in the level of detail in their segmentation maps.

44 Chapter 5. Discussion

The Unet appears to capture more detailed features, such as the water regions of the park in Fig-
ure 4.10, while the Autoencoder produced more homogeneous regions. This is expected, since the
skip connections in U-Nets enable the preservation of low-level features, and autoencoders have
no such connections. Instead, they rely only on the condensed, latent representation of the image
at the bottleneck to reconstruct a segmentation. It is likely that if hyperparameters were chosen
that resulted in synthetic data with more fine-grained details, the Unet would have performed
better quantitatively than the Autoencoder. With no labels for the real SAR data, there is not nec-
essarily a correct answer to which segmentation map is ‘better’. Typically, computer scientists
strive to balance the benefits of specificity and homogeneity, with decisions contingent upon the
particular domain and task at hand. This trade-off will be important to bear in mind throughout
the entirety of this analysis.

5.2.2 Architectures Employing Branches in Parallel with an Autoencoder

As indicated in Table 4.3, the best-performing architecture, with respect to quantitative metrics,
was model AE_Concat_3Moms (Architecture A.3.14). It achieved the lowest final cross-entropy test
loss of 0.107 and the highest final test IOU of 0.945. It evidently also performed well on the "easy’
(Figure 4.7) and 'medium’ (Figure 4.8) validation data samples, though it did not seem to perform
as well as other models on the "hard’ validation sample (Figure 4.9). This one data sample could
have been an outlier, with model AE_Concat_3Moms more significantly outperforming the other
models on other data samples. Based on the qualitative tests on real SAR data (Figures 4.10, 4.11,
and 4.12), model AE_Concat_3Moms was able to discern the various regions across all of the real
SAR data sources, producing more homogenous regions than even the Autoencoder. This result
coincides with the statistical background of this model. As discussed, the Autoencoder is more
likely to produce regions with less fine-grained detail, due to its lack of skip connections. The
additional moment computation performed on the input image in architecture AE_Concat_3Moms
would ideally provide even more information about the probability distributions of the regions,
leading to more flexible models that would be able to take into account the speckle quality of
SAR. This reasoning is further supported by the qualitative segmentation maps produced by
AE_Concat_3Moms’s benchmark model, model AE_Concat_Skip (Architecture A.3.15). AE_Concat_Skip
is identical to AE_Concat_3Moms except its alternative branch in parallel with the autoencoder is
a regular skip connection, containing no computations. It is evident in Figure 4.11 especially
that the AE_Concat_3Moms model’s outputted segmentation map is a bit less homogeneous than
the AE_Concat_3Moms model’s segmentation, indicating that the moment computation route in
AE_Concat_3Moms was successful in computing useful information about the regions” distribu-
tions. Overall, AE_Concat_3Moms has grounded statistical backings and seems to perform very
well. The downside of this model, however, is that it took 1127.49s per epoch to train, which is
one of the slowest architectures. This is logical, as the additional computational aspects of the
moment computation route would make training such a model take take longer than training a
traditional autoencoder or an autoencoder with a regular skip connection parallel branch.

5.2.3 Architectures Employing Statistically-Motivated Computations in the Encoder
of a U-Net

Additional architectures that performed well with respect to the metrics documented in Table
4.3 were the AE_Avg (Architecture A.3.4) and the Unet_1Mom (Architecture A.3.5) models. Because
these models are very similar in implementation and performance, and as explained in Section 3.2,
the Unet_1Mom model is a bit more statistically-sound, this analysis will focus on the Unet_1Mom
model. Qualitatively, the Unet_1Mom performed well on the "easy” validation example (Figure 4.7),
but there are notable misclassifications in the center of the ‘'medium’” example (Figure 4.8) and the
’hard” segmentation (Figure 4.8) was very inaccurate. For the real SAR test images, the model

5.2. Statistically-Motivated Segmentation Architectures 45

appeared to discern the various regions accurately and with more detail than any of the other
models. This quality is especially evident in the Capella data example (Figure 4.12), where the
segmentation map appears much more granular than the other maps. Because the U-Shape path
of the architecture now only retains moment information, it likely no longer learns a global latent
representation of the input itself at the bottleneck, instead now only learning a global represen-
tation of the data’s statistics. Consequently, the model may rely more on the skip connections
for the segmentation, providing granular segmentation maps that more closely resemble the in-
put retrieved from the skip connections. One benefit of this model is that it trains extremely fast,
at about 638.39s per epoch, which is faster than the Unet and all of the other higher-performing
models. Since this model has some sort of statistical foundation and trains even faster than the
standard Unet (due to the fact that it only employs 1x1 convolutions), it could be the more favor-
able architecture to use in practice if more fine-grained segmentation maps are desired.

