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Abstract

There are predictions for cosmological gravitational wave backgrounds from reheating
based on various models. But, these predictions do not address the question of how an
observed spectrum relates back to an unknown model or parameter. Given this problem,
we have numerically and analytically investigated a variety of chaotic inflation models
and their gravitational wave spectra.

We studied chaotic inflation potentials V (φ) = λf(φ/φ0) + 1
2
g2φ2χ2. λ determines the

curvature of the potential and g2 quantifies how strongly fields φ and χ are coupled to
each other. For these chaotic inflation potentials, we found the peak frequency to be pro-
portional to the parameter λ1/4. So, given an observed peak frequency, we can identify
which model that peak frequency must correspond to.

We also found a two-class amplitude behavior for otherwise close values of the coupling
parameter g2/λ. In exploring this puzzle, we found that this behavior emerges directly
from the exponential pre-heating phase after inflation as a result of different exponential
growth rates.

To refine our understanding of amplitude, we investigated the β, which describes how
quadrupolar the gravitational wave source’s energy density is. We found reasonable
agreement between our analytic estimate and other existing estimates for β, indicating
that we captured a good amount of the relevant physics. But to learn more about β, we
need to study how initial fluctuations in the field sourcing gravitational waves χ grow
and contribute to the source’s stress energy tensor.
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Chapter 1

Introduction

Our initial understanding of the Big Bang came with some puzzles. Why are apparently

causally unrelated points in our Universe measured to have a temperature of 3 K? Why

are the Universe’s energy density parameters so finely tuned to give us a flat Universe?

Where are all the early universe magnetic monopoles and why haven’t we found any?

Alan Guth and Andrei Linde proposed a resolution to these puzzles: inflation. They

argued that the early Universe expanded by a factor of about 60 e-folds between t = 10−36

s to t = 10−33 s [1] [2].

Since inflation was proposed, cosmologists have developed a variety of scalar field

models to describe inflation. For now, we only have a limited way of evaluating which

models properly describe inflation and which ones don’t. First, we have no observational

evidence of inflation (for now). Second, even if we had observational evidence of inflation,

we wouldn’t have any analytic relations to compare a direct observation with underlying

models.

So what can we do? We currently don’t have the tools to address the first problem.

But, we do have all the tools to address the second problem. There are plenty of models

to work with, excellent numerical simulations that predict observations given a particular

model, and existing analytic work that we can build on.
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With these tools in hand and some underlying knowledge of gravitational wave

production and cosmology, we wish to find analytic relationships between inflation mod-

els and their parameters with future observables or gravitational wave features. We

use numerical simulations as guardrails to test and compare our analytic investigation’s

assumptions and results.

There is already literature making analytic predictions for gravitational waves

from cosmological sources. In particular, Dufaux et al. connect gravitational wave energy

density to an inflaton field modelled as a wave packet [3] given a chaotic potential. Giblin

and Thrane produce a ‘rough rule of thumb’ for what gravitational waves look like from

a generic cosmological source (meaning they do not make any model constraints on what

the source’s stress energy tensor Tij looks like) [4].

We wish to expand on Dufaux and Giblin and Thrane’s work by analytically

investigating gravitational wave energy density for more than one inflation model and

seeing how those model constraints can tell us about the source of gravitational waves,

and therefore gravitational wave energy density.

We organize the discussion and analysis as follows. The remainder of this chapter

introduces how expansion is described in cosmology, how inflation is described within that

context, and how our cosmological gravitational waves are different from astrophysical

gravitational waves. Chapter 2 introduces the existing work that we are going to use and

build off. Chapter 3 is a compilation of numerical results from simulating reheating and

producing gravitational waves from Zhiqi Huang’s numerical simulation HLattice [12].

Chapter 4 details the analytic investigation we undertook to understand the underlying

physics of one of our numerical results for gravitational wave peak frequency. Chapter

5 provides a more detailed investigation into the underlying physics associated with

gravitational wave amplitude. In chapter 6, we discuss the implications of our results

and possibilities for further investigation.
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1.1 Background

1.1.1 How cosmologists describe expansion

Inflation is ultimately a description of early Universe expansion. So we want to introduce

how cosmologists describe expansion.

In 1929, Edwin Hubble observed that the further a particular galaxy was from

Earth, the faster it travelled away from us [6]. More specifically, he observed

v = Hr (1.1)

where v and r are speed and distance. Eqn (1.1) is Hubble’s law. The proportionality

parameter H is most commonly quoted in units of km/s/Mpc. Today, this parameter is

measured to be approximately H0 = 70 km/s/Mpc.

We need a useful way to compare distances across large scale structures at different

points in time in an expanding Universe. To do this, we can describe physical distances

in our Universe using a dimensionless ‘scale factor’ a(t). If a(t1) = 3 and a(t0) = 1, then

r(t1) = 3r(t0) (1.2)

where the convention is to choose a = 1 for today. We can combine this relation between

scale factor and distances, Eqn (1.2), with Hubble’s Law, Eqn (1.1), to show that

H =
ȧ

a
. (1.3)

We now have two quantities that describe our Universe’s expansion: a and H. In

more colloquial terms, the scale factor a can be used to compare how much ‘bigger’ or

‘smaller’ the Universe is as a result of expansion between two points in time. The Hubble

parameter H can be thought of as how quickly scale factor a is growing.
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Next, we want to model a and H. To do describe the dynamics of a and H,

Alexander Friedmann combined the assumption of a spatially homogeneous and isotropic

Universe with Einstein’s field equations. The 00 component of Einstein’s field equations

gives “Friedmann’s first equation:”

ȧ = H0

(
Ωm,0

a
+

Ωr,0

a2
+ a2ΩΛ,0

)1/2

. (1.4)

Here, Ωm,0, Ωr,0, and ΩΛ,0 are unitless parameters that compare the today’s values

for density of matter, radiation, and cosmological constant in the Universe to the critical

density today. They are defined as

Ωi ≡
ρi

ρcritical
(1.5)

where ρcritical is the critical density, or the specific matter density needed to have a

spatially flat Universe. Eqn (1.4) tells us how our scale factor a evolves over time in

response to different matter densities.

Another useful equation that helps us describe scale factor a is the Friedmann

acceleration equation

ä

a
= −4πG

3

(
ρ+

3P

c2

)
(1.6)

where ρ is matter density and P is pressure. For convenience, we choose units where

c = 1 and G = 1 for Eqn (1.6) and get

ä

a
= −4π

3
(ρ+ 3P ). (1.7)

This acceleration equation is useful because we can combine it with an equation

of state to relate pressure P and density ρ. Doing so leaves us with scale factor as an

ordinary differential equation as a function of matter density ρ.
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On large scales, we describe the Universe using the perfect fluid equation of state:

P = wρ, (1.8)

where w is the equation of state parameter. So Eqn (1.6) can then be written as

ä

a
= −4π

3
(1 + 3w)ρ. (1.9)

In general, ρ is a function of a. We can further constrain ρ by using conservation

of mass-energy to find

ρ̇ = 3H(ρ+ P ), (1.10)

which is solved by

ρ = ρ0a
−3(1+w). (1.11)

For a radiation dominated universe, w = 1/3, and ρ ∝ a−4. For a matter domi-

nated universe, w = 0, and ρ ∝ a−3. However, if we let w = −1, ρ = ρ0 (i.e, the density

is constant). If this density term is constant, Eqn (1.6) is simplified so that

a(t) ∝ exp

[
8π

3
ρ0t

]
. (1.12)

The takeaway here is that we get exponential expansion when we let our equation of

state parameter w = −1.

