
Bowdoin College Bowdoin College

Bowdoin Digital Commons Bowdoin Digital Commons

Honors Projects Student Scholarship and Creative Work

2022

Exploiting Context in Linear Influence Games: Improved Exploiting Context in Linear Influence Games: Improved

Algorithms for Model Selection and Performance Evaluation Algorithms for Model Selection and Performance Evaluation

Daniel Little
Bowdoin College

Follow this and additional works at: https://digitalcommons.bowdoin.edu/honorsprojects

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Little, Daniel, "Exploiting Context in Linear Influence Games: Improved Algorithms for Model Selection and
Performance Evaluation" (2022). Honors Projects. 388.
https://digitalcommons.bowdoin.edu/honorsprojects/388

This Open Access Thesis is brought to you for free and open access by the Student Scholarship and Creative Work
at Bowdoin Digital Commons. It has been accepted for inclusion in Honors Projects by an authorized administrator
of Bowdoin Digital Commons. For more information, please contact mdoyle@bowdoin.edu, a.sauer@bowdoin.edu.

https://digitalcommons.bowdoin.edu/
https://digitalcommons.bowdoin.edu/honorsprojects
https://digitalcommons.bowdoin.edu/students
https://digitalcommons.bowdoin.edu/honorsprojects?utm_source=digitalcommons.bowdoin.edu%2Fhonorsprojects%2F388&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.bowdoin.edu%2Fhonorsprojects%2F388&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bowdoin.edu/honorsprojects/388?utm_source=digitalcommons.bowdoin.edu%2Fhonorsprojects%2F388&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mdoyle@bowdoin.edu,%20a.sauer@bowdoin.edu

Exploiting Context in Linear Influence Games:

Improved Algorithms for Model Selection and

Performance Evaluation

An Honors Paper for the Department of Computer Science

By Daniel Little

Bowdoin College, 2022
© Daniel Little

Contents

Acknowledgments v

Abstract vi

1 Introduction 1

1.1 Literature Review: Model Tuning and Evaluation 1

1.1.1 Holdout: Train/Test Split . 1

1.1.2 Holdout: Train/Validate/Test Split 1

1.1.3 Cross-Validation . 2

1.1.4 Bootstrap . 3

1.1.5 Nested Cross-Validation with Tuning 4

1.1.6 Bootstrap Bias Corrected Cross-Validation 4

1.2 Contributions . 6

2 Linear Influence Games 6

2.1 Machine Learning . 8

2.2 Roll Call Data . 10

2.3 Sponsorship and Cosponsorship Data . 10

2.4 Ideal Points and Bill Polarity . 10

3 Model Selection and Performance in LIGs 12

3.1 Nested cross-validation with tuning . 13

3.2 Bias Bootstrap Corrected CV . 15

4 Automated Model Selection 16

5 Estimating Polarity of Held Out Bills 17

6 Future Work 22

A Appendix 26

ii

List of Figures

1 PSNE in a Linear Influence Game . 8

2 Distribution of learned ideal points . 11

3 10-fold CVT results . 18

4 Box-and-Whisker plot of different polarity estimation methods 21

5 Distribution of polarity estimation methods 22

6 10-fold CVT results across a wider range of hyperparameter values 26

7 Mean results for different polarity estimation methods 28

8 Box-and-Whisker plot of polarity estimation distance from learned values . 28

9 Distribution of polarity estimation distance, ρ = 0.002, ρ′ = 0.00013 29

10 Mean polarity estimation distance, ρ = 0.002, ρ′ = 0.00013 29

11 Box-and-Whisker plot of polarity estimation distance, ρ = 0.002, ρ′ = 0.00013 30

12 Distribution of polarity estimation distance, ρ = 0.002, ρ′ = 0.00013 30

13 Mean polarity estimation distance, ρ = 0.002, ρ′ = 0.00013 31

iii

List of Tables

1 Summary of LIG model metrics . 14

2 Results of Nested CVT . 15

3 Comparing Results of BBC-CV and Nested-CVT 16

4 Metrics and Desired Values for Automated Model Selection 17

5 Ranked Choices of Automated Model Selection 17

6 Summary of LIG model metrics . 21

iv

Acknowledgments

I would like to thank Professor Irfan for his help and guidance in this project. Throughout
this project, Professor Irfan has taught me an immense amount about game theory, machine
learning, conducting research, scientific writing, and many more disciplines. This project
would not be possible without him, and I am incredibly grateful for his thoughtfulness,
mentorship, and time. I would also like to thank my friends, family, and other professors
for their support in this project, and more broadly, for supporting me throughout my
Bowdoin career.

v

Abstract

In the recent past, extensive experimental works have been performed to predict
joint voting outcomes in Congress based on a game-theoretic model of voting behavior
known as Linear Influence Games. In this thesis, we improve the model selection and
evaluation procedure of these past experiments.

First, we implement two methods, Nested Cross-Validation with Tuning (Nested
CVT) and Bootstrap Bias Corrected Cross-Validation (BBC-CV), to perform model
selection and evaluation with less bias than previous methods. While Nested CVT is
a commonly used method, it requires learning a large number of models; BBC-CV is a
more recent method boasting less computational cost. Using Nested CVT and BBC-CV
we perform not only model selection but also model evaluation, whereas the past work
was focused on model selection alone.

Second, previously models were hand picked based on performance measures gath-
ered from CVT, but both Nested CVT and BBC-CV necessitate an automated model
selection procedure. We implement such a procedure and compare its selections to what
we otherwise would have hand picked.

Additionally, we use sponsorship and cosponsorship data to improve the method for
estimating unknown polarity values of bills. Previously, only subject code data was
used. This estimation must be done when making voting outcome predictions for a new
bill as well as measuring validation or testing errors. We compare and contrast several
new methods for estimating unknown bill polarities.

vi

1 Introduction

In any machine learning project, performance estimation is an important part of the
pipeline. After learning a model one will want to know how well to expect the model
to perform when making predictions on previously unseen data. Raschka [2018] provides
reasons for the importance of performance estimation: in addition to being aware of how
frequently predictions will be correct in practice, one must also have a performance esti-
mate to tell whether tweaks are improving or worsening a model’s predictive performance,
or to pick between a group of models or learning algorithms. There are various methods
of achieving this goal, each with a different set of trade-offs. We start by reviewing the
literature on model tuning and evaluation.

1.1 Literature Review: Model Tuning and Evaluation

1.1.1 Holdout: Train/Test Split

One basic, yet prevalent method of accomplishing this is known as the Train/Test Split, or
the Holdout method [Kohavi et al., 1995]: split the dataset into two pieces, for example,
putting a random 80% of the examples into a training set and the remaining 20% into a
testing set. A model is learned with the training set, and its predictions on the testing
set ŷ are compared to the testing set’s known values y. This comparison computes some
measure of loss l(y, ŷ) , such as a squared error or 0-1 loss. To this learned model, the
testing set essentially is unseen data; therefore, this testing set performance works well as a
proxy for the model’s performance on new data. In practice, one can use this performance
measure of the learning method or configuration used learned to use the model, rather than
the specific model learned on the training set. In this way, one can estimate the error of
the learning method, but then learn a final model on all training data to hopefully further
increase performance. One potential issue with this method relates to the independence of
the chosen training and testing sets: if the examples selected in the training set are not a
representative sample, the model’s accuracy decreases [Kohavi et al., 1995].