5.2.4 Architectures Employing Statistically-Motivated Computations in the Skip Con-
nections of a U-Net

To avoid the problem in model Unet_1Mom, where the encoders might lose too much information
about the input by only keeping track of the data’s statistics, the next best-performing statistically-
inspired models, Unet_3Moms_Skip_1 (Architecture A.3.8) and Unet_3Moms_Skip_2 (Architecture
A.3.9), address this effectively by incorporating the moment computation into the skip connec-
tions instead of in the encoders. Since Unet_3Moms_Skip_1 and Unet_3Moms_Skip_2 performed
about the same and their only difference is their mechanisms for reducing the moments repre-
sentations to three dimensions, this analysis will focus on Unet_3Moms_Skip_1, which achieved
slightly superior performance metrics by using averaging to reduce the moment tensors to three
dimensions. Compared to the other models, model Unet_3Moms_Skip_1 clearly had the most trou-
ble discerning the regions in the synthetic validation tests, even on the ‘easy’ data (Figure 4.7). It
was able to identify regions in the real SAR test examples, but its segmentation maps appeared
to be even more fine-grained than the Unet’s. These results indicate that the moment computa-
tion skip connections did not provide the decoders with valuable statistical information to help
produce segmentations that take into account the regions’ probability distributions. This could be
due to the fact that since the skip connections take in inputs that have already undergone trans-
formations from the encoder, the architecture is attempting to compute moments on tensors that
are too abstract to glean meaningful statistical information from. Since the Unet also outperforms
the Unet_3Moms_Skip_1 model with respect to final test cross-entropy, final test IOU, and training
time, it seems that incorporating the three moment computation into all of the skip connections
has no clear benefit.

5.2.5 Architectures Employing Larger Kernels in the Encoder

Besides the AE_Concat_Skip model and the standard Autoencoder, the next best performing archi-
tectures with respect to quantitative metrics were the UNet _BigKern and Unet_3Moms_Skip_BigKern
models. Since both of these architectures employ encoder blocks with increased kernel sizes, they
are able to learn more feature representations and therefore output a more accurate segmentation
map. Itis evident in both the validation synthetic data and real SAR test qualitative examples that
these models were able to produce segmentations with significant detail, more like the standard
Unet than the Autoencoder. The major downside of employing a larger kernel in these architec-
tures is that they took the longest to train out of any of the architectures.

5.2.6 Poorly Performing Models

None of the other architectures performed well:

46 Chapter 5. Discussion

* Unet_3Moms_1 and Unet_3Moms_1: These models likely underperformed because, similar to
architectures AE_Avg and Unet_1Mom, computing three moments in a series of encoder blocks
becomes too abstract to actually represent the statistics of the input, and instead only loses
information about the original image.

* Unet_3Moms_3Chans_1 and Unet_3Moms_3Chans_2: These models likely face the same prob-
lem as Unet_3Moms_1 and Unet_3Moms_1, which is compounded by the fact that limiting the
channel dimensions at each encoder and decoder block to 3 leads to even more information
loss.

* 3Moms_Concat_SmallShrink and 3Moms_Concat_BigShrink: Though logical in their attempt
to mimic the U-Net'’s ability to glean global information about the image by compressing
it, these models likely underperformed because simply shrinking and resizing the image in
one convolutional operation does not adequately simulate all of the learning that encoder
and decoder blocks do throughout the many layers of the U-Net, even when supplemented
by a statistical moment computation of the original image that could theoretically provide
valuable statistical information.

* 3Moms: This architecture never condenses the image so there is no way for the model to relate
pixels that are far away from each other.

* 3Moms_B4_Unet: Since so much spatial information is lost during the moment computation
process, it is no surprise that this model was not able to reconstruct the outputs of the mo-
ments into accurate segmentation maps with a U-Net downstream.

5.2.7 Architecture Performance When Trained and Tested on Optical SAR Imagery

The architectures were then trained and tested on the SARBuD dataset. Based on the metrics
shown in Table 4.4, the models were able to learn the synthetic data with more ease than the
SARBuD data. This is unsurprising, as the synthetic data generated from the Perlin Noise while
effective, is still quite not as diverse as all of the available type of terrains found on Earth.

Additionally, while the autoencoder-based architectures performed the best when trained on
the synthetic data, the U-Net-based architectures performed better when trained on SARBuD.
Specifically, the Unet_3Moms_Skip_2, Unet_3Moms_Skip_BigKern, Unet, and Unet_3Moms_Skip_1
models performed the best (and very similar to each other) with respect to final test IOU and
test cross-entropy loss. This is mirrored in the validation tests depicted in Figure 4.13, where the
Unet_3Moms_Skip_1 and Unet_3Moms_Skip_BigKern models in particular were able to discern the
general regions quite accurately.

Interestingly, the architectures trained on the SARBuD dataset performed much worse on the
real SAR test data than the models trained on synthetic data. For instance, both the Unet and the
Autoencoder were unable to discern the regions in both test examples depicting San Francisco and
an oil spill (Figures 4.14 and 4.15). The fact that the Unet and Autoencoder were able to discern
the regions of this SAR data when trained on the synthetic dataset serves as a testament to the
synthetic data’s quality. As explained in Section 4.1.1, the SARBuD dataset is stored as JPEG files
and consequently likely lost the original statistical qualities of the source SAR data. Therefore,
even though the models were relatively successful in learning to segment the SAR JPEG images,
they clearly regarded them as standard visual data, not learning any statistical patterns that they
could apply to the SAR data stored as TIFF files. Conversely, the effectiveness of the models
trained on the synthetic data in segmenting the real SAR data stored in TIFF files demonstrates
that the statistical nature of the synthetic dataset’s generation was of crucial importance.