1.1.2 Inflation dynamics

Now we want to learn how inflation is modelled and how inflation gives us w = −1.

Inflation is described by the ‘inflaton’ field φ. This scalar field φ can be thought of as

having a scalar value for every point in space where particle behaviors are just excitations

in that field, like how photons can be thought of as excitations in the electromagnetic

5



field.

The inflaton field has energy (and energy density) associated with it. Its stress-

energy tensor is

T µν = (∂µφ)(∂νφ)− δµνL (1.13)

where

L =
1

2
(∂µφ)2 − V (φ) (1.14)

with the following equation of motion:

φ̈+ 3Hφ̇+
dV

dφ
= 0. (1.15)

Here, the Lagrangian density L is related to the more familiar Lagrangian L

S =

∫
dtL(x, ẋ) (1.16)

where S denotes the action. The Lagrangian density is then defined such that

L =

∫
d3xL. (1.17)

This quantity is popular in field theory because the action principle for a sin-

gle field φ is defined a bit differently from how the action is denoted in nonrelativistic

mechanics:

S =

∫
d4xL(φ, φ̇) (1.18)
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We can write the stress-energy tensor as that of a perfect fluid,

T µν =



ρ 0 0 0

0 −P 0 0

0 0 −P 0

0 0 0 −P


, (1.19)

if we identify

ρ =
1

2
φ̇2 + V (φ)

p =
1

2
φ̇2 − V (φ).

(1.20)

Now combining the above for ρ and P with the perfect fluid equation of state Eqn. (1.8)

gives us [13]:

w ≡ P

ρ
=

1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

. (1.21)

Notice that if the kinetic term φ̇ is small and the potential term V (φ) is large (and so is

φ), we have

w ≈ −V
V

= −1. (1.22)

With w = −1, we get exponential expansion. Once w 6= −1, inflation ends and we

recover the expansion history that we are familiar with. Cosmologists further quantify

this state of low kinetic energy and high potential with the slow-roll parameters

ε(φ) =
M2

p

2

(
V ′

V

)
(1.23)

and

η(φ) ≡M2
p

V ′′

V
(1.24)

where V ′ = dV/dφ and V ′′ = d2V/dφ2. Inflation ends when these slow roll parameters

η = ε = 1.
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1.1.3 Reheating

There is one problem from our introduction that requires more explanation. We like

inflation because it ‘inflates’ many of the Big Bang’s problems away, including the mag-

netic monopoles problem. But if inflation lowers the density of early magnetic monopoles

away, it should also do the same for all the other forms of matter we know and love. Why

is there anything? This answer lies in a process called reheating. Once inflation ends,

inflaton field decays into the Standard Model particles we know and love. This period

after inflation is called reheating.

If we look at our inflaton’s equation of motion Eqn (1.15), we’ll notice that it

acts as an oscillator. That said, the does not behave as a simple harmonic oscillator,

but an anharmonic oscillator, which means that the inflaton’s restoring force will not be

proportional to amplitude. This means that the inflaton’s oscillation period can depend

on its amplitude. What is our inflaton field oscillating about? Most inflaton potentials

have some shape shown in Fig. 1.1.

(a)

Figure 1.1: Inflaton potential given a specific potential model V = λφ4.

Our inflaton field wants to approach its lowest energy state at the bottom of the

potential. While on the sides of the potential graph, the field value is big. Inflation

occurs when the field value is big. After inflation, the inflaton field φ will have a small

value and oscillate about the bottom of the potential until the inflaton finally comes to
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a rest. While the inflaton is oscillating about the bottom, we have ‘reheating.’

We have to be careful about how we analyze φ during reheating. We have talked

about our inflaton field φ in the context of Eqn (1.15), which only depends on time. Eqn

(1.15) assumes the inflaton field to be spatially homogeneous. At a more detailed level,

the inflaton field has a homogeneous part and spatially dependent perturbations. This

more detailed description can be expressed as φ(t,x) = φhomogeneous(t) + δφ(x) where δφ

represents the small perturbations. For large values of φ, φ is approximately φhomogeneous.

The small perturbations are negligible. Once the inflaton field value gets smaller and

oscillates about its zero value, these small perturbations become a larger proportion to

the overall size of φ and thus become important when calculating the inflaton field’s

value.

It is helpful to think of this like measuring depths of two different bodies of water:

an ocean and a wave pool. The height of these bodies of water can be thought of as the

field value φ we’re interested in and the waves atop can be thought of as the perturbations.

All other water is then analogous to the homogeneous part.

When measuring the depth of the ocean, you aren’t going to worry about the

relatively small wave heights on the surface. But when measuring the depth of a wave

pool at a particular location in the pool, the size of the wave will play a significant role

in an accurate measurement of pool depth.

During reheating, φhomogeneous is much smaller than it was during inflation, mean-

ing we have to account for small perturbations δφ. It is no longer appropriate to allow

φ to only obey its one-dimensional equation of motion Eqn (1.15). Accounting for these

spatially dependent perturbations is why numerical simulations are important for mod-

elling inflaton behavior.

The field actually responsible for reheating is a hypothetical matter producing field

χ. If we allow our inflaton field to couple to χ, then as our inflaton field is oscillating

about the bottom of its potential graph, it acts as χ’s driving force. In other words, the
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inflaton field φ and our matter-producing field χ can be thought of as a driving force and

driven oscillator respectively. In such a system, the driven oscillator responds better and

produces stronger oscillations at certain frequencies and responds poorer and produces

weaker oscillations at other frequencies. The frequencies where the driven oscillator

produces stronger oscillations are resonant frequencies.

We are focused on parametric resonance. Parametric resonance is the phenomenon

where, an oscillator’s amplitude will grow exponentially at particular resonant frequen-

cies. When χ achieves parametric resonance during reheating, χ’s matter production

continues to get amplified until the end of reheating, giving us a lumpy distribution of

matter.

As our inflaton oscillates at the bottom of its potential graph at different frequen-

cies, it’ll drive this χ field at different frequencies. This χ field oscillating at different

frequencies will produce an uneven distribution of matter. Where there’s an uneven

distribution of matter, we get gravitational waves.

So, reheating is the phenomenon that gives back the matter that would otherwise

have been inflated away. It is through gravitational waves from reheating that we can

get observations and insight into inflation. The details to this can be found in Section

2.1.2.

1.1.4 Gravitational waves from cosmological sources

Gravitational waves are small perturbations in the curvature of spacetime created by

inhomogeneities in the distribution of matter and energy. But, there is a difference

between cosmological gravitational waves and the more famous gravitational waves from

the past couple of years.

Signals from an acute astrophysical event that happened in one particular place

in space, like a black hole merger, have been observed. We are interested in potential

observations of signals from ‘reheating,’ the process where inflaton coupling produces a
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‘lumpy’ distribution of matter/energy in our early Universe.

There is also a more technical difference to note. The frequencies LIGO is sensitive

to are on the order of tens to hundreds of hertz (Hz). The cosmological signals that we

are interested in are on the order of 107 to 109 Hz. So we are looking for frequencies

many millions of times larger than what we have the equipment to observe for the time

being. But, there are no current or planned experiments looking for these signals.

Current and planned gravitational wave experiments like LISA or Advanced LIGO

won’t be particularly sensitive to these frequencies. They are sensitive around frequencies

on the order of Hz and can measure amplitudes of 10−5 to maybe 10−14 [9]. But, there

are proposals like DECIGO and B-DECIGO that are aimed at looking for early Universe

background gravitational waves specifically [10].