1.1.2 Holdout: Train/Validate/Test Split

Getting a desired model as well as an estimation of its performance on new data becomes
more complicated when hyperparameters are involved: hyperparameters are values pro-
vided to the model learning process which affect learning in some way. When used to learn
models, the ideal hyperparameter values will produce better performing models. But these
ideal values are not known ahead of time. One such example is a regularization parameter,
which essentially allows one to alter the sensitivity of the learning method to the training
data. A model can be learned with each in a range of hyperparameter values, with the best
performing value being selected for the final model. Extending the idea of the train/test
split, one can split the dataset into three pieces: a training, validation, and testing set,
holding, for example, 60%, 20%, and 20% of the examples. One model can be learned for
each potential hyperparameter value, all using the training set. Each model is then evalu-
ated with the validation set and given some error measure, or validation error. One model
is learned with hyperparameter value with the lowest validation error, and this ”validated”

1

model can be tested with the testing set, with the resulting test error measure being used as
a performance estimation for the model. One might wonder why the validation error itself
can’t be used as a performance estimation, avoiding having to hold out more data to calcu-
late a test error; both errors seem conceptually similar. The reason is that hyperparameter
values were decided based on this validation set and its error, but the test set is meant to
be seen essentially only once for the purpose of getting an accurate error measure before
training a model with the chosen configuration on all of the data. Using the validation set
as a test set, and likewise, iterating over the test set to try improve learning can lead to an
optimistically biased final error measure [Raschka, 2018].

1.1.3 Cross-Validation

Another such method is K-fold Cross-Validation (CV). This involves splitting up the dataset
D into a some number k of folds and picking one fold ki to be a testing set, and the remaining
folds k− i as a training set. This step is repeated several times until all folds have been used
as a testing set. On each iteration, a model is learned with the training data and prediction
error is calculated on the testing set. Each of these intermediate errors can be averaged
together as a prediction error estimate, as shown in Pseudocode 1. The number of folds
to use in CV can greatly affect the results: if the minimum number of folds, two, is used,
the training set will be half of the dataset. In experiments with small datasets, this might
not be a large enough training set to effectively learn a model. Using a very large number
of folds will improve the learned models, but the testing set becomes much smaller. In
this case, the variability of the testing set will increase, although there are more total error
measures to combine. The extreme version of this procedure, Leave-One-Out CV, is used
regularly. Additionally, using a large number of folds can be increasingly computationally
expensive, as an additional model needs to be learned for each fold. Kohavi et al. [1995]
show experimentally that ten is the optimal number of folds to use, even if the dataset
and computational resources would allow for using more folds. Kim [2009] also discusses
repeating this procedure multiple times (repeated CV), and report that it results in lower
variability in error. We use the notation M(D) to mean the predictions made by the model
M on the labels of data D.

Algorithm 1 K-fold Cross-Validation

procedure CV(Dataset D, learning method f)
k← number of folds
Split D into k folds

for each fold i in k do
testSet ← fold i of D ▷ held out fold
trainingSet ← all folds k − i of D ▷ all remaining folds
M ← f(trainingSet)
testErri ← l(testSet,M(testSet)) ▷ calculate the loss for the testing set

end for
return 1

k

∑k
n=1 trErri ▷ mean training error across all folds

end procedure

2

After getting a training error from cross-validation, one could then train a final model on
all data with a more robust out-of-sample error estimate.

In addition, a modification to CV can turn it into a model selection procedure called Cross-
Validation with Tuning (CVT), shown in Pseudocode 2: CV is performed on each of a
number of possible model configurations (e.g. hyperparameter values). The error on each
round of CV is then used not as testing error, but as validation error, and the optimal
hyperparameters are chosen based on the validation error calculated in CV. However, the
CV-returned error for the chosen hyperparameter value should again not be used as a
prediction error estimate in this case. In this example, the learning method (and thus the
CV procedure) also takes a configuration Ci.

Algorithm 2 Cross-Validation with Tuning

1: procedure CVT(D f , C)
2: k← number of folds
3: for Ci in C do
4: validationErrori = CV (D, f,Ci)
5: end for
6: i* = argmin

i
validationErrori

7: return
〈
C
i*, validationError

i*
〉

8: end procedure

After running the CVT procedure, one final model can be trained with the whole dataset
and the configuration Ci returned by CVT. But as with the Train/Test/Validate split, the
returned validation error would be a biased estimation of model performance [Raschka,
2018].

CV is particularly helpful for small datasets: if one’s dataset is large, then a randomly
sampled training set calculated by the Holdout method is likely to be representative of the
whole dataset. This becomes less likely with a smaller number of data points, and so a
training or validation error calculated via Holdout may have a higher bias. CV essentially
repeats the Holdout method such that at the end of the procedure, the average error cal-
culated across all folds includes errors from models both trained with, and tested against,
every data point available.

1.1.4 Bootstrap

The Bootstrap method is based on the idea that sampling with replacement from one’s
dataset can effectively create new samples, allowing one to make statistical inferences and
better estimate the true distribution and its parameters [Efron and Tibshirani, 1993]. A
general version of this procedure, not limited to model evaluation or tuning, can be sum-
marized as such: we create a new sample of data called bootstrap sample by repeatedly
sampling from our dataset with replacement until the bootstrap sample is the same size as
full dataset. Then we calculate some statistic on this bootstrap sample, such as the sample
mean. We repeat this procedure a number of times (often hundreds), and use the average
mean across bootstrap samples as an estimate of the population parameter.

3

In the context of model evaluation Efron and Tibshirani [1993] describe several possible
procedures using the bootstrap, most of which involve training a model on each bootstrap
sample, calculating the error, and averaging these training or resubstitution errors across
all bootstrap samples generated. This procedure alone is likely to be optimistically biased
[Efron and Tibshirani, 1993], as it is more or less using training error as an estimation of
model performance. There are some methods to estimate what this bias is likely to be
and correct for it in the error calculation. Raschka [2018] also describes a commonly used
modification of the bootstrap called the Leave-One-Out Bootstrap (LOOB) which involves
collecting the data that were not sampled for the bootstrap sample and using them as a
testing or validation set for a model trained on the bootstrap sample. This is shown in
Pseudocode 3.

Algorithm 3 Leave-One-Out Bootstrap

1: procedure CVT(D, b)
2: for i = 1:b do
3: bootstrapi ← sample |D| times from D with replacement

4: bootstrap−i ← samples in D not in bootstrapi
5: M ← f(bootstrapi)
6: trainErri ← l(bootstrap−i,M(testSet))
7: end for
8: return 1

B

∑B
n=1 trainErrn ▷ mean training error across all bootstrap samples

9: end procedure

1.1.5 Nested Cross-Validation with Tuning

Methods like CVT and LOOB provide model selection but do not return an unbiased
measure of out-of-sample testing error. Ostertag-Hill [2020] suggest Nested Cross-Validation
with Tuning (Nested CVT) as one path forward of improving performance estimation.
Nested CVT involves nesting the CVT procedure within CV: the outer loop withholds one
fold of data from the inner loop to use as a testing set after the inner loop completes,
and the inner loop performs CVT and returns a validated model configuration. The outer
loop will then learn a model with the (outer) training set, and test it against a testing set
that was completely held out from all models learned in the inner loop. This algorithm is
demonstrated in Pseudocode 4. Note that each inner loop may return a different selected
model, meaning the procedure can return anywhere from 1 to k different validated model
configurations, each with its own testing error calculated in the outer loop. Varma and
Simon [2006] demonstrate experimentally that doing a nested cross-validation reduces the
bias in the reported error rate on an independent test set.