Therefore, since the previous results confirm that the SARBuD dataset does not follow the tra-
ditional G° distribution that characterizes SAR, the relatively successful validation results in Table

5.3. Disparity-Based Loss 47

4.4 and Figure 4.13 demonstrate that these statistical architectures can be effective in scenarios
where the input data does not necessarily exhibit defined statistical characteristics.

Moreover, even though the standard Unet was unable to segment the San Francisco and oil
spill SAR test samples, the Unet_1Mom, Unet_3Moms_Skip_1, and Unet_3Moms_Skip_BigKern mod-
els were a bit more successful in segmenting the real SAR data. As displayed in Figure 4.14,
all three models clearly performed better than the other architectures on the San Francisco data,
though still not as well as the models trained on synthetic data. It is particularly notable that the
Unet_1Mom model, which exhibited the worst quantitative performance out of all of the architec-
tures on the validation SARBuD data, was still able to perform segmentation on real SAR data
relatively successfully. These results indicates that incorporating the statistical moment computa-
tions within the Unet architecture may have indeed improved its ability to recognize and process
the statistical properties of the San Francisco and oil spill SAR data, even if it was not trained to
do so.

5.2.8 Synthetically-Trained Model Performance on Optical SAR Imagery

Finally, all of the models trained on the synthetic dataset were tested on the SARBuD dataset. As
shown in Table 4.5, all of the models performed very badly. There could be many reasons for this
result, but it is likely because of the compression undergone by all of the SARBuD data. Since the
models learn to identify regions based on the statistically-generated synthetic SAR data, the opti-
cal SARBuD data is different than anything it has ever seen before. Again, this poor performance
attests to the synthetic dataset’s quality and the ability of the models to learn statistical patterns,
rather than treating the SAR data as regular images. It also emphasizes why there is a great need
for more datasets with high-quality SAR data stored as TIFFs, not JPEGs.

5.3 Disparity-Based Loss

5.3.1 Supervised Approach

The supervised loss function experiments involved combining the loss derived from the Euclidean
distance between the average pixel value of the regions and the typical binary cross-entropy loss.
As depicted in Table 4.6, the U-Net achieved the highest IOU of 0.865 when it solely used cross-
entropy loss and the lowest IOU of 0.212 when the Euclidean distance loss coefficient (k) was the
highest.

The same trend is apparent in the validation example depicted in Figure 4.16, which has pre-
viously been employed as an example of data that is of ‘'medium” difficulty to segment. The
predicted segmentation map seems to remain the same quality as k increases from O to 1. Atk =1,
the model produces a slightly worse segmentation map. When k is 10, the model predicts the
same region for all pixels. When k is 100, the U-Net is able to produce a segmentation map with
two regions represented, but it is an incredibly abstract and inaccurate depiction of the regions.
The qualitative test results using real SAR data displayed the same trend, such as the example seg-
mentation of the San Francisco image pictured in Figure 4.17. Between k = 0 to k = 1, the quality
varies a bit, but the U-Net is still able to discern the regions in the image with a lot of detail. The
model’s performance appears considerably worse at k = 10. Then, at k = 100, the U-Net seems
to discern the land as one giant blob, which is likely too general to be useful. Moreover, the test
segmentation results of the Capella data, as displayed in 4.18, depict the same pattern that was
found in the validation and San Francisco experiments.

These results indicate that adding the two types of losses in this fashion is not an effective
approach. The fact that the model performed the best when it solely employed cross-entropy
loss leads to the conclusion that either the disparity-based loss is ineffective, or that it must be
combined with cross-entropy in a more sophisticated way to be successful. The result in Figure

48 Chapter 5. Discussion

4.17 showing an approximate, if blurry, segmentation for San Francisco when the disparity-based
loss is considered in much higher proportion than the cross-entropy suggests that perhaps the
former might work as a loss function if used in isolation.

5.3.2 Unsupervised Approach

In fact, the disparity-based loss did appear to be more successful when used on its own, rather
than in conjunction with the cross-entropy. Quantitatively, the U-Net using the opposite of the
Euclidean distance as the sole loss function achieved a final test IOU of 0.71. This quantitative
result is only so-so, but it does indicate that the unsupervised disparity-based loss may guide
the model towards learning some important region information. This IOU metric was calculated
slightly differently than in the supervised experiments. As evident in all of the examples in Figure
4.19 and Figure 4.20, the segmentation shapes are often fairly accurate, but display regions with
swapped classifications. This is because the disparity-based loss is only trying to maximize the
distance between the average values of the regions, without regard to which region is which.
Therefore, max(IOU,1 — IOU) was used to calculate the IOU in order to ensure that the metric
solely reflected the model’s capacity to discern different regions, without considering the specific
class assignments. Since the disparity-based loss is independent of the region assignments, the
predicted region assignments were expected to be completely random. However, after running
the code multiple time, the models always produced segmentations with the regions swapped
in comparison to the associated ground truths. Since the disparity-based loss is not exposed to
the ground truth, it is not obvious why this is. Future work could involve investigating this
phenomena.