This motivates us to learn more about gravitational wave production from the

inflaton field. Giblin and Thrane have given us a good general starting point for these

cosmological gravitational waves from a generic source [4]. Dufaux et al have given us

a very useful way to relate inflation potential parameters of one particular model to

the gravitational wave energy density [3]. What we want to do is think about what

generalities exist across models. We want to use those cross-model generalities to tell us

about gravitational wave signal predictions across models, rather than signals related to

only one model. Doing so will allow us to look at a spectrum one day and identify which

model accurately describes inflation.
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Chapter 2

Existing Literature and Methods

Giblin and Thrane derive a ‘rule of thumb’ relation between gravitational wave signals

and some generic cosmological source [4]. Dufaux et al make analytic predictions for

gravitational waves from a particular inflation potential [3]. We can use Dufaux’s result

for what this source ought to look like for a variety of different inflation potentials. Given

a source for a variety of models, we can look at what gravitational wave signals ought to

look like from a variety of different inflation parameters and potentials.

2.1 Existing literature

2.1.1 A rule of thumb for cosmological gravitational waves

Giblin and Thrane derive what they call a ‘rule of thumb’ relation between gravitational

wave signals and a generic cosmological source. They do this by assuming some generic

source that is Gaussian distributed in momentum space (or ‘k-space’) about some char-

acteristic scale k∗

T̃ij(k) = Aij exp

[
−(|k| − k∗)2

2σ2

]
(2.1)

where T̃ij denotes the Fourier transform of Tij, Aij is the peak height and is generally

complex, and σ parameterizes the source width. To constrain the amplitude Aij, Giblin
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and Thrane want to find a way to represent it in terms of the gravitational wave source’s

energy density ρs (which can be represented as a fraction of the total energy density of

the Universe).

If the source can be described by an isotropic pressure ps and as a perfect fluid,

it obeys

ρ̃s(k) =
p̃s(k)

w
=
T̃ (k)

w
(2.2)

where w is the equation of state parameter. They then assume a large enough volume

so that the energy density is homogeneous. They then invoke Parseval’s theorem

∫
d3k|ρ̃s(k)|2 =

∫
dV ρ2

s(x) = V ρ2
s. (2.3)

Therefore,

V ρ2
s =

∫
d3k|ρ̃s(k)|2 =

∫
d3k
|T̃s(k)|2

w2
. (2.4)

This is then combined with Eqn (2.1) to show that

|A|2 =
w2ρ2

sV

W
(2.5)

where

W ≡ 4π

∫
k2 exp

[
−(k − k∗)2

σ2

]
dk. (2.6)

The source energy density ρs is a fraction of the total energy density of the Universe ρ,

i.e ρs = αρ where α < 1, leaving us with

|T̃ |2 =
w2α2V ρ2

W
exp

[
−−(k − k∗)2

σ2

]
. (2.7)

Here, the source’s stress energy tensor T̃ loses its directional dependence because Giblin

and Thrane assume the source to be isotropic.

This representation of the source energy is important because metric perturbations

13



obey

ḧij + 3Hḣij −
1

a2
∇2hij = 16πT TT (2.8)

where we have the transverse-traceless projection of the source’s stress energy tensor

T TTij = Tij −
δij
3
T kk. (2.9)

This sourced Klein-Gordon equation is made simpler by assuming the source to be short-

lived compared to Hubble-time, meaning we can neglect the friction term. When h takes

a maximum the acceleration term disappears, leaving

h̃ ≈ h̃ij ≈
16π

k2
T TT . (2.10)

They then define a new parameter

β ≡ |T
TT |2

|T |2
. (2.11)

Then they use

Ωgw(k) =
k3

32πρV

∑
i,j

∫
dΩ|ḣTTij |2 (2.12)

where

|ḣ|2 = |h|2k2 = (16πG)2β|T̃ |2

k2
(2.13)

and Ωgw is the gravitational wave energy density [11]. They then combine Eqn (2.13)

and Eqn (2.12) with the Friedmann equation to show

Ωgw(k∗) ≈ 108πα2βw2N (2.14)

where

N ≡ H2k∗
W

. (2.15)
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This is then redshifted to today and evaluated to

Ωgw,0(k∗) ≈ 4.7× 10−8α2βw2. (2.16)

This result is what Giblin and Thrane call a ‘rule of thumb’ estimate for cosmological

gravitational waves. Here, α is the fraction of the Universe’s energy density that con-

tributes to the source’s energy density, β describes how quadrupolar the source energy

density is or how much of the source’s energy goes towards gravitational wave production,

and w is the source’s equation of state parameter.

Giblin and Thrane assume that the source is Gaussian distributed in k-space

about a mean frequency k∗. They also assume that the source’s stress energy tensor

has a complex amplitude factor Aij. They let β be described by a random process

and estimate it numerically. They assume each component Aij to be A multiplied by a

different random complex phase factor.

They leave open what underlying models might might actually describe β and

Aij. What we want to do is impose a physical model on β, estimate gravitational waves

from our calculation of β, and learn about how β depends on inflation parameters and

potentials.

More specifically, we choose χ to be our source for gravitational waves and β,

where χ is going to depend on how we describe φ. We describe φ as an oscillating scalar

field, which means that

T µν = ∂µφ∂νφ− δµνL (2.17)

where

L =
1

2
(∂µφ)2 − V (φ). (2.18)

We want to look for generalities in the inflaton’s behavior that exist across different

potentials, relate inflaton behavior to gravitational wave signals, and learn how those

signals relate back to what we learned about V .
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Dufaux et al compute gravitational wave energy density from a particular inflation

model. If we want to calculate gravitational wave energy density across different models,

it will be useful to first understand how to do it for one model.

2.1.2 Gravitational waves given a particular inflation model

We have predictions about what gravitational waves might look like for a generic cos-

mological source [4]. What we want to do now is think about what this source ought to

look like given a scalar field model.

We can represent the transverse-traceless stress energy tensor from some homo-

geneous scalar field η in momentum-space or k-space as:

T TTij (k) = Oij,lm(k)

∫
d3p

(2π)3/2
plpmη(p)η(k− p) (2.19)

where p is the field momentum, and Oij,lm is the transverse-traceless projection operator

defined as

Oij,lm(k) ≡
[
PilPjm −

1

2
PijPlm

]
(2.20)

where

Pij = δij − k̂ik̂j. (2.21)

We can further describe this scalar field source by ascribing a particular potential

to it. Dufaux et al consider the following potential [3]

V =
1

4
λφ4 +

1

2
g2φ2χ2 (2.22)

where λ determines how flat or sharp the potential curve is and g2 is the coupling pa-

rameter describing how strongly φ is coupled to χ.

Here, our potential is stated in units where G = ~ = c = 1. Our parameters λ

and g2 are dimensionless. However, it will be useful to explicitly state the first term on
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the right hand side of our potential in dimensionful quantities. Doing so will allow us to

use that first term to make dimensionful predictions in a later section.

We start with the action principle, which has units of energy × time:

S =

∫
d4xL. (2.23)

where

L =
1

2
φ̇2 − (∇φ)2 − V (φ). (2.24)

By recognizing that both sides of the Eqn (2.23) must have units of energy × time, we

can find that the units of L must be

energy× time

length4 . (2.25)

Therefore, the gradient term for φ in Eqn (2.24) must also have the same units of L. The

numerical simulation we use quotes φ in units of Planck mass Mp. With this information

about φ and units of L, we can find that φ must be multiplied by a factor of c/~1/2.