1.1.6 Bootstrap Bias Corrected Cross-Validation

Tsamardinos et al. [2018] present a novel method for model selection and performance
estimation. Bias Bootstrap Corrected Cross-Validation (BBC-CV) first performs CVT,
but saves the out-of-sample predictions made by all model configurations when calculating
validation error in a matrix Π for use later on to correct for the bias of the validation er-

4

Algorithm 4 Nested Cross-Validation with Tuning

1: procedure Nested-CVT(X, y f , C)
2: k← number of folds
3: Split X and y into k folds

4: for each fold i in k do
5: testSet ← fold i of X ▷ held out fold
6: trainingSet ← all folds k − i of X ▷ all remaining folds
7: C∗

i ← CV T (trainingSet, f, C)
8: testErri ← l(testSet,M(testSet))
9: end for

10: return ⟨allC∗, corresp.testError values⟩
11: end procedure

ror calculated in CVT. These predictions are bootstrap-sampled from Π, creating samples
across every model configuration. Some model selection procedure is employed (possibly
the same one as CVT, simply picking the configuration with the smallest loss across the
bootstrap sample). Depending on the data points in the bootstrap sample, the procedure
may select the same configuration returned by CVT, or it may select a different configu-
ration. Regardless, the model’s loss on the predictions omitted from the bootstrap sample
is calculated, and averaged across each loop of this procedure. The resulting average loss
LBBC is returned as an estimation of test error.

Algorithm 5 Bootstrap Bias Corrected Cross-Validation

1: procedure BBC-CV(D, b, f, C)
2: ⟨validationError, C∗,Π⟩ ← CV T (D, f,C)
3: for i = 1:b do
4: Πb ← sample with replacement N rows of Π
5: Π/b← rows of Π not in Π
6: j ← select(Πb, labels for corresponding data)
7: Li ← l(Π/b(j), labels corresponding data)
8: end for
9: return 1

b

∑b
i Li

10: end procedure

BCC-CV requires learning orders of magnitude fewer models than nested CV, and, in
fact, requires only learning the models for CVT. Tsamardinos et al. [2018] also verifies
experimentally that the bias of the loss returned by BBC-CV is a significant improvement
on just using the CVT validation error, and is comparable to the bias of average testing
error returned by Nested CVT.

BBC-CV explores an interesting concept about combining model selection and evaluation:
the error estimation isn’t estimating the error of the particular selected model configuration;
it’s estimating error for whatever heuristics are being used to do the selection. This can
be seen in the fact that the expected error of one configuration is being estimated with the

5

error of potentially different configurations.

1.2 Contributions

We apply model selection and error estimation techniques to the Linear Influence Game
used to model and predict senate votes, introduced by Irfan and Ortiz [2011] and devel-
oped further by Irfan and Gordon [2018], Phillips et al. [2021], and Ostertag-Hill [2020].
Previously the model had only biased estimations of error, as well as other metrics such as
the distance of senators’ learned ideal points from a known reference [Poole et al., 2015].
We utilize techniques to reduce this bias, and in particular, adopt one technique to the
requirements of this project.

In the course of implementing these techniques, we also develop an algorithm to automati-
cally select model configurations based on their measured performance in a procedure like
CVT; previously models were always picked by hand after running CVT.

We also investigate several new methods for estimating bill polarity, which is required for
both predicting voting outcomes of bills and measuring model performance on a held out
set. These new methods use sponsorship and cosponsorship data, whereas previous methods
only used subject codes of bills.

2 Linear Influence Games

This project builds on a base of prior experiments which aim to predict senate voting
outcomes. Irfan and Ortiz [2011] introduce the Linear Influence Game (LIG), a type of
non-cooperative, graphical game inspired by diffusion and threshold models. In a LIG,
individuals are represented as nodes on a directed graph, and a node i’s payoff, ui, is
dictated by weights of incoming edges as well as a node’s threshold parameter. Any node
j might have edges going onto i with weight wij ∈ R, and similarly, i may have outgoing
edges with weight wji ∈ R to any other node j. These weights represent an influence factor
from one player in a game to another. Note that these weights can be negative or positive,
as well as asymmetric: two nodes can influence one another differently. If i has an edge
going to j with a positive weight large in magnitude, then player j will be more inclined
to match i’s action taken. The opposite is true for a negative weight. Nodes additionally
have a threshold value bi ∈ R which generally represents how resistant a node is to influence
from other nodes.

Each node i has a choice of binary actions xi ∈ {−1, 1}. In non-cooperative game theory, a
player’s best response is the action that maximizes their payoff. In the case of an influence
game G, a player’s best responses can be determined with the best response correspondence
[Irfan and Ortiz, 2011] BRG

i : {−1, 1}n−1 → 2{−1,1}, which is defined as:

BRG
i (x−i) ≡ argmax

xi∈{−1,1}
ui(xi,x−i). (1)

6

To understand how a best response would be determined in an real example of a game, we
need to define a player i’s payoff function ui. The payoff of a player’s action is determined
by the influence function [Irfan and Ortiz, 2011], which determines combines a node i’s
influences and threshold value. The influence function for node i, parameterized by an
action xi and all other nodes actions x−i is

fi(x−i) ≡
∑
j ̸=i

wijxj − bi. (2)

The influence value fi(x−i) is calculated as the sum of all products of incoming influence
factors and the influencing node’s action xj ∈ {−1, 1} and finally subtracting threshold
value bi. A player’s best response will be the affirmative action, 1, if the influence value is
positive. If the value is negative, the node’s best response will be the action −1, and if the
value is 0, the node is indifferent between the two actions; either one is a best response.
This results in the best response behavior [Irfan and Ortiz, 2011]:

fi(x) > 0 =⇒ x∗i = 1,

fi(x) < 0 =⇒ x∗i = −1, and

fi(x) = 0 =⇒ x∗i ∈ {−1, 1}.

Alternatively, this can be shortened into a compact syntax of a single payoff function

ui(xi,x−i) = xifi(x−i). (3)

by multiplying the action xi by the value returned by the influence function, such that the
payoff is positive if the player chooses the action with the same sign as the value of the
influence function. This payoff function is equivalent to the best response behavior.

The general picture of the game comes together: each node will attempt to maximize their
payoff by voting in accordance with their own threshold value and neighboring players’
actions, as well as the influences of these neighbors. But Irfan and Ortiz [2011] utilize the
LIG not to predict one player’s action, but to predict a joint outcome using a learned game.
This challenge of finding out the likely outcomes of the entire game is significantly more
difficult, but it starts with the pure-strategy Nash equilibrium, or PSNE. A PSNE can be
defined succinctly as a simultaneous best response; A given joint action is a PSNE if after
everyone played the joint action, no player’s payoff would increase after the fact if they
switched their vote. This concept is one of many for calculating stable outcomes of a game.
Compared to a mixed-strategy Nash equilibrium, in which stable joint actions can consist
of a player playing a number of different actions with some probability, a players in a PSNE
choose play exactly action all of the time. Figure 1 demonstrates several PSNE within a
small LIG.

7

Figure 1: This example of a PSNE in a LIG, reproduced with permission from Irfan and
Ortiz [2011], is a particular variety of LIG called a majority game in which all weights are 1
and thresholds are 0, meaning that any node’s best response is simply to match the action
of the majority of its neighbors. In this example, (a) is a visual representation of the game
structure, and (b) lists all PSNE: each row has each node 1-6 choosing one of two actions
{−1, 1}, represented by grey and black. Note that if a node’s neighbors are split by vote, the
node can choose either option; both are a PSNE. (c) and (d) are graphical representations
of the last and second rows of (b), respectively.