The qualitative results in Figures 4.19 and 4.20 provide further evidence that the unsuper-
vised disparity-based loss was somewhat successful in guiding the model towards discerning the
various regions. It was even able to somewhat accurately segment optical SAR data from the
SARBuD dataset, as depicted in Figure 4.20d, where the data does not exhibit SAR’s typical sta-
tistical characteristics. However, all of the test segmentation maps displayed in Figure 4.20 are
very granular. Ideally, incorporating actual stochastic distances into the loss, instead of just the
Euclidean distance between the average pixel values, would guide the models toward predicting
more homogeneous regions from the SAR data.

49

Chapter 6

Conclusion

6.1 Overview

This project sought to advance SAR image segmentation techniques by exploring statistically-
grounded synthetic data generation, deep learning architectures, and loss functions.

1. Synthetic Data: The synthetic data experiments exhibited promising outcomes. Models
trained on the synthetic dataset demonstrated the capability to effectively capture statistical
patterns present in real SAR data. Effective synthetic SAR datasets are extremely valuable,
since real, high-quality datasets are scarce.

2. Architectures: Several statistically-principled architectures emerged as viable alternatives
to the benchmark architectures, offering comparable or superior performance while often
achieving faster efficiency. Notably, architectures like the AE_Concat_3Moms model demon-
strated promise in scenarios where homogenous regions are desired in the segmentation
maps, such as for identifying oil accumulations in ocean imagery. Models like Unet_1Mom
and Unet_3Moms_Skip_1 proved effective and quicker alternatives to the Unet in applica-
tions necessitating finer-grained segmentation maps. Such architectures could be useful,
for instance, in urban domains, where segmentation maps that delineate individual houses
could be beneficial. In general, the statistical moment computations were particularly effec-
tive when they were not abstracted out but rather applied directly to the input image. Even
beyond the motivation of enhanced model performance, the value of having end-to-end seg-
mentation algorithms capable of incorporating statistically-inspired computations all within
a deep learning architecture is apparent. This departure from previous techniques, which
often relied solely on deep learning without statistical considerations, or were entirely sta-
tistical but lacked flexibility and speed, indicates a significant potential for advancement.

3. Loss Function: While the results for the loss function experiments require further explo-
ration, the preliminary findings suggest that incorporating disparity-based losses in the SAR
context is promising, particularly in unsupervised scenarios where labeled data is limited.

Overall, this project presents encouraging evidence supporting the development of statistically-
informed deep learning algorithms for SAR image segmentation. While the efficacy of these tech-
niques is a promising start, there remains room for further exploration and refinement. It will be
exciting to witness whether statistical domain knowledge can be effectively integrated into deep
learning systems in the future. SAR analysis, with its statistical foundations and capacity for deep
learning processing, presents a compelling opportunity to explore the critical question of explain-
ability within deep learning algorithms. Innovation in this field is crucial not only for advancing
knowledge in computer science and computer vision, but also for addressing the numerous im-
pactful applications for which SAR is used.

50 Chapter 6. Conclusion

6.2 Future Recommendations

Looking ahead, several avenues of experimentation warrant exploration:
¢ Synthetic Dataset

- Diversify dataset by employing varying persistance parameters in the Perlin Noise.
- Explore which parameters lead to datasets that are better suited for specific applica-
tions.
* Architectures
- Develop explainability /interpretability techniques and experiments to evaluate whether
the architectures are really learning statistical information.
— Seek out and test architectures on additional large, labeled real dataset of TIFF SAR
images for evaluation, acknowledging the challenges associated with this endeavor.
* Loss Functions
- Implement stochastic distance losses that compare distances between probability dis-
tributions, rather than just simple distances between average pixel values of regions.

- Explore one-shot unsupervised learning to determine if model weights can be learned
from a single image.

- Investigate why the unsupervised Euclidean distance loss always predicted segmenta-
tion maps with the regions swapped in comparison to the labels.

— Develop a more sophisticated approach to combining cross-entropy and disparity-based
losses.

Appendix A

Architectures Tested

A.1 Helper Blocks

51

Batch Norm + RelLU

| Convolution | Batch Norm + ReLU

kemel=kernel_size
padmng = (karnal_size - 1) 4 2

1

i Input

1

1 P .
i Convolution

: AV pacang i 12
lin_c

1 _—

I dim=a

i
»1Conv_Block!

I kernel_size=3 !

I

FIGURE A.1.1: Conv_Block

Max Pool

2x2 kamel
outl_x’

i —
dim = a |—|dim=a dim=a/2
FIGURE A.1.2: Encoder_Standard
r---=-=--=-=-=-=-"=-"="="="="="="=-"="=-"="=-"="="=="=="=======*= 1
Input Qutput

[Transpose ‘
- Convolution

Fxd kermel
in_c

-_»'Conv_BIock:
1
1 kernel_size =3

—

FIGURE A.1.3: Decoder_Block

52 Appendix A. Architectures Tested
__ -
1 Input Output !
| L e, | Convolution | 1
1 — 1 Encoder_Block 1 Skip | Decoder_Block 1 —» . ——— 1

o= 1%
17 e | T Sy —— o=t
dim=a
1 I 1
1 I —/Encoder_Block 1 Skip TDecoder Block s — % I
hdtN —— @ T T o Tooossh o e e
1 Y a2 l I hk 1
l dim=a/2 I
—————————— ski Fomm--==os
1 % — Encoder Block | ——————=8——> "Decoder Block | —> 1
A4 | emele e T T et e
1 ’“& — | .N I
. dmealt T I
dm=a/4
1 =", 1
1 —> 1 Conv_Block : —_— 1
ies Qo temelsze=d bot
l dim=a/8 — I
dim=a/8
___ -

r---------------------------

FIGURE A.1.4: UShape

Output

X |

X

.| AvgPool —
S mary
padding=1
m;?»
{—} > AvgPool ——
“Khigect
padding=1
in_c\
x|
| AvgPool ——
“Sridact
pacding=1

inc\’