Eqn (2.24) also requires that V (φ) have the same units as L. We know that φ4

multiplied by c4/~2 has units of

(energy× time)2

length4 . (2.26)

With the units of φ4c4/~2, we finally match units of V and L by dividing λ by a factor

of ~. So in dimensionful quantities and neglecting the second term, Eqn (2.22) becomes

V =
λc4

4~3
φ4. (2.27)

Now that we understand the potential associated with our scalar field source, we

have to be careful about which scalar field sources gravitational waves. We should not
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expect gravitational waves from φ, but χ.

Recall from Section 1.1.3, certain frequency modes of χ being amplified more

than others. As a result, χ will have a less uniform spatial energy distribution. These

anisotropies in χ’s energy distribution grow with parametric resonance and are ultimately

what sources gravitational waves. So because χ sources gravitational waves, we compute

Eqn (2.19) with χ, not φ.

Now Dufaux et al need a functional form for χ to use with Eqn (2.19). Recall that

the χ field behaves as a driven oscillator where the inflaton φ acts as its driving force.

Dufaux et al solve for a rescaled χ from

d2Xk

dx2
+ ω2

k(x)Xk = 0 (2.28)

where

ω2
k(x) = K2 + qf̄ 2(x) (2.29)

and

Xk = aχ for some choice of k, K =
k√
λφ0

, q =
g2

λ
, f̄ =

aφ

φ0

(2.30)

Dufaux et al use Xk and solve for the spectrum using complicated elliptic integrals

among other things. We will not dive deeply into the result or how they got it. But,

the process of solving for the inflaton field φ, using φ to describe χ’s frequency, and

solving for χ which will ultimately give us the source’s stress energy tensor is what we

are particularly focused on.

We undertake a similar investigation for different inflaton potential models. Dif-

ferent inflaton potential models give different inflaton fields, as we can see in Eqn. (1.15).

Different φ values means a different driving force for χ. A different χ means a different

stress energy tensor sourcing gravitational waves, which means a different spectrum. We

hope to do this calculation from φ to the gravitational wave spectrum. In doing so, we

hope to capture the relevant physics involved with gravitational wave production from
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reheating.

We will not be solving for φ analytically. We are going to use numerical solutions

for different fields φ to simplify our calculations.

2.2 Numerical simulation

It is useful to have a numerical simulation on hand to guide and compare our ana-

lytic investigation. Because we are studying an exponentially growing source χ, any

approximations we make may be unreliable without the support from a full simulation.

Furthermore, having a numerical simulation ensures that we don’t stray down any wrong

paths, and can give us assumptions that we can use to simplify our analytic investigation.

For example, before diving into any analytic investigation, we can first numerically

test how gravitational wave amplitudes might vary with some parameter λ from some

potential V = λφ4. The numerical results might show that gravitational wave amplitudes

are independent of or very weakly dependent on λ. That numerical conclusion will save

us the time of finding the same result analytically.

We will simulate gravitational waves using Zhiqi Huang’s HLattice simulation

[12]. During inflation, the inflaton field φ is approximately homogeneous. The inflaton

field has small perturbations that are ultimately important during reheating, but are not

consequential during inflation.

Because of the inflaton field’s homogeneity during inflation, HLattice first solves

for φ from its equation of motion Eqn (4.1) and the Friedmann equation Eqn (1.4).

This numerical integration ends when the condition Eqn (1.22) is no longer true. More

specifically, the simulation runs until the kinetic term is no longer small, or

− φ̇
φ
> H. (2.31)

To calculate φ during reheating, the inflaton field is represented as a lattice where
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every point on the lattice is initialized with some small perturbation. Small perturbations

at each point will give a different field value.

Given a different field value, φ will have a different Hamiltonian, which will tell

us about the distribution of energy in momentum space. That distribution is going to

be anisotropic. And from anisotropic distributions of energy comes gravitational waves.

These gravitational waves are then calculated from the anisotropic energy distri-

bution. Then there is a time step where the perturbations obey Hamilton’s equations.

These new perturbations give us a new field value. The simulation continues to do this

until some chosen maximum scale factor is reached.

2.3 Choice of models

We saw Dufaux et al give us an expression for the gravitational wave spectrum for a

specific inflaton potential Eqn (2.22). We ultimately want to see what this spectrum

looks like across different inflaton potentials. The specific potentials we investigate are

the same inflaton potentials explored in Hooper’s work [5].

V = λφ4
0f (φ/φ0) +

1

2
g2φ2χ2 (2.32)

where we define

ψ ≡ φ

φ0

(2.33)
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and

f(ψ) =



ψ4 ≡ Model 1 potential

arctan4 ψ ≡ Model 2 potential

tanh4 ψ ≡ Model 3 potential

[1− exp (−ψ2)]
2 ≡ Model 4 potential

(1− cosψ)2 ≡ Model 5 potential

ψ4/(1 + ψ2)2 ≡ Model 6 potential

. (2.34)

Note that Eqn (2.32) is just a generalization of the potential from earlier Eqn (2.22).

We choose these particular models because they give an inflaton field solved by

an attractor solution. Having a system described by an attractor solution means that

a system tends to evolve towards a narrow set of states from a wide range of initial

conditions. This can be seen by graphically representing the phase space of a chaotic

inflaton, where the system will evolve along the trajectories which the slopes are tangent

in Fig. 2.1.

Figure 2.1: We have a variety of slopes plotted on the phase space between φ and φ̇. We
can see that wherever you start takes the state towards the cyclone-like center. This is
to say that for a variety of initial conditions, the system ultimately evolves towards the
same state.

What we have plotted here is a variety of slopes for different values of φ and φ̇.

This slope can be calculated from the equation of motion Eqn (1.15) and the Friedmann
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equation (1.4):

dφ̇

dφ
=

3φ̇
(

8π
3

(
1
2
φ̇2 + 1

2
λφ4
))1/2

φ̇
. (2.35)

The attractor solution means that these particular inflation models are less sen-

sitive to initial conditions. We should not expect wildly different inflaton behavior (and

thus gravitational wave signals) because of initial conditions that we don’t know much

about for now and can’t test for.

It is important to note that chaotic inflation models are not the only types of

inflation models. In other words, this project does not explore generality across all

inflation models, rather a broad class of inflation models.

2.4 Goals of this work

We want the ability to point to specific features in gravitational wave spectra and identify

what model and parameter must describe inflation. To get at that goal, we investigate

gravitational wave spectra for different models and parameter values using HLattice. We

do this investigation by running HLattice for each potential. For each potential, we

let look at how gravitational wave frequency and amplitude vary for different inflation

parameter values. We can then do a curve fit of the gravitational wave spectra with the

parameter values.

We want to use our analytic investigations to learn about what underlying physics

might give us our numerical results. In doing so, we will gain a better understanding of

how gravitational waves are produced from reheating and how gravitational waves might

tell us about inflation parameters.

We approach our analytic investigation with the goal of doing the simplest calcu-

lation or putting together the simplest model possible that captures the essence of the

underlying physics.

To better understand the physics involved with frequency and the underlying
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parameters, we explore the spectra’s peak frequency for a model 1 potential. We assume

the gravitational wave frequency to have approximately the same frequency as its driving

force and look to compute the driving force φ’s frequency. In this calculation for inflaton

frequency, we assume φ to be homogeneous. Therefore it obeys its homogeneous equation

of motion Eqn (1.15). We integrate that equation of motion and express φ’s period in

terms of our model 1 potential parameters. From the period, we can compute frequency.

To better understand the physics involved with amplitude and the underlying

parameters, we investigate the quadrupolar parameter β from Giblin and Thrane’s work.