2.1 Machine Learning

Irfan and Ortiz [2011], Irfan and Gordon [2018], Phillips et al. [2021] and this paper use the
learning algorithm developed by Honorio and Ortiz [2015]. The algorithm is a generative
mixture model which has a LIG G pick a joint action x from the set of a game G’s set of
PSNE, or NE(G), with probability q, and pick a joint action x /∈ NE(G) with probability
1− q. A model is learned with a dataset made from training examples of joint actions with
the implication that these joint actions are ”real-world” PSNE for whatever the game which
best models the real world would be. The algorithm balances two goals in learning a game:
the first is generating a game with a minimal number of PSNE, and the second is generating
a game that best represents the real-world data. The first is important because if a model
generates a massive number of PSNE, it has no real predictive ability.1 To quantify the
first goal, the term π(G), or the true proportion of equilibria, is defined as

π(G) ≡ |NE(G)|/2n. (4)

meaning the proportion of all possible joint actions which are PSNE for the particular
game G. Similarly, the second goal is quantified with π̂(G), or the empirical proportion of
equilibria

1For example, in a trivial game [Honorio and Ortiz, 2015] with the matrix of weights W = 0 and biases
b = 0, every joint action of the possible 2n would be a PSNE, which is clearly unhelpful in the realm of
prediction.

8

π̂(G) ≡ 1

m

∑
l

1[x(l) ∈ NE(G)], (5)

meaning the proportion of the real-world ”training” data that are represented in NE(G).
Honorio and Ortiz [2015] then derive the maximum likelihood estimation formulation of the
problem as such. The formulation defines the optimal game Ĝ and mixture parameter q̂ as
the pair which minimizes the log likelihood L̂(G, q):

(Ĝ, q̂) ∈ argmax
(G,q)

L̂(G, q), (6)

where KL(p1∥p2) is the Kullback-Leibler divergence of two Bernoulli distributions, which
finds the statistical difference between two distributions, and:

L̂(G, q) = KL(π̂(G)∥π(G))−KL(π̂(G)∥q)− n log 2 (7)

Intuitively, this formulation is stating that we want to minimize the first term by maximizing
π(G), the proportion of real-world data which are PSNE in the game G, in relation π̂(G), the
proportion of all joint actions generated by G which are PSNE, such that KL(π̂(G)∥π(G))
is minimized. We then want to minimize the second term by making the KL divergence
between (π̂(G)) and q as small as possible, meaning that the optimal mixture parameter
q̂ = π̂(G). However, calculating π(G) requires computing the entire set of NE(G), which is
shown to be #P − complete [Irfan and Ortiz, 2011]. Honorio and Ortiz [2015] show that
with a high probability, finding a game G which maximizes π̂(G) is equivalent to minimizing
the loss ℓ(z) = 1[z < 0] of a game across all real-world bills:

∑
l

max
i

ℓ
[
x
(l)
i (wT

i,−ix
(l)
−i − bi)

]
(8)

Equation 8 essentially counts the total instances across all labels of any player not playing
a best response for a given game G. This count can be divided by the total size of the
dataset M to get the proportion of labels which are not captured as PSNE by G, equivalent
to 1− π̂(G), and the values of W,b which minimize this summation of loss constitute the
optimal game. An ℓ1-norm regularizer is added as a hyperparameter, which when increased,
biases the learning process toward models with smaller weights and therefore fewer edges.

min
W,b

1

M

∑
l

max
i

ℓ
[
x
(l)
i (wT

i,−ix
(l)
−i − bi)

]
+ ρ∥W∥1. (9)

9

The implementation of this minimization is converted to use logistic regression with a
smooth upper bound, ℓ(z) = log(1 + e−z):

min
W,b

1

m

∑
l

log(1 +
∑
i

e−x
(l)
i (wT

i,−ix
(l)
−i−bi)) + ρ∥w∥1. (10)

2.2 Roll Call Data

The models used by Irfan and Ortiz [2011], Irfan and Gordon [2018], Phillips et al. [2021],
Ostertag-Hill [2020] all utilize the LIG and the machine learning algorithm to instantiate
games such that each node represents one senator. Senate voting outcomes are used as
labels, and the machine learning learning process produces a game that will best be able
to model the relationships between senators to produce PSNE, i.e. joint voting outcomes,
which match the voting outcomes from the real world.

A number of different senates have been used for the LIG and training examples; the
most recent project, Ostertag-Hill [2020], used the 114th and 115th senates combined. We
incorporate the 116th senate into the dataset as well, increasing from 722 to 917 total
bills to learn models with. We also increase the number of senators in the model from
103 to 110. We use techniques developed by Phillips et al. [2021] to combine different
senators into one game: When an incoming senator replaces one of the same party, the two
are “merged.” Alternatively, if a replacement is from the opposing party, both senators
stay in the dataset with their votes being extrapolated to be the party mean. Senators
Blackburn, Braun, Cramer, Hawley, Kelly, McSally, and Rosen are added as new senators
to the model. Senator Simena was merged with senator Flake, and senator Romney was
merged with senator Hatch. This senate and bill data are collected by “Congress” repository
from the @unitedstates github account.

2.3 Sponsorship and Cosponsorship Data

In this project, we use sponsorship and cosponsorhip data to better estimate the polarities of
unknown bills. In that process, we make our dataset more complete by filling in previously
missing sponsorship and cosponsorship data for amendments. Thus in addition to the
@unitedstates github data, we add a new data source (senate.gov) to add in the sponsors
of every bill, including amendments. The amendment sponsors were scraped using Selenium
and saved in the dataset. This sponsor data is important to the project as new methods for
estimating unknown bill polarity rely heavily on bill sponsorship and cosponsorship, and
future polarity estimation improvements can be made using this data.

2.4 Ideal Points and Bill Polarity

LIGs have a large capacity to capture group dynamics in the senate, but they model neither
individuals’ political beliefs nor the political leaning of individual bills. This means that a
LIG model doesn’t differentiate any bill from another: NE(G) will always be identical for
two bills, even if those bills have wildly different voting outcomes in the senate.

10

Inspired by Gerrish [2013]’s experiments with ideal point models and the US senate, Irfan
and Gordon [2018] add to the LIG model the concept of ideal points. In addition to
incoming weights and a threshold value bi, nodes were also given an ideal point value pi,
and each bill is assigned a polarity value al. Both variables represent a left-right political
leaning; by convention, negative values represent a left-lean and positive values a right-
lean. Additionally, ideal points and polarities are learned as the model is learned, similar
to weights and thresholds.

Figure 2: Distribution of learned ideal points for a model with the BBC-CV method’s
chosen best configuration of ρ = 0.0024 and ρ′ = 0.00038.

This alters Equation 2 by adding the term (pi · al) in the summation:

fi(x−i) ≡
∑
j ̸=i

wijxj + (pi · al)− bi. (11)

This term functions as such: when the bill’s polarity leans the same political direction as the
senator, a positive term is added whether both are positive or negative. The added positive
term means the senator is more likely to vote yea, as it adds to their total influence value.
If the bill’s polarity and the senator’s ideal point disagree, the resulting term is negative,
and the senator is more likely to vote nay. The smaller both values are, the smaller the
resulting term.

The machine learning algorithm is also modified to learn an ideal point for each senator,
as well as a polarity for each bill. The minimization is changed, and an additional ℓ1-norm
regularizer ρ′ is added to control the magnitude of learned ideal points and polarities.

min
W,b,p,a

1

m

∑
l

log(1 +
∑
i

e−x
(l)
i (wT

i,−ix
(l)
−i+(pi·al)−bi)) + ρ∥w∥1 + ρ′∥p · a∥. (12)

The magnitudes of learned senator ideal points and bill polarities are dimensionless and
theoretically unbounded, so choosing a good value of ρ′ helps to keep the values within a
reasonable range. Figure 2 shows the distribution for a model configuration chosen in model
selection of ρ = 0.0024, ρ = 0.00038′.