FIGURE A.1.5: Three_Moments

dim=a

I ——
dim=a

A.1. Helper Blocks

= = = = = = = - === = ——— - = -

Input

Average Across —
e

Ch:'ﬁ'l—|
dm=a

Output

M
M
M
M
M
M
M
l Stack I
Channelwise
M
M
M
I
I
I
I

Average Across ——
Qi

CH=X dim=a ch:&,

dim=a

Average Across
> o -

Chz‘g‘l—|
dm=a

FIGURE A.1.6: Average_Across_Channels

= = EE N N SN EE O S S SN O S S S S e S A O o . g

; Input I
I _. . ‘ !
I ~ Convolution | RelU |
I kemal=1 I
in_c\ [out c= 1‘3’|—|
[dim=a dim=a |
, Output |
. - Stack
I | Convolution | RelU _Chan:elwisaJ |
i \ Kemel=1 > g |
| iney— N — -
dim=a o dm=a ch:ax pr— I
I dim=a 1
I ' Convolution | RelU | l
I kemal=1 - I
I in_‘c\r P— P IT | e— |
dim=a dm=a
b = -

FIGURE A.1.7: Convolve_to_1Chan

54 Appendix A. Architectures Tested

A.2 Experimental Encoder Blocks

Input Output

I i
R 1Conv_Block!

2x2 kemel - ! kernel_si 1
ernel_size =
stride=2 in_;x'—| . out‘R’
in_’c\|—| dm=arz mea!

— dm=a/2

Avg Pool

FIGURE A.2.1: Encoder_Avg

Avg Pool

i . .
1Conv_Block: ‘ Max Pool ‘
—_— p—
e ! kernel_size =1 ! 212 kemel
panding=1 1 1 stride=2
in:c\t — in:c\' [e— \’ out_c
N - out_c [—
dim=a dim=a I
dim=a dim=a/2
FIGURE A.2.2: Encoder_1Mom
r — 1
1 — — |
1 n o I
I Input dim=a Output
j_‘ I
————————————————————————— Teonv Block' Max Pool
I — : Three,Momenis: — 4’:: :Average,Across,Channels: — —_— :(i::'::;::o:c‘k: — ‘ ::m:o ‘ 1
A e 4] | fomelsze=1 | iy
i"J\’ — in:c\f —_— ch=3 - out ¢ out_¢ !
1 dm=a dm=a dim=a dm=a di]
- im = a
I |
| 7 B
oy E—— 1
l h e m m e e e e e e B e o e e === === == = = = = = 4

| —h |
| !] 1
in,/c\:,_<
i Input dim=a Qutput 1
L T EP Lo . FCom_Biack! | Maxpool !
— > i Three_Moments ' —> ——3, Convolve_To_1Chan , —> —! - L R N
I oo 1 Ul | [T l=mmmmaeamma : kemel_size = 1 ' 2ctomel I
i":c\’ e i"jc\’j—« E - N out_c out_c
1 dm=a dim=a dim=a e R |
im=a dm=a
| |
L, |
I in:c\‘_,—4 I
dim =
h oo omm omm omm o e omm omm o e o mm mm mm mm mm mm mm mm mm o o mm mm mm o e mm mm o mm o omm

FIGURE A.2.4: Encoder_3Moms_2

A.3. High-Level Architectures 55

A.3 High-Level Architectures

Input Output

- 1

! UShape |

| N e

1 .
Image | ——> 1 Enmmh:Enc:t:ul:i.ﬁ.r_Standart:i T Segrﬂme;;ﬂ"ﬂn
-------- 1

1 hid1 =64 1

I nhidz=128 .
. § hid3 =256
dim=a , bot=512 1 dim — a i

1
1
1
1
I | encoter= 'Encoder_Standard, 1
1 N fmmm === 1
y Skp=None |
hid1 = 64

L !
1 | higs=25 I
I Dot = 512]
1

FIGURE A.3.2: Autoencoder

—_—
dm=a out_¢ =1 —y

Output
| convolution || Tan | convolution || Tan | Convolution | | sigmoid Segmentaton
T w7 ”‘R T T
im = a

dim

FIGURE A.3.3: 3Moms

Input Output

-
[Autoencoder |
—_— N pltegpga i il 1 Se tati
Image | encoder= : Encoder Avg ! —> gr:::p ion
-------- ' |
1 hid1 = 64 1
I nidz =128 |
i | i3 =256 " |
dm=a , Dor=siz 1 dim =a

FIGURE A.3.4: AE_avg

56

Appendix A. Architectures Tested

Image

dim=a

Input

Image

dim=a

Input

Image

dim=a

Input

Image

dim=a

hid1 =64
hidz =128
hid3 = 256
bot=512

encoder = :Encoder_EMoms_z |

e e e e I
1 UShape 1
I e e e e e e e o
1
| encoder = :Encoder_3M0m$_1 : i
V=~~~ 77777 |
| nidz=3 1
| hid3=3
bot=3 !