β is dependent on the source tensor, which depends on χ. We can compute χ using its

equation of motion Eqn (2.28), which depends on φ. We compute φ using its homogeneous

equation of motion. And φ depends on the source parameters λ and g2. So, the source

parameters tell us about φ. φ tells us about χ. χ tells us about the source’s stress-

energy tensor. The source’s stress-energy tensor tells us about β. In going through this

calculation, we hope to capture the first-order relevant physics involved in gravitational

wave amplitude.
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Chapter 3

Numerical Results

We are interested in distinguishing inflation models based off of gravitational wave fea-

tures. To do so, we examine how gravitational wave frequency and amplitude change

when we change the value of our inflaton field parameter λ and the coupling parameter

g2 for different models.

For each model, we are going to simulate gravitational waves using HLattice for

different values of λ while fixing g2/λ. Then we simulate gravitational waves again for

different values of g2/λ while fixing λ [12]. For each parameter, we are going try and

identify the existing relation between that parameter and the resulting gravitational wave

frequency and amplitude.

3.1 Results for λ

We start by simulating gravitational waves with the Model 1 potential given by Eqn

(2.32). We run HLattice at a simulation resolution of 64 (meaning 64 points on our

lattice on a side of a 3D cube), a box size of 8 (representing a Universe 8 times the size

of the initial Hubble distance), and a maximum scale factor a of 130 (which we chose by

evaluating when the gravitational wave signal stopped evolving).

We then run the simulation to give us gravitational waves, each curve or signal
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for a different value of λ. We also fix the coupling parameter to g2/λ = 120. The results

are shown in Fig. 3.1.

Figure 3.1: Gravitational wave signals in terms of frequency and amplitude for different
λs given a model 1 potential. Each curve represents a gravitational wave signal with a
different value of λ.

Fig. 3.1 shows that there is a positive relationship between λ and both amplitude

and frequency. To find the specifics of this positive relation, we track the peak amplitude

and see how this peak’s amplitude and frequency change across curves or different values

of λ. This is shown in Fig. 3.2.

Figure 3.2: Each curve on Fig. 3.1 has a peak frequency, amplitude, and associated
value of λ. Fig 3.2 tracks and plots the peak quantities with their associated values of λ.
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Fig. 3.2 gives us a relationship between peak frequency fpeak and λ of

fpeak ≈ (1.2× 1011) λ1/4 Hz. (3.1)

Doing the same for the relationship between amplitude h2Ωgw,0 and λ, we find

h2Ωpeak
gw,0 ≈ (1.5× 10−10) λ1/20. (3.2)

We can do this again for the other potential models for the results shown in Figure 3.3.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Gravitational wave signals in terms of frequency and amplitude. Each curve
represents a signal with a different value of λ. Figures 3.3a - 3.3f correspond to signals
from models 1 - 6.

We can similarly run a fit for each curve’s λ, peak amplitude, and peak frequency.

Results are shown in Table 3.1.
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Model fpeak(λ) [s−1] h2Ωpeak
gw,0(λ)

1 (1× 1011)λ1/4 (2× 10−10)λ1/20

2 (1× 1011)λ1/4 (4× 10−10)λ1/25

3 (1× 1011)λ1/4 (4× 10−10)λ1/25

4 (1× 1011)λ1/4 (4× 10−10)λ1/25

5 (5× 1010)λ1/5 (1× 10−10)λ1/26

6 (1× 1011)λ1/4 (4× 10−10)λ1/25

Table 3.1: Table of relationships between λ and peak amplitude and frequency for dif-
ferent chaotic inflation models.

There are some generalities that we can take away from Fig 3.3 and Table 3.1.

We can see that a signal’s peak frequency is going to be much more sensitive to λ when

compared to peak amplitude. Additionally, the relationships between λ and the peak

quantities are very similar and the amplitudes and frequencies are all well within an

order of magnitude within each other across models.

While the results are similar across models, the power law relations are not iden-

tical for all. We can see that Models 2 - 4, and 6 produce the same relationships, while

Model 1 and Model 5 are different. In particular, Model 5 produces a peak frequency

that is proportional to λ1/5, which is different from the λ1/4 proportionality that the other

models produce.

We also want to look at λ’s effect on β. Recall that this is the parameter from

Giblin and Thrane’s work defined in Eqn (2.11). This β parameter tells us ‘how much

source energy contributes to gravitational wave production.’ To investigate β numerically,

we define

Γ ≡
ΩTT
gw,0

ΩALL
gw,0

(k) (3.3)

where

β =
|T TTij |2

|Tij|2
=

∫
Γ(k)dk. (3.4)

Here, ΩTT
gw,0 is the gravitational wave energy density where HLattice strips out all

but the transverse traceless components of the source’s stress energy tensor. ΩALL
gw,0 is the
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simulated gravitational wave energy density having kept all components of the source’s

stress energy tensor. In comparing the two energy densities, we can learn about how

much of the source’s stress energy tensor is transverse-traceless, which is what β tells us.

The energy density ΩALL
gw,0 is not a physical quantity. Only the transverse traceless

components of the stress energy tensor contribute to actual gravitational wave produc-

tion, but ΩALL
gw,0 is a convenient quantity that we can compute from HLattice to tell us

about β.

To graphically investigate β, we can use HLattice to give us gravitational wave

energy density for both the TT case and the ALL case, use those spectra to compute Γ,

and interpret the area under the Γ curve as β. Each Γ curve is going to have a different

value of λ associated with it. With multiple Γ curves, we can then compare how β or

the area under the Γ curves changes with λ while fixing g2/λ = 120.
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(a) (b)

(c) (d)

Figure 3.4: Fig. 3.4a shows the 2 different gravitational wave signals for λ = 1 × 10−11

where the curve labelled as ‘all’ is the spectrum where all components of the source’s stress
energy tensor are kept in the numerical simulation and the curve labelled as ‘transverse
traceless’ is the spectrum where only the transverse traceless components of the source’s
stress energy tensor are kept. Each curve on Fig. 3.4b represents ΩTT

gw,0 divided by Ωall
gw,0

over k for a different value of λ. Fig. 3.4c and Fig. 3.4d are analogous to the plots in
the first row, but the quantities are for Model 2 instead.

By inspecting Fig. 3.4, we see that the area under each Γ curve does not change

much from curve to curve. This means that β does not change significantly from one

value of λ to another. We saw in Fig. 3.1 that λ has a weak effect on amplitude. We can

see that λ similarly has a weak effect on β.

Secondly, we expect to see changing λ produce a shift in frequency the same way

changing λ produced a shift in frequency in Fig. 3.3. So it is reassuring to see that same

shift in frequency in Fig. 3.3.
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3.2 Results for g2/λ

In this section, we will use HLattice to explore how gravitational wave frequency and

amplitude change when we change our coupling parameter g2/λ and hold λ fixed. We

will, again, start with a Model 1 potential. Here we fix λ = 10−14, which is the value

needed to match CMB observations. The results are shown in Fig. 3.5.

(a) (b)

Figure 3.5: Gravitational wave signals in terms of frequency and amplitude for different
values of g2/λ given a model 1 potential. Each curve represents a gravitational wave
signal computed with a different value of g2/λ. Fig 3.5a shows that 2 classes of high
and low amplitude emerge as we let g2/λ vary. Fig 3.5b shows that same bifurcation of
amplitudes with more tested g2/λ values.

The first and most obvious result is that g2/λ has no effect on peak frequency.

Each curve represents a gravitational wave with a different coupling parameter value and

each curve sits on the same frequencies.