The aim in adding ideal points and polarities is to allow the model to capture individual
preferences and political leanings in addition to group dynamics and influence. Reference
ideal point values learned by Poole et al. [2015] are also used in the model selection process

11

to bias the final model to have learned ideal points which match a known reference point.
Critically, a bill’s polarity is needed to predict its joint voting outcomes, but bill polarities
are only learned as the model is learned. If some bills are held out for testing or validation
purposes, their polarity is never learned. Irfan and Gordon [2018] utilize a technique de-
veloped by Poole et al. [2015] to estimate the polarity of a bill given a set of learned bills
by comparing the subject codes of the unknown bill to the known bills. We discuss this
technique and attempt to improve upon it in Section 5.

Phillips et al. [2021] takes the LIG model from Irfan and Ortiz [2014] and adds a bill-
clustering step; bills are clustered using subject codes and fuzzy k-means clustering, and then
a separate LIG model is learned for each cluster, or sphere. New bills can be clustered using
their subject codes and predictions can be made with a model for the appropriate cluster.
These more specialized models are hopefully tuned to better predict outcomes within each
sphere. Ostertag-Hill [2020] combines the two additions from Irfan and Gordon [2018]
and Phillips et al. [2021], with clustering bills into different spheres and learning models
with additional parameters to capture individual political beliefs. We don’t incorporate
clustering into this research, but the new model evaluation procedures will make it easier
to compare different versions of LIGs; one example experiment could be comparing the
performance measures of models learned with and without clustering.

3 Model Selection and Performance in LIGs

Previous experiments using LIGs have used CVT to select the optimal hyperparameters.
One straightforward way to do this would be to go through every model configuration,
meaning every combination of hyperparameters ρ and ρ′, and perform K-fold CV for each.
Within CV, one LIG would be learned on the training folds, and for each held out bill in the
validation set, the LIG would be used to predict the joint voting outcomes. This prediction
could be compared to the known voting outcome of the bills in the validation set, and an
average error could be calculated for each model configuration. The problem with this is
that making a prediction is NP-hard [Irfan and Ortiz, 2011], and practically, can take up
to hours or days depending on the bill being predicted. Rather than using predictions,
cross-validation has been tweaked for these experiments to output a several descriptive
metrics about the model which do not require prediction to calculate. The optimal model
configuration is then chosen by hand based on these metrics. For example, CVT returns for
each model configuration the number of edges, the euclidean distance between learned ideal
points and the known reference, the proportion of bills in the validation set which are PSNE,
the proportion of senators not playing best responses across the validation set (validation
best-response error), and several more metrics. A researcher then sorts through this data
to find a reasonable choice of values for ρ and ρ′. Each of these metrics are important in
some way; if model selection were performed only on the basis of, for example, validation
best-response error, the chosen values of ρ and ρ′ might learn a very dense model with too
many edges and making any predictions would take an unreasonably long time. Therefore,
in addition to validation best-response error, number of edges and several other metrics
must be taken into account for the selection of hyperparameter values.

12

Algorithm 6 Cross-Validation with Tuning for LIG

1: procedure CVT-LIG(D, f, set of all combinations of ρ, ρ′R)
2: for iin R do
3: Split D into k folds

4: validationErrori ← CV (D, f,Ri) ▷ proportion of senators not voting BR
5: // other metrics, e.g. number of edges in the graph, are saved
6: end for
7: Store mean validation error and other metrics and associated ρ, ρ′

8: Manually select best ρ and ρ′ configuration

9: end procedure

Adapted to the LIG, Pseudocode 6 shows the CVT procedure performed for model selection.
The metrics calculated for each held-out fold are used to select a model configuration (i.e.
values for ρ and ρ′). Therefore, the selected model configuration is likely to perform worse
on new data than the metrics suggest. These metrics are optimistically biased the ideal
model configuration was chosen based on them.

The metrics collected are summarized in table 1. We also tweak these metrics in a couple of
ways in this paper. First, the calculation of ideal point distance was changed in a significant
way: the reference ideal points are all scaled between -1 and 1, whereas our learned ideal
points are unbounded. The ideal point distance is calculated as the euclidean distance
between the reference and learned ideal points. A consequence of this is that in this metric,
ideal points are penalized for being large in magnitude, even if they are proportional to
the reference values. This made the value cumbersome to use when hand selecting models,
and infeasible to use in automated model selection: if you try to minimize the ideal point
distance, the selected configuration would end up picking a value for ρ′ that learns ideal
points to be zero, because this distance is empirically smaller than any model with nonzero
learned ideal point values. We change the calculation to calculate euclidean distance of the
reference values and normalized learned ideal points such that they sit between -1 and 1.
This turns the ideal point distance into a much more practically usable metric.

In addition, we measure two new metrics: the proportion of learned ideal points and po-
larities which equal zero. In automated model selection, we wanted to explicitly bias the
selection procedure against configurations which tend not to learn meaningful values for
ideal point and polarity. Rather than trying to use the ideal point distance as a proxy, we
decided to explicitly measure this to use in the automated procedure.

3.1 Nested cross-validation with tuning

We implement Nested CVT on the LIG model to perform model selection. Because Nested
CVT requires the inner CVT procedure to automatically select a model, we also develop an
algorithm for selecting an LIG model based on the calculated metrics, discussed further in
Section 4. The Nested CVT procedure returns any number from 1 to k different validated
model configurations, where k is the number of folds chosen for the outer loop, as well as
an unbiased estimation of metrics such as validation error, number of edges, etc. for each

13

Metric Definition

Training error Percent of senators not voting BR across a training set

Validation error Percent of senators not voting BR across a validation set

Testing error Percent of senators not voting BR across testing bills

Training PSNE Percent of training set bills represented as PSNE for LIG

Validation PSNE Percent of validation set bills represented as PSNE for LIG

Testing PSNE Percent of testing set bills represented as PSNE for LIG

Number of edges Number of edges in a learned LIG

Ideal Point distance Euclidean distance of learned ideal points to a references

Proportion IP = 0 Proportion of all learned ideal points equal to 0

Proportion Polarity = 0 Proportion of all learned polarities equal to 0

Table 1: A summary of metrics captured in the Cross-Validation process. These metrics
are used for model selection and evaluation. For example, the validation error would be
used to pick among ρ and ρ′ values to find a model configuration that is likely to model the
data used for learning.

configuration. See Table 1 for the list of all metrics collected.

For the senate-based LIG model, learning a model is nontrivial; it may take 30-40 seconds to
learn a single model with a large proportion of the 917 bills in the training set. Performing
CVT alone can take considerable time: 40 seconds · 10 folds · 100 model configurations (10
ρ values · 10 ρ′ values) can easily take up to 12 hours or more. Nesting this procedure in
an additional loop of ten folds could take over 120 hours. When performing Nested CVT,
the number of configurations tested needs to be limited (to in the 30-50 range in our runs)
as well as the number of outer loops to keep the execution times manageable.

Experimental Results

The Nested CVT procedure was run with k = 5 outer folds and returned five different
model configurations.

These results are promising for both Nested CVT and the automated model selection pro-
cedure. Several of the selected values of hyperparameters ρ and ρ′ are very similar to what
was selected in Irfan and Gordon [2018] (ρ = 0.00225, ρ′ = 0.0004). Additionally, the values
of testing error returned by Nested CVT are close to the validation error returned by CVT
in Irfan and Gordon [2018] (17.0). More experimentation is needed to verify the difference
in bias between the two, as several other variables were changed (e.g. the senators making
up the LIG).