FIGURE A.3.8: Unet_3Moms_3Chans_1

Output

Segmentation
Map

dm=a

Output

Segmentation
Map

—_
dim=a

Output

Segmentation
Map

dm=a

Output

Segmentation
Map

dm=a

A.3. High-Level Architectures

Input

Input

Image

dim=a

Input

Image

dm=a

Input

Image

dim=a

bot =512

FIGURE A.3.13: Unet_BigKern

Output

I UShape .
Il e e e o omm o omm owm
")
Image —* | encoder= Encuder 3Moms_2 'l B Segn:;;amn
________ 4
b gt =3 1
I nidz=3 I
—_ | hid3=3 S|
dm=a , bor=3 I dm=a
FIGURE A.3.9: Unet_3Moms_3Chans_2
T T T T T T T T e T T T EEEE SIS ST 1
. UShape '
: encoder = .Encoder Standard ! :
S 1
_ S, mmmemme=m== esmssmsss===== C _Block —_—
| *= 1Three_Momentsl —> 'Average Across_| Channelm—’ 1 vonv_Block
T I e g g it g 1_kemel size=1_y
1 hid1 =64 1
hidz =128
I higa =256 1
| bot=512 1
FIGURE A.3.10: Unet_3Moms_Skip
e]
1 UShape 1
I e - ——- 1
| encoder = .Encoder Standard ! 1
! s I I I I e Pm====-= !
* | se= yThree_Momentst —>' Convolve To_1Chan '——)l Conv_Block | >
Il eeecmemm=m e e e e - 1 kernel 5|za_1 T
I higt =64 === 1
| hidz2 =128 1
1 hid3 = 256 1
bot=512
FIGURE A.3.11: Unet_3Moms_Skip_2
225 |
. - UShape]
I 1 Encoder_Standard! I
, =g kemel_size=7 ! 1
_yl, mmmmemm== | e e e mmm—————- Eo;v_Eﬁo:k_' L
1 ¥P= 1 Three_Moments! —> 'Average Across_| ChanneIS| i
A e e oyt agig l_kgm_el size=1_y
1 hid1 =64]
hidz =128
I hids =256 1
1]

Output

I~ UShape !
Image | —>* : enouusr=:-Er:cc-:d;r_-St-an-derrd-': —— Segn::;mm”
| I kernel_size =7 :I
_ Vhgt=es " T T T T T _
dim=a : e - 128 : dim=a
bot=512

Output

Segmentation
Map

dm=a

Output

Segmentation
Map

p—
dm=a

Output

Segmentation
Map

dim=a

58 Appendix A. Architectures Tested

re=s========-= 1
1 Autoencoder !
utput
Input Outp
[——
dim=a
Stack ;
i | Convolution | | ReLu
Image — et kamel Map
—] chdr ch=1—— =
dim=a dim=a dim=a dim=a
Sack | [——H @ m------ ,
Channelwise |

i
1Conv_Block,
I kernel_size =1 !
1

— P m—
dm=a dm=a
dm=a

ch=1%
dm=a
FIGURE A.3.14: AE_Concat_3Moms
FEEEEEEEEEm== 1
1
—> Autoencoder ' —
e e - ' Qutput
Input
. S,
s Stack [q
dim =2 Channelwise .COI'IVON.I“OI'I RelLU Segmentation
Image o 1x1 kemel - Map
S ch= 1’\’ —
I ch=2 dim=a dim = a
dim=a
FIGURE A.3.15: AE_Concat_Skip
) . Tr
Max Pool | Convolution | | Batch Norm + ReLU Convolution
> _
o Qg N s chj\ S
m=a dm=a/8 ch=1r—
Input am=a
Chasn:’mise \bonvalution \ RelU
Image — el vap
! P — ch= 13—
dm=a — dm=a dm=a
dim=a
Stack P .
(Chnnelviss) \Conv_Blocki B
: kernel_size = 1 :
AN I 2%
e nd — =
ch=1%
dim=a
FIGURE A.3.16: 3Moms_Concat_BigShrink
p . Ir
Max Pool | Convolution | | Batch Norm + ReLU Convolution
2k e e]
S paddingLt o padding=1 |
Input dm=a/2 ¢ \d.—'\m:afz oh= T
e [Convolution | Rely
Image — T kemal Map
ch=2” ————— ch=1%
dm=a dm=a dm=a
dm=a
Stack P .
Channelwise \Conv_Blocki]

! kemel_size = 1 :
1

e TTTTTos ch=1%

Gmea dim=a

—_—
dim=a

ch=1%

dim=a

FIGURE A.3.17: 3Moms_Concat_SmallShrink

A.3. High-Level Architectures

59

Input

Image

dim =a

ch=1%

dim=a

—
dim =a

—
dim =a

Stack

Channelwise

ch:’a\,

dim =a

1
:Conv,BIoch

! kemnel_size = 1 :
1

"""" ch=1%

FIGURE A.3.18: 3Moms_B4_Unet

1
nidt =64 1
Nz = 128 f
higs = 256

1

bot=s512
|

Output

Segmentation
Map

—
dim =a

61

Bibliography

Capella (2021). Capella Space Synthetic Aperture Radar (SAR) Open Dataset. Accessed on May 2, 2024.
URL: https://registry.opendata.aws/capella_opendat.