Second, there appear to be two distinct classes of amplitudes preferred for different

couple parameter values: one class where h2Ωpeak
gw,0 ≈ 10−10 and one class where h2Ωpeak

gw,0 ≈

10−15. There is not an obvious positive or negative relationship between amplitude

and the chosen value of g2/λ. We can see from Fig. 3.5a that g2/λ = 80 falls in the

lower amplitude class, g2/λ = 100, 120 both fall in the higher amplitude class, and then

g2/λ = 140 falls back into the lower amplitude class.

We see that peak frequency is independent of or weakly dependent on g2/λ, which

is a clean conclusion to draw. But, the two distinct amplitude classes suggests a hairier
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relationship between g2/λ and amplitude. We are going to have to spend more time and

thought investigating g2/λ’s effect on gravitational wave amplitudes.

We can try to track parameter values and peak amplitudes against different values

of g2/λ. We do this in Fig. 3.6.

Figure 3.6: Each curve on Fig. 3.5 has a peak frequency, amplitude, and associated
value of g2/λ. Fig 3.2 tracks and plots the peak quantities with their associated values
of g2/λ.

Unlike in Fig. 3.2, Fig 3.6 does not show any simple relations like the ones in Table

3.1 that we can get between our parameter of interest g2/λ and peak amplitude. We can

infer from Fig. 3.2 and Fig. 3.6 that peak frequency depends very weakly on g2/λ. This

unclear relationship between g2/λ and peak amplitude shown in Fig. 3.6 motivates us to

dig deeper into the relationship between g2/λ and amplitude. This analytic investigation

is detailed in Chapter 5.

We can similarly simulate gravitational waves for different values of g2/λ for other

models. For each model, we then fit for peak gravitational wave amplitude, peak gravita-

tional wave frequency, and g2/λ as we did with Model 1. Simulated gravitational waves

are shown in Fig. 3.7.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Gravitational wave signals in terms of frequency and amplitude for different
g2/λs given different potentials. Each curve represents a gravitational wave signal for a
different value of g2/λ. Figures 3.7a - 3.7f correspond to signals from models 1 - 6.

Some of our takeaways from examining model 1 still stand across models. For one,

peak frequency appears to be independent of or weakly dependent on g2/λ across models.
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Furthermore, the relationship between g2/λ and peak amplitude is still unresolvable with

a simple curve fit.

We can also see the two-class amplitude behavior is also a feature across models.

We also see that models 2, 3, 4, and 6 produce the same gravitational waves for the same

coupling parameter values g2/λ, while models 1 and 5 produce different waves for those

same g2/λ values.

It is worth investigating how β varies with g2/λ to see what insight it can give us

on this particular two-class amplitude puzzle. We can start by investigating how β and

g2/λ are related for a Model 1 potential.

Each Γ curve that we plot has a different value of g2/λ associated with it. The

area underneath each Γ curve is going to represent β for the value of g2/λ associated

with that curve. Results are shown in Fig 3.8.
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(a) (b)

(c)

Figure 3.8: Each curve in Fig. 3.8a represents the fraction ΩTT
gw,0 divided by Ωall

gw,0 against
k for a different value of g2/λ. The curves on Fig. 3.8b and Fig. 3.8c are the same curves
pulled from Fig. 3.8a. Fig. 3.8b shows curves where the area under each of them is higher
(implying a higher β) than the area under each curve shown in Fig. 3.8c.

We set out to learn more about the two-class amplitude puzzle through β. We

find two classes of β emerge from Fig. 3.8. Fig. 3.8b shows curves where chosen values

of g2/λ give high values of β. Fig. 3.8c shows curves where chosen values of g2/λ give

low values of β.

In Fig. 3.5, we saw higher amplitude gravitational wave signals for g2/λ values

of 80, 140, and 300. We also saw lower amplitude gravitational wave signals for g2/λ

values of 120, 160, 180, and 200. Fig. 3.8 shows that the same g2/λ values that gave us

low amplitude signals give us high values of β. The same g2/λ values that gave us high

amplitude signals give us low values of β.

This high amplitude-low β and low amplitude-high β result is not what we ex-
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pected. A higher β signal would mean more of the source’s stress energy tensor con-

tributes to gravitational wave production. Therefore, our naive expectation suggests a

higher β signal to correspond to the higher amplitude signals from Fig. 3.5a and the

lower β signal to correspond to the lower amplitude signals. This is not what we find.

Instead, we find the opposite.

We can also look at how β varies with g2/λ for a Model 2 potential.

(a) (b)

Figure 3.9: Fig. 3.9a shows the 2 different gravitational wave signals for g2/λ = 120 where
the curve labelled as ‘all’ is the spectrum where all components of the source’s stress
energy tensor are kept in the numerical simulation and the curve labelled as ‘transverse
traceless’ is the spectrum where only the transverse traceless components of the source’s
stress energy tensor are kept. Each curve on Fig. 3.9b represents ΩTT

gw,0 divided by Ωall
gw,0

over k for a different value of g2/λ.

We can look at Fig. 3.9 and see that a high β and low β class emerge. Although

for Model 2, the low β class has g2/λ values associated with low amplitude signals and

the high β class has g2/λ values associated with high amplitude signals.
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Chapter 4

A first order relation between λ and

frequency

For most chaotic inflation models, Table 3.1 shows the peak frequency to be proportional

to λ1/4. We want to understand the what underlying physics would predict this.

Recall that φ and χ behave as coupled oscillators, where φ acts as the driving

force, since φ� χ. This means that χ will respond to φ’s driving frequency by amplifying

certain modes. Therefore, χ’s energy is unevenly distributed. This uneven distribution

of energy gets produced at the driving frequency, giving us gravitational waves at the

driving frequency.

If we wanted a more rigorous relationship for gravitational wave frequency, we

would have to account for the perturbations in φ rather than just assuming that it

is homogeneous all the way through the inflation and reheating process. But to first

order, the gravitational wave frequency will match inflaton frequency. Therefore, we can

estimate the gravitational wave frequency by computing the inflaton’s frequency. A good

starting point is the inflaton’s equation of motion.
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4.1 Frequency of the driving force

Assuming a homogeneous φ, φ obeys Eqn (1.15). This assumption should get us close

enough to our earlier result Eqn (3.1). We also do not expect the small perturbations in

φ to muddy up the fpeak ∝ λ1/4 relationship. This is because a system should oscillate

at the frequency it is being driven at, and the driving frequency is determined by the

homogeneous component of φ.

Because reheating occurs over a very small amount of time on Hubble scales, we

are going to assume that the friction term is negligible, leaving us with φ̈+ dV
dφ

= 0. Next,

we can assume our potential Eqn (2.22) to show that the inflaton’s equation of motion

homogeneous equation of motion becomes

φ̈+ λφ3 + g2χ2φ = 0. (4.1)

Now we can show why it was worth going about our numerical investigation of

gravitational wave frequency’s relation to λ and g2/λ. Recall from Fig 3.5a that the

coupling parameter g2/λ has almost no effect on frequency. We saw this weak relation

between g2/λ and gravitational wave frequency because χ is going to be relatively small

compared to φ. We can now simplify Eqn. 4.1 even further to

φ̈+ λφ3 = 0. (4.2)

This equation of motion is in dimensionless units (i.e, ~ = c = G = 1). If we

ultimately want our final result for λ and frequency to have any physical meaning, it

will be important to express the final result where ~, c, G are in units that have physical

value. Recall from our analysis in Section 2.1.2 that we can get dimensionful quantities

out by multiplying each factor of φ by c/~1/2 and λ by 1/~. A similar analysis shows

that multiplying φ̈ by 1/c2 will give us back dimensionful quantities.
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4.1.1 Rescaling time units

Now we are going to rewrite our simplified equation of motion in terms of the units that

we have been looking for. So our new physically meaningful equation of motion becomes

1

c~1/2
φ̈+

λc3

~5/2
φ3 = 0 (4.3)

or

~2

c4λ

d

dt

d

dt
φ+ φ3 = 0.

where Mp is Planck mass. Recall from Eqn. (2.34) that we defined

ψ ≡ φ

φ0

(4.4)

This allows us to again rewrite the equation as

1

φ2
0

~2

c4λ

d

dt

d

dt
ψ + ψ3 = 0.