14

ρ ρ′ trErr testErr trPSNE testPSNE # Edges IP Dist. %IP = 0 %Pol = 0

0.0026 0.00026 5.39 16.15 17.16 12.56 1229 3.01 0 0.017

0.0024 0.00038 5.13 17.70 17.32 12.5 1613 3.03 0 0.028

0.003 0.00026 5.39 16.34 18.01 7.60 1039 2.90 0 0.013

0.0022 0.00038 5.10 14.79 18.25 6.55 1483 3.11 0 0.028

0.0024 0.00044 5.09 15.28 17.16 10.92 1532 2.96 0 0.036

Table 2: Nested Cross-Validation with Tuning Results. Each model, picked by the new
automated selection procedure, is generally within the desired range for all metrics.

3.2 Bias Bootstrap Corrected CV

Nested CVT requires a significant amount of CPU time; we also implement BBC-CV,
which provides model selection and evaluation while learning magnitudes fewer models
than Nested CVT. However, BBC-CV relies on the CV procedure generating predictions
which, as previously stated, our adaptation of CV does not do. We adapt Tsamardinos
et al. [2018]’s procedure to utilize the LIG metrics rather instead predictions to calculate
unbiased metrics. Rather than a matrix of out-of-sample predictions Π, we use a matrix of
calculated metrics, T . We also use the notation of Tsamardinos et al. [2018] for bootstrap
samples, T b, and the set of data held out from the samples, T /b.

Algorithm 7 Bootstrap Bias Corrected Cross-Validation

1: procedure BBC-CV-LIG(D, b, f, C)
2: ⟨C∗, T ⟩ ← CV T − LIG(D, f,C)
3: for i = 1:b do
4: T b ← sample with replacement N rows of Π
5: T /b ← rows of T not in T /b

6: j ← selectModel(T b) ▷ automated procedure selects the best configuration
7: ti ← T (j, :) ▷ store average metrics for all models learned with configuration j
8: end for
9: return 1

b

∑b
i=1 ti

10: end procedure

Experimental Results

The BBC-CV procedure was run with b = 500. The procedure returned one model config-
uration selected by CVT and the automated selection procedure, along with estimations of
all metrics for the configuration. The selected configuration, ρ = 0.0024, ρ′ = 0.00038, was
also in the set of configurations chosen by Nested CVT, and their estimations of metrics
are compared in Table 3.

Again, the results of the BBC-CV procedure are promising. The metric values calculated
by both procedures are generally similar, with a discrepancy on the reported test PSNE

15

Method trErr testErr trPSNE testPSNE # Edges

BBC-CV 5.13 19.34 16.94 6.3 1476

Nested-CVT 5.13 17.70 17.32 12.5 1613

Table 3: A comparison of a subset of metric estimations generated by BBC-CV and Nested-
CVT, with the hyperparameter value ρ = 0.0024, ρ′ = 0.00038. Most metrics are quite
similar, but the testing PSNE values (the percent of held-out testing bills which are identified
as PSNE) differ.

value. Given that BBC-CV essentially only requires the same time as performing CVT,
BBC-CV would be able to run on a much larger number of hyperparameter values to get a
finer grain for hyperparameter values to select.

4 Automated Model Selection

In previous LIG research the process of model selection involved running the CVT proce-
dure, capturing all resulting metrics from every configuration of ρ, ρ′ tested, hand-generating
graphs to chart the metrics, and manually deciding on the optimal values of ρ and ρ′ to
use on the final models. The error estimation procedures implemented here require model
configuration selection to happen every time CVT is performed. This may be feasible for
BBC-CV when the selection is only required once, but less so for Nested CVT: somebody
would have to select a model every time an outer loop and resume execution of the program.

In order to make Nested CVT and BBC-CV simple to run, as well as to save researcher
time, we implement a configurable algorithm for ranking models that can be called directly
in Matlab code, making CVT, BBC-CV, and other model selection methods completely
autonomous. The procedure works as such: each model configuration is penalize based
on its metric values by comparing each metric to a predefined desired range of values, and
scaling the penalty amounts differently per-metric. See Table 1 for a summary of all metrics
calculated. Some metrics are not penalized at all as long as they sit in the desired range,
whereas others aim to be minimized or maximized, and are penalized for being above the
minimum for example, and further penalized for being outside of the desired range. Table
1 outlines how each metric is configured in the algorithm; these configurations should be
tweaked if using a different dataset or group of senators, as these values were hand-tuned
such that the algorithm made reasonable decisions for this particular set of roll call data.

Experimental Results

The algorithm’s rankings of five model configurations performed in one run of CVT is shown
in Table 5. A researcher would decide on the best model configuration by looking at the
charts in Figure 3. We compare the algorithm’s choices to what a researcher might decide
based on looking at the charts.

The automated model selection procedure has made a sensible ranking. All of its choices
put the number of edges in the desired range of 1000-1500. No decisions are made which

16

Metric Range Optimization Outside penalty Inside penalty

Training error 0-6 Min 4 0.5

Validation error 0-30 Min 4 0.25

Ideal point distance 0-5 Min 4 1

Edges in LIG 1000-1500 Any 10 0

Training % PSNE 0-50 Max 2 .25

Validation % PSNE 0-50 Max 2 .25

Ideal points % = 0 0-50 Min 20 2

Bill polarities % = 0 0-50 Min 20 2

Table 4: The configuration of each metric within the automated model selection algorithm.
Each metric is given a desired range, a value indicating whether they should be minimized
or maximized (or if indifferent), a penalty scaling value for being outside of the range, and
a penalty scaling value for being inside of the range.

rho rhoPrime penalty trErr valErr trPSNE valPSNE nEdges ipDist ipZero polZero

0.0024 0.00038 1.255 5.203 15.160 17.654 10.024 1451.3 3.152 0.00 0.032

0.0026 0.00044 1.256 5.266 14.956 17.194 10.254 1434.9 3.128 0.00 0.042

0.0028 0.00026 1.259 5.421 15.611 17.218 9.927 1178.5 3.009 0.00 0.020

0.003 0.00032 1.259 5.483 15.824 17.085 10.251 1087.5 2.967 0.00 0.024

0.003 0.00026 1.260 5.502 16.159 17.085 9.600 1100.8 2.922 0.00 0.020

Table 5: The ranked choices of the automated model selection algorithm, from top to
bottom. The ”penalty” value is added for clarity, although it is not a metric.

completely disregard any metric in particular; all decisions are roughly middle-ground.
However, there are a range of hyperparameter values in the top five ranked models. This
may be indicative of the fact that there could be a number of local maxima for optimal
hyperparameter values. The algorithm correctly avoids lower ρ values, which cause graphs
that are too dense and have too many edges. It seems to generally be picking higher values
within the range of possible ρ′ values, possibly to try to find a middle ground between
minimizing training and validation error, maximizing training and validation PSNE, and
minimizing ideal point distance.

5 Estimating Polarity of Held Out Bills

In order to measure the best-response error or training/validation PSNE of a model, the
polarities of all bills with which the model will be tested are needed. In the context of,
for example, one fold of cross-validation, after a model is trained with the training folds its

17

Figure 3: Results of several salient metrics for one inner 10-fold CVT run of nested CVT.
Whereas these graphs are normally used for model selection, we compare the results of an
automated model selection algorithm to what a person might otherwise select based on
these figures.

(a) Training error for CVT with 0.0018 < ρ <
0.003, 0.0002 < ρ′ < 0.0005. This value should
be minimized in selection.