Cheng, Jianghua et al. (Jan. 2013). “An Improved Scheme for Parameter Estimation of G° Distri-
bution Model in High-Resolution SAR Images”. In: Progress In Electromagnetics Research 134,
pp. 23-46. DOI: 10.2528/PTER12082308,

Dumoulin, Vincent and Francesco Visin (2018). A guide to convolution arithmetic for deep learning.
arXiv: 1603.07285 [stat.ML].

Fan, Li and Jeova Farias Sales Rocha Neto (2023). Using Neural Networks for Fast SAR Roughness
Estimation of High Resolution Images. arXiv: 2309.03351 [cs.CV].

Frery, Alejandro, Jie Wu, and Luis Deniz (Aug. 2022). SAR Image Analysis — A Computational Statis-
tics Approach: With R Code, Data, and Applications. ISBN: 9781119795292. DOI: 10.1002/9781119795520.

Frery, Alejandro et al. (June 1997). “A model for extremely heterogeneous clutter”. In: Geoscience
and Remote Sensing, IEEE Transactions on 35, pp. 648 —659. DOI: 10.1109/36.581981.

Gambini, Juliana et al. (Jan. 2015). “Parameter Estimation in SAR Imagery Using Stochastic Dis-
tances and Asymmetric Kernels”. In: IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing 8.1, 365-375. ISSN: 2151-1535. DOI: 10. 1109/ jstars . 2014 .2346017. URL:
http://dx.doi.org/10.1109/JSTARS.2014.2346017.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. http://www.deeplearningbook.
org. MIT Press.

Hartmann, Andreas et al. (2021). “Bayesian U-net for segmenting glaciers in SAR imagery”. In:
2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE, pp. 3479-3482.

Kingma, Diederik P. and Jimmy Ba (2017). Adam: A Method for Stochastic Optimization. arXiv: 1412.
6980 [cs.LG].

Kumar, Vedant (2020). Towards Data Science. Accessed on May 2,2024. URL: https://towardsdatascience.
com/convolutional-neural-networks-£62dd896a856.

Larsen, Richard] and Morris L. Marx (2005). An introduction to mathematical statistics. Prentice Hall
Hoboken, NJ.

Liu, Yan et al. (2018). “Efficient Patch-Wise Semantic Segmentation for Large-Scale Remote Sens-
ing Images”. In: Sensors (Basel, Switzerland) 18. URL: https : //api . semanticscholar . org/
CorpusID:52878014.

Maity, Alenrex et al. (2015). “A Comparative Study on Approaches to Speckle Noise Reduction in
Images”. In: 2015 International Conference on Computational Intelligence and Networks, pp. 148—
155. URL: https://api.semanticscholar.org/CorpusID:2603031.

Marques, R.C.P, Fatima Medeiros, and Juvéncio Nobre (Oct. 2012). “SAR Image Segmentation
Based on Level Set Approach and G% Model”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 34, pp. 046-2057. DOI: 10.1109/TPAMI .2011.274.

Mazza, Antonio et al. (2019). “TanDEM-X forest mapping using convolutional neural networks”.
In: Remote Sensing 11.24, p. 2980.

Nascimento, Abraao D. C., Alejandro C. Frery, and Renato J. Cintra (Mar. 2019). “Detecting Changes
in Fully Polarimetric SAR Imagery With Statistical Information Theory”. In: IEEE Transactions
on Geoscience and Remote Sensing 57.3, 1380-1392. 1SSN: 1558-0644. DOI: 10.1109/tgrs.2018.
2866367. URL: http://dx.doi.org/10.1109/TGRS.2018.2866367.

https://registry.opendata.aws/capella_opendat
https://doi.org/10.2528/PIER12082308
https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/2309.03351
https://doi.org/10.1002/9781119795520
https://doi.org/10.1109/36.581981
https://doi.org/10.1109/jstars.2014.2346017
http://dx.doi.org/10.1109/JSTARS.2014.2346017
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://towardsdatascience.com/convolutional-neural-networks-f62dd896a856
https://towardsdatascience.com/convolutional-neural-networks-f62dd896a856
https://api.semanticscholar.org/CorpusID:52878014
https://api.semanticscholar.org/CorpusID:52878014
https://api.semanticscholar.org/CorpusID:2603031
https://doi.org/10.1109/TPAMI.2011.274
https://doi.org/10.1109/tgrs.2018.2866367
https://doi.org/10.1109/tgrs.2018.2866367
http://dx.doi.org/10.1109/TGRS.2018.2866367

62 Bibliography

Nascimento, A.D.C., R]. Cintra, and A.C. Frery (Jan. 2010). “Hypothesis Testing in Speckled Data
With Stochastic Distances”. In: IEEE Transactions on Geoscience and Remote Sensing 48.1, 373-385.
ISSN: 1558-0644. DOT: 10.1109/tgrs.2009.2025498. URL: http://dx.doi.org/10.1109/TCRS.
2009.2025498.