Next, we can redefine our time unit to be

τ ≡ c2φ0λ
1/2

~
t. (4.5)

where a unit of τ time corresponds to about 1.54×10−37 seconds assuming φ0 = 3.5×Mp.

With this redefinition, we get

d2ψ

dτ 2
+ ψ3 = 0 (4.6)

This particular form of the equation of motion is useful because it is very easy to

numerically evaluate for ψ’s period and therefore its frequency.
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4.1.2 Frequency at the end of inflation

We can see that Eqn. (4.5) gives us

fj =
c2φ0λ

1/2

~
1

τ
(4.7)

where fj is the frequency at the end of inflation. The only thing we need to calculate fj

is the period. We numerically solve Eqn. (4.6) and find the period to be about 7.407 in

units of τ . This period value gives us

fj = (8.92 ∗ 1042 s−1) λ1/2. (4.8)

4.2 Accounting for redshift

While the relation between λ and gravitational wave frequency at the end of inflation fj

is interesting, we are not going to be observing gravitational wave signals at the end of

inflation. We will be observing signals much later in time. Therefore, we need to also

account for redshifted signals. And that means we will be measuring frequencies different

from fj.

To account for redshift, we will start by deriving a relation between scale factors

and energy densities between today, the end of inflation, and thermal equilibrium [14].

We will denote quantities today, at the end of inflation, and at thermal equilibrium as

qo, qj, and q∗ respectively. We can start with

ao
aj

=
a∗
aj

ao
a∗
. (4.9)

But, if we assume an entropy-conserving expansion, we can also say that

ao
a∗

=
g

1/3
∗

g
1/3
o

T∗
To
. (4.10)
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where g represents the degrees of freedom. Additionally, we can relate these temperatures

to energy densities with

ρrelativistic ∝ gT 4 (4.11)

giving us

ao
a∗

=
g

1/12
∗

g
1/12
o

ρ
1/4
∗

ρ
1/4
o

(4.12)

Now we can look at our starting Eqn (4.9) and see that we still need a∗/aj

a∗
aj

= ρ
1/4
j

ρ
1/4
∗

ρ
1/4
j

ρ−1/4
∗

a∗

aj
. (4.13)

We can recall our earlier solution to the equation relating density and scale factor Eqn

(1.11) to get

ρ∗ = ρj

(
a∗
aj

)−3(1+w)

(4.14)

which we can combine with Eqn (4.9) and Eqn (4.12) to show

ao
aj

=

(
ρj
ρo

)1/4(
a∗
aj

) 1−3w
4
(
g∗
go

)1/12

. (4.15)

We can make some assumptions to simplify Eqn (4.15). We are going to assume

that w = 1/3, implying a radiation dominated early universe. We also expect g∗/go to be

around 100 in the Standard Model. Note that our choice for g∗/go is not too significant

given the 1/12 power relationship between redshift and g∗/go.

Next, it is useful to see that ao/aj can be rewritten as Λo/Λj where Λ is wavelength,

which can be rewritten again as fj/fo, where f is frequency. Knowing this and accounting

for our simplifications, our relationship between frequency today and energy density can

be simplified to

fj
fo

= 1001/12

(
Hj

Ho

)2

. (4.16)

So, the gravitational wave frequency fo that we will measure today ought to be
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fo =

(
Ho

1001/6Hj

)1/2

fj (4.17)

This is useful to us because we can now compute fo if we have the quantities fj, Ho,

and Hj. We have already calculated fj Eqn (4.8). And while there is a healthy debate

around the particular value of Ho, we are likely safe in assuming it to be approximately 70

km/s/Mpc. We also need a quantity Hj, or the Hubble parameter at the end of inflation.

From the slow-roll parameter Eqn (1.23), we know that inflation ends when

ε(φj) = 1 =
M2

p

2

(
V ′

V

)
(4.18)

For a model 1 potential, we can compute φj to be φj ≈
√

8Mp. We can now use the

Friedmann Equation to compute the Hubble parameter Hj for a given field value φj.

And because inflation ends when the kinetic term and potential term are approximately

equal, we can make the following approximation:

H2
j =

1

3

(
1

2
φ̇2 + V (φj)

)
=

2

3
V (φj). (4.19)

Given a model 1 potential, we can estimate Hj to be approximately

Hj ≈ (1.2× 1044 s−1) λ1/2. (4.20)

Now we have everything we need to use Eqn (4.17) and find fo(λ).

fo ≈ (8× 1011 s−1) λ1/4. (4.21)

We can compare this result to Eqn (3.1) and see that we recover the fo ∝ λ1/4 behavior

and the numerical factor in front is within an order of magnitude.
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Chapter 5

An investigation of the quadrupolar

parameter β

We were able to find a quick curve-fit relation between peak frequency and λ numerically.

We were able to reproduce that numerical result analytically by integrating the driving

force’s equation of motion and redshifting the signal. In doing so, we can use future peak

frequency observations to tell us about what λ value the underlying phenomenon ought

to have.

We want to do something similar for gravitational wave amplitude. We found the

effects of λ on amplitude to be quite muted in Table 3.1. On the other hand, Fig. 3.7

showed the effects of the coupling parameter g2/λ on amplitude to be dramatic.

Recall from Eqn (2.11) that Giblin and Thrane were able to find a relationship

between gravitational wave amplitude and the quadrupolar parameter β. They also

mention how ‘β is the hardest parameter to estimate without specific knowledge of the

source.’ Conversely, this suggests that given specific knowledge of the source, we can

learn a great deal about how the source and signal are connected to each other. So in

this chapter, we will use reheating after chaotic inflation as a specific cosmological source

of gravitational waves. Then we will see how β depends on inflation parameters.
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Giblin and Thrane made two major assumptions about the source’s stress energy

tensor: it is Gaussian distributed in k-space about some characteristic k∗ and it has a

random complex phase factor associated with each component. From there, they nu-

merically estimate β by randomly generating complex phase factors and assume each

component to be approximately equal in magnitude.

We do not have to start with those assumptions. β is defined as a ratio between

the transverse traceless projection of the source’s stress energy tensor and the source’s

stress energy tensor itself. So without assuming a complex phase factor or a Gaussian

distribution, we can write the stress energy tensor of some scalar field χ as

T̃ij(k) = (∂iχ)(∂jχ)(k). (5.1)

We are going to use the following Fourier transform convention

f(x) =

∫
d3k

(2π)3/2
f(k)e−ik·x

f̃(k) =

∫
d3x

(2π)3/2
f(x)eik·x

(5.2)

and assume the following wave packet form for χ(x):

χ(x) =

∫
d3p

(2π)3/2
f(p)e−ip·x. (5.3)

This means that

∂iχ(x) = −i
∫

pid
3p

(2π)3/2
f(p)e−ipixi (5.4)

where p is the dummy momentum variable and f(p) is the functional form for our field

amplitude in p-space. Given this form of ∂iχ(x), we can represent the stress energy

44



tensor in position-space as

Tij(x) = (∂iχ(x)) (∂jχ(x)) =

∫
p′id

3p′

(2π)3/2
f(p′i)e

−ip′ixi
∫

pjd
3p

(2π)3/2
f(pj)e

−ipjxj . (5.5)

We can then take the Fourier transform of Tij(x) and find

T̃ij(k) =
1

(2π)3/2

∫
pi(pj − kj)f(p)f(k− p)d3p. (5.6)

We need some functional form for our field amplitude f . Here is where we apply

specific information about chaotic inflation to find Tij(k).