(b) Validation Error for CVT with 0.0018 <
ρ < 0.003, 0.0002 < ρ′ < 0.0005. This value
should be minimized in selection.

(c) Training PSNE for CVT with 0.0018 < ρ <
0.003, 0.0002 < ρ′ < 0.0005. This value should
be minimized in selection.

(d) Validation PSNE for CVT with 0.0018 <
ρ < 0.003, 0.0002 < ρ′ < 0.0005. This value
should be minimized in selection.

validation error will be measured with the held out fold. However, only the polarities of
the bills in the training set have been learned. Similarly, unlearned polarities of bills are

18

(e) Number of edges for CVT with 0.0018 <
ρ < 0.003, 0.0002 < ρ′ < 0.0005. The num-
ber of edges is acceptable within the 1000-1500
range.

(f) Ideal point distance to a known reference
for CVT with 0.0018 < ρ < 0.003, 0.0002 <
ρ′ < 0.0005. This value should be minimized,
but is acceptable within the 0-4 range.

needed for making predictions for voting outcomes on those bills. Although we don’t know
the polarity of some bills, we still know some existing data about all bills, such as subject
codes, which is used to estimate the polarities of these held-out bills.

Irfan and Gordon [2018] use a straightforward way of estimating the unknown polarity of
a bill l′ using a whichever training set of bills was used to learn the model. The method
is to compare the subject codes of the unknown bill lu with the subject codes of each bill
lk with a known polarity, and use the known polarity of the bill l∗k with subject codes that
most closely match the subject codes of lu as an estimate for its polarity. The similarity of
two bills’ subject codes is measured by taking the euclidean distance between bit vectors
representing the presence or absence of each subject code in a bill. This method uses subject
codes to substitute bill polarity; we call this method Subject Code Substitution, or SC-S.

The two processes where polarity must be estimated, model learning and prediction, are
central to the project. If this estimation measure could be improved, the accuracy of
results would improve as well. One potential problem with this subject code-based method
is that, for example, a right-leaning bill lk could have a left-leaning amendment lu with
unknown polarity, but both would have the same subject codes. A subject code based
estimation algorithm might simply choose the polarity alk as the estimation for alu , which
would clearly be a bad polarity estimate. We compare several new methods of unknown
bill polarity estimation to this subject code-based version.

In addition to subject codes, another piece of information we have about all bills whether
or not they have been trained with is which senators sponsor a bill. This sponsorship and
cosponsorship information can be paired with the learned ideal points of each senator to,
for example, average all sponsors’ ideal points to get an rough party leaning estimate for a

19

bill. The first new method attempted is called Subject Code Mean Ideal Point Substitution,
or SC-MI-S. This is a simple modification to the procedure above: only consider bills where
the average sponsor ideal point leans in the same political direction as the unknown bill.
For example, if a′l = −2, use the polarity of the closest bill via subject code euclidean
distance only among bills with al < 0. This procedure gets at the idea that we only want to
substitute the polarity of one bill for another if they are similar in terms of political leaning.

The next method, LRM, is a linear regression model, where the presence or absence of
each subject code as well as each senator was a feature. With 845 subject codes and 110
senators, the linear model has a total of 955 features. The model is trained on polarities
learned when learning an LIG. Rather than calculating the mean sponsor ideal point, this
model encodes each sponsor and their ideal point individually to make more data available
for the model to learn on.

An additional concept that we use is rather than selecting the single bill which was closest
by some measure and using its polarity as a stand-in, we calculate a weighted average of
all known bill polarities with the weights determined by a similarity measure. In this next
method, Subject Code, Mean Ideal Point Weighted Average, or SC-MI-W, we multiply the
average sponsor ideal point p by the subject code bit vector s, and take the euclidean
distance of the two vectors. This distance measure, dist(k, u) = euclidean(Sk · pk, Su · pu),
is then used in a power law-like formula to calculate the weighted average, where j is the
number of known-polarity bills:

j∑
n=1

polk · δdist(k,u)/
j∑

n=1

δdist(k,u). (13)

The next method, Subject Code Ideal Point Weighted Average, or SC-I-W, utilizes subject
code data as well as all sponsors’ individual ideal point values. The bill sponsorship bit
vector, i.e. the vector of length equal to the number of senators where a 1 represents
that senator being a bill sponsor or cosponsor, is element-wise multiplied by a vector of
all senators’ ideal points. This scales the sponsoring senators’ 1 by their ideal point. This
vector is then element-wise multiplied by the subject code vector, resulting in a matrix
where each row represents a subject code, each column a potentially sponsoring senator.
If the bill does not have a subject code, then its row is full of zeros; otherwise its row is
the sponsorship bit vector scaled by each sponsor’s ideal point. The distance measure in
SC-MI-W is replaced by the euclidean distance between these two matrices, in which all
subject code, sponsorship, and ideal point data is encoded. The same weighted average is
calculated.

The final method uses the same matrix calculated in SC-I-W, but uses substitution and just
picks the polarity of the bill with the closest distance rather than calculating a weighted
average. Thus it is called SC-I-S.

20

Full Name Acronym

Subject Code Substitution SC-S

Subject Code Mean Ideal Point Substitution SC-MI-S

Linear Regression Model LRM

Subject Code Mean Ideal Point Weighted Average SC-MI-W

Subject Code Ideal Point Weighted Average SC-I-W

Subject Code Ideal Point Substitution SC-I-S

Table 6: A summary of metrics captured in the Cross-Validation process. These metrics
are used for model selection and evaluation. For example, the validation error would be
used to pick among ρ and ρ′ values to find a model configuration that is likely to model the
data used for learning.

Figure 4: Box-and-Whisker plot of the distribution of polarity estimation distance from
learned values. Polarities were learned with hyperparameter values ρ = 0.002, ρ′ = 0.0002,
and estimations calculated with δ = 0.5.

Experimental Results

Figure 4 provides a summary of descriptive statistics for each algorithm implemented, the
X-axis showing the distance of estimated polarities to their learned values. SC-MI-S makes
a slight improvement on SC-S, slightly improving the IQR, but doesn’t seem to alter the
predictions very much. LRM performs poorly compared to all other versions; this is likely
because we force complex, potentially nonlinear data into a linear model. The model pre-

21

Figure 5: Distribution of polarity estimation distance from learned values. Polarities were
learned with hyperparameter values ρ = 0.002, ρ′ = 0.0002, and estimations calculated with
δ = 0.5.

dicts a relatively large number of outliers. SC-MI-W narrows the distribution and reigns
in outliers compared to SC-S, and appears to make slightly improved predictions. SC-I-W
and SC-I-S appear to have notably better performance than SC-S as well as SC-MI-W,
despite an odd gap in distance values. However, after checking the raw data it was deter-
mined that both versions tend to predict polarity values near 0 on almost every bill. More
investigation is required to determine exactly why these last two models behave this way,
but for this reason, we are not considering using them to replace SC-S. At the very least,
this finding demonstrates that there is much more room for improvement in the realm of
estimating unknown bill polarity.

SC-MI-W appears to have better outlier performance and a preferable distribution of po-
larity estimate errors relative to learned values than SC-S. Figure 5 confirms this result. In
the areas where polarity estimates are used, mainly calculating the training and validation
errors of a model and equilibrium computation, the algorithm SC-MI-W was substituted in
for the previous algorithm SC-S. These methods were also tested with a range of δ values as
well as several different model configurations (see A for figures); the results are consistent
across all δ values and configurations.