Nava, Lorenzo et al. (2022). “Rapid mapping of landslides on SAR data by attention U-Net”. In:
Remote Sensing 14.6, p. 1449.

Neto, Jeové Farias Sales et al. (Sept. 2019). “Level-Set Formulation Based on an Infinite Series of
Sample Moments for SAR Image Segmentation”. In: IEEE Geoscience and Remote Sensing Letters
PP, pp. 1-4. DOI: 10.1109/LGRS.2019.2933149.

Niemietz, Ricardo Cancho (2008). Wikipedia. Accessed on May 2,2024. URL: https://en.wikipedia.
org/wiki/File:RGB_channels_separation.png.

Nobre, Ricardo H. et al. (2016). “SAR Image Segmentation With Rényi’s Entropy”. In: IEEE Signal
Processing Letters 23.11, pp. 1551-1555. DOL: 10.1109/LSP.2016.2606760.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary”. In: CoRR abs/1912.01703. arXiv: 1912 . 01703. URL: http://arxiv.org/abs/1912.
01703.

Perlin, Ken (1985). “An image synthesizer”. In: ACM Siggraph Computer Graphics 19.3, pp. 287-296.

Ren, Yibin et al. (2021). “Development of a dual-attention U-Net model for sea ice and open water
classification on SAR images”. In: IEEE Geoscience and Remote Sensing Letters 19, pp. 1-5.

Rodrigues, Francisco et al. (Jan. 2016). “SAR Image Segmentation Using the Roughness Informa-
tion”. In: IEEE Geoscience and Remote Sensing Letters 13, pp. 1-5. DOI: 10 . 1109 /LGRS . 2015 .
2496340.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015). “U-Net: Convolutional Networks for
Biomedical Image Segmentation”. In: arXiv: 1505.04597 [cs.CV].

Wu, E et al. (2021). “Built-up area mapping in China from GF-3 SAR imagery based on the frame-
work of deep learning”. In: Remote Sensing of Environment 262, p. 112515.

Wu, E et al. (2022). “SARBuD1.0: A SAR Building Dataset Based on GF-3 FSII Imageries for Built-
up Area Extraction with Deep Learning Method”. In: National Remote Sensing Bulletin 26.4,
pp- 620-631.

Zhu, Xiao Xiang et al. (2021). “Deep learning meets SAR: Concepts, models, pitfalls, and perspec-
tives”. In: IEEE Geoscience and Remote Sensing Magazine 9.4, pp. 143-172.

https://doi.org/10.1109/tgrs.2009.2025498
http://dx.doi.org/10.1109/TGRS.2009.2025498
http://dx.doi.org/10.1109/TGRS.2009.2025498
https://doi.org/10.1109/LGRS.2019.2933149
https://en.wikipedia.org/wiki/File:RGB_channels_separation.png
https://en.wikipedia.org/wiki/File:RGB_channels_separation.png
https://doi.org/10.1109/LSP.2016.2606760
https://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/1912.01703
https://doi.org/10.1109/LGRS.2015.2496340
https://doi.org/10.1109/LGRS.2015.2496340
https://arxiv.org/abs/1505.04597

	Statistically Principled Deep Learning for SAR Image Segmentation
	Recommended Citation

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Proposal

	Background
	Synthetic Aperture Radar (SAR)
	SAR Data
	Applications

	Relevant Statistics
	Fundamental Statistics Concepts
	Parameter Estimation
	Stochastic Distances
	Statistical Characteristics of SAR

	Deep Learning and Computer Vision
	Deep Learning Basics
	Convolutional Neural Networks
	Image Segmentation

	Techniques for SAR Parameter Estimation and Segmentation
	Statistical Techniques
	Deep Learning Techniques

	Methodology
	Synthetic Dataset Generation
	Statistically-Motivated Segmentation Architectures
	Disparity-Based Loss

	Results
	Experimental Setup
	Datasets
	Data Preprocessing
	Hyperparameters for Model Training
	Evaluation Metrics

	Generated Synthetic Dataset
	Statistically-Motivated Architecture Performance
	Architectures Trained on Synthetic Data: Quantitative
	Architectures Trained on Synthetic Data: Qualitative
	Architectures Trained and Tested on Optical SAR Imagery
	Architectures Trained on Synthetic Data and Tested on Optical SAR Imagery

	Disparity-Based Loss Performance
	Supervised Approach: Combining Cross-Entropy and Disparity-Based Losses
	Unsupervised Approach: Disparity-Based Loss

	Discussion
	Synthetic Dataset
	Statistically-Motivated Segmentation Architectures
	Benchmark Architectures
	Architectures Employing Branches in Parallel with an Autoencoder
	Architectures Employing Statistically-Motivated Computations in the Encoder of a U-Net
	Architectures Employing Statistically-Motivated Computations in the Skip Connections of a U-Net
	Architectures Employing Larger Kernels in the Encoder
	Poorly Performing Models
	Architecture Performance When Trained and Tested on Optical SAR Imagery
	Synthetically-Trained Model Performance on Optical SAR Imagery

	Disparity-Based Loss
	Supervised Approach
	Unsupervised Approach

	Conclusion
	Overview
	Future Recommendations

	Architectures Tested
	Helper Blocks
	Experimental Encoder Blocks
	High-Level Architectures

	Bibliography