6 Future Work

With more robust error estimation methods, robust comparisons between previous iterations
of LIG projects can easily be made. Either Nested CVT or BBC-CV can be used to

22

compare, for example, the performance metrics of the LIG models with and without ideal
points added, or with and without clustering. These comparisons are allowed by the fact
that the reported metrics from BBC-CV or Nested CVT will be less biased than simply
using CVT. Additional work could include testing the biases of Nested CVT and BBC-CV’s
metrics with artificial datasets, as well as comparing their reported values to the validation
measured returned by CVT.

Additionally, these methods could be applied to making LIG predictions. This would need
to be done thoughtfully and carefully, as the computational hardness of computing equilibria
is proven, and practically can take very a long duration. But these methods could be applied
as an improvement on, for example, holding out a subset of three bills as was done in Irfan
and Gordon [2018]; folds of unseen bills could be predicted rather than just a select few.
If improvements are made on the computation of equilibria, or if the LIG model gains
new variables which allow it to further decrease π(G), then equilibria computation will be
reliably faster and these methods can be utilized with prediction error.

Lastly, it is clear that bill polarity estimates can be further improved. Logistic regression
or otherwise nonlinear models may be able to better model the political spectrum of bill
polarities and their subject codes and sponsor ideal points. Text-analysis of bills could also
make further improvements.

23

References

Bradley Efron and Robert Tibshirani. An introduction to the bootstrap. Number 57 in
Monographs on statistics and applied probability. Chapman & Hall, 1993. ISBN 978-0-
412-04231-7.

Sean M Gerrish. Applications of latent variable models in modeling influence and decision
making. PhD thesis, Princeton University, 2013.

Jean Honorio and Luis E Ortiz. Learning the structure and parameters of large-population
graphical games from behavioral data. Journal of Machine Learning Research, 16(1):
1157–1210, 2015.

Mohammad Irfan and Luis Ortiz. A game-theoretic approach to influence in networks. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 25(1):688–694, 2011. ISSN
2374-3468, 2159-5399. doi: 10.1609/aaai.v25i1.7884. URL https://ojs.aaai.org/

index.php/AAAI/article/view/7884.

Mohammad T Irfan and Tucker Gordon. The power of context in networks: Ideal point
models with social interactions. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, pages 910–918, 2018.

Mohammad T. Irfan and Luis E. Ortiz. On influence, stable behavior, and the most in-
fluential individuals in networks: A game-theoretic approach. Artificial Intelligence,
215:79–119, 2014. ISSN 00043702. doi: 10.1016/j.artint.2014.06.004. URL https:

//linkinghub.elsevier.com/retrieve/pii/S0004370214000812.

Ji-Hyun Kim. Estimating classification error rate: Repeated cross-validation, repeated hold-
out and bootstrap. Computational Statistics & Data Analysis, 53(11):3735–3745, 2009.
ISSN 01679473. doi: 10.1016/j.csda.2009.04.009. URL https://linkinghub.elsevier.

com/retrieve/pii/S0167947309001601.

Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In Proceedings of the International Joint Conference on Artificial Intel-
ligence, volume 14, pages 1137–1145. Montreal, Canada, 1995.

Luca Ostertag-Hill. Ideal point models with social interactions applied to spheres of legis-
lation. Honors project report, Bowdoin College, 2020.

Andrew C. Phillips, Mohammad T. Irfan, and Luca Ostertag-Hill. Spheres of leg-
islation: polarization and most influential nodes in behavioral context. Com-
putational Social Networks, 8(1), 2021. ISSN 2197-4314. doi: 10.1186/
s40649-021-00091-2. URL https://computationalsocialnetworks.springeropen.

com/articles/10.1186/s40649-021-00091-2.

Keith Poole, Howard Rosenthanthal, and Christopher Hare. Alpha-NOMINATE ap-
plied to the 114th senate, 2015. URL https://voteviewblog.com/2015/08/16/

alpha-nominate-applied-to-the-114th-senate/.

24

Sebastian Raschka. Model evaluation, model selection, and algorithm selection in machine
learning. arXiv preprint arXiv:1811.12808, 2018.

Ioannis Tsamardinos, Elissavet Greasidou, and Giorgos Borboudakis. Bootstrapping the
out-of-sample predictions for efficient and accurate cross-validation. Machine Learning,
107(12):1895–1922, 2018. ISSN 0885-6125, 1573-0565. doi: 10.1007/s10994-018-5714-4.
URL http://link.springer.com/10.1007/s10994-018-5714-4.

Sudhir Varma and Richard Simon. Bias in error estimation when using cross-validation
for model selection. BMC Bioinformatics, 7(1), 2006. ISSN 1471-2105. doi: 10.1186/
1471-2105-7-91. URL https://bmcbioinformatics.biomedcentral.com/articles/

10.1186/1471-2105-7-91.

25

A Appendix

Figure 6: 10-fold CVT results across a wider range of hyperparameter values. Charts for
the proportion of learned ideal points and polarities which equal zero are included here,
whereas on the runs Nested CVT and BBC-CV, the narrower range of hyperparameter
values meant that these proportions were essentially zero across the entire range.

(a) Training error for CVT with 0.0015 < ρ <
0.0032, 0.00015 < ρ′ < 0.00067.

(b) Validation Error for CVT with 0.0015 <
ρ < 0.0032, 0.00015 < ρ′ < 0.00067.

(c) Training PSNE for CVT with 0.0015 < ρ <
0.0032, 0.00015 < ρ′ < 0.00067.

(d) Validation PSNE for CVT with 0.0015 <
ρ < 0.0032, 0.00015 < ρ′ < 0.00067.

26

(e) Number of edges for CVT with 0.0015 <
ρ < 0.0032, 0.00015 < ρ′ < 0.00067.

(f) Ideal point distance to a set of known refer-
ence values for CVT with 0.0015 < ρ < 0.0032,
0.00015 < ρ′ < 0.00067.

(g) Percent learned ideal points = 0 for CVT
with 0.0015 < ρ < 0.0032, 0.00015 < ρ′ <
0.00067.

(h) Percent learned bill polarities = 0 for CVT
with 0.0015 < ρ < 0.0032, 0.00015 < ρ′ <
0.00067.

27

Figure 7: Mean polarity estimation distance from learned values. Polarities were learned
with hyperparameter values ρ = 0.002, ρ′ = 0.0002, and estimations calculated with δ = 0.5.

Figure 8: Box-and-Whisker plot of polarity estimation distance from learned values. Po-
larities were learned with hyperparameter values ρ = 0.002, ρ′ = 0.00013, and estimations
calculated with δ = 0.5.

28

Figure 9: Distribution of polarity estimation distance from learned values. Polarities were
learned with hyperparameter values ρ = 0.002, ρ′ = 0.00013, and estimations calculated
with δ = 0.5.

Figure 10: Mean polarity estimation distance from learned values. Polarities were learned
with hyperparameter values ρ = 0.002, ρ′ = 0.00013, and estimations calculated with δ =
0.5.

29

Figure 11: Box-and-Whisker plot of polarity estimation distance from learned values. Po-
larities were learned with hyperparameter values ρ = 0.002, ρ′ = 0.0003, and estimations
calculated with δ = 0.5.

Figure 12: Distribution of polarity estimation distance from learned values. Polarities were
learned with hyperparameter values ρ = 0.002, ρ′ = 0.0003, and estimations calculated with
δ = 0.5.

30

Figure 13: Mean polarity estimation distance from learned values. Polarities were learned
with hyperparameter values ρ = 0.002, ρ′ = 0.0003, and estimations calculated with δ = 0.5.

31

	Exploiting Context in Linear Influence Games: Improved Algorithms for Model Selection and Performance Evaluation
	Recommended Citation

	tmp.1671208038.pdf.VSHtE