Recall that the field responsible for sourcing reheating is χ. We can rely on the

rescaled equation of motion Eqn (2.28) for Xk (where Xk = aχ for a particular k) that

Dufaux et al use to learn about what functional form is appropriate for χ. To compute Xk

from its equation of motion, we need to compute the frequency term ωk in Eqn (2.29).

ωk is going to depend on φ. We can compute φ from its homogeneous one-dimension

equation of motion Eqn (1.15). φ depends on our choice for V (φ).

Now we numerically integrate φ for our different potentials V (φ) discussed earlier

in Eqn (2.34), combine those results for φ into Eqn (2.28) to compute Xk and see what

generalities and observations we can learn about χ and its amplitude given different

inflaton potentials V (φ). The results for Xk over x (or
√
λφ0t) for different inflaton

potentials V (φ) is shown in Fig. 5.1.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: |Xk| against rescaled time x for V (φ) models 1 - 6 for Fig. 5.1a - 5.1f
respectively. These all correspond with different coupling parameter values g2/λ or q.

For each potential, we see that, for certain coupling parameters q or g2/λ, we get

parametric resonance. This exponential growth in χ can be described by some

|χ|(x) = Aeµx (5.7)

where µ is the parameter describing the rate of exponential growth in amplitude against

our rescaled time x and A is the initial amplitude. We investigated how this exponential
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growth parameter µ changed for different coupling parameters q or g2/λ and for different

models. In investigating the exponential growth rate’s sensitivity to g2/λ or q, we found

that µ is very weakly if at all dependent on q. We found that across models, µ is on the

order of 10−2.

We have computed some form of χ, but Eqn. (5.6) requires our functional form

for our field’s amplitude to be in momentum space. We can compute what χ(k) ought

to look like by choosing some q for each potential model, letting k vary in Eqn (2.29),

and computing |Xk| for different k values while holding q and x fixed. What we get can

be shown in Fig. 5.2.
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(a) (b)

(c)
(d)

(e)
(f)

Figure 5.2: |Xk| against k expressed as a ratio of q1/4 for x = 200 for V (φ) models 1 - 6
for Fig. 5.2a - 5.2f respectively.

Recall we were trying to compute Tij(k) and needed a functional form for our

scalar field f(p) in Eqn (5.6). We can see that f(p) can take on a Gaussian form which

can be written as

f(p) = χ0e
−α(p−k∗)2 (5.8)

where χ0 is some characteristic amplitude, α characterizes the standard deviation, and
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k∗ is the characteristic momentum roughly distributed about (g2/λ)1/4. We are going to

assume an isotropic source term, meaning we do not expect any differences in f in any

one particular direction or another

f(p) = χ0e
−α(p−k∗)2 . (5.9)

We then combine Eqn (5.9) with Eqn (5.6) to get

Tij(k) =
χ2

0

(2π)3/2

∫
pi(pj − kj)f(p)f(k − p)p2dp sin θdθdϕ (5.10)

which evaluates to

Tij(k) = −χ2
0

96(α2k4 − 3)

α5/2
e−

α
2

(k−2k∗)2 . (5.11)

We can then compute

|Tij|2 =
3χ4

0

9216

(α2k4 − 3)2

α5
e−α(k−2k∗)2 (5.12)

This puts us one step closer to computing β in terms of chaotic inflation parameters.

We find all components of Tij to be the same. This is reassuring. Because the source is

isotropic, we shouldn’t expect a stronger or weaker measurement in one direction versus

another.

We hypothesize that the dependency between the source energy tensor and chaotic

inflation parameters is going to be encoded in the characteristic momentum k∗, which

is approximately (g2/λ)1/4. All that is left for computing β is to compute T TTij (k) by

applying the transverse traceless projection operator Oij,`m on Tij(k) as shown in Eqn

(2.19).

T (k) is going to be a function of vector k. We are going to define k to be in the ẑ

direction. We can do this because the source will be, on large scales, homogeneous, in all

directions. So what direction we choose the source to be oriented in is arbitrary. With
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this assumption, our projection operator becomes

Pij = δij − k̂ik̂j =


1 0 0

0 1 0

0 0 0

 . (5.13)

We can now combine Eqn (5.13) with Eqn (2.19) and get

T TTij =
χ2

0

(2π)3/2

∫
Oij,`mp`pme−α(p−k∗)2e−α(k−p−k∗)2d3p (5.14)

The following components fall out of when we evaluate this:

T TTxx =
χ2

0

2(2π)3/2

∫ π

0

sin3 θdθ

∫ 2π

0

(cos2 ϕ− sin2 ϕ)dϕ

∫
p4e−α(p−k∗)2e−α(k−p−k∗)2dp

T TTyy = − χ2
0

2(2π)3/2

∫ π

0

sin3 θdθ

∫ 2π

0

(sin2 ϕ− cos2 ϕ)dϕ

∫
p4e−α(p−k∗)2e−α(k−p−k∗)2dp

T TTxy =
χ2

0

2(2π)3/2

∫ π

0

sin3 θdθ

∫ 2π

0

cosϕ sinϕdϕ

∫
p4e−α(p−k∗)2e−α(k−p−k∗)2dp

(5.15)

where ϕ is the azimuthal angle and θ is the polar angle. The integral over the polar angle

evaluates to 4/3 in each case and the integral over p evalutes to

√
π
2
(3 + αk2(6 + αk2))

32α5/2
e−

α
2

(k−2k∗)2 . (5.16)

But we also find that the integral over the azimuthal angle evaluates to zero for all f(p).

In other words, T TTij is zero for all components, meaning our quadrupolar parameter β

and gravitational wave amplitude vanish.

We had originally set out to study gravitational wave production from reheating

with the simplest starting point possible by assuming homogeneity and using φ’s one-

dimension equation of motion to compute φ and using that to compute χ and then the

source. This ultimately gives us no gravitational wave spectrum. But, our calculation
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shows what we ought to do next. We are getting no gravitational wave spectrum because

our integral over the azimuthal angle vanishes. This is due to our assumption of source

isotropy. We can reintroduce anisotropy through small perturbations in our initial con-

ditions. Moving forward, we need to learn how initial anisotropies grow and how these

anisostropies contribute to T TTij .

However, one thing we can do with our current result is do an order-of-magnitude

approximation of β. We know that the integral over small perturbations along the az-

imuthal angle is going to give us a result on the order of one. So if we assume the integral

over the azimuthal angle to be one for each component of the T TTij , we find

|T TTij |2 =
χ4

0

384π3

(3 + αk2(6 + αk2))2

α5
e−α(k−2k∗)2 . (5.17)

We want to compare our estimate of β with Giblin and Thrane’s estimate. They

take β to be the average of |T TTij |2 over the average of |Tij|2 over all k-space. So, we are

going to integrate Eqn (5.17) over all k-space and divide by the integral of Eqn (5.11)

over all k-space. In doing so, we find

β =
1

8π2

140 + 32k2
∗(699 + 4k2

∗(369 + 16k2
∗(13 + 2k2

∗)))

177 + 32k2
∗(69 + 372k2

∗ + 448k4
∗ + 128k6

∗)
. (5.18)

Recall that k∗ ≈ (g2/λ)1/4. We let g2/λ = 120 and α = 1. This gives us

β ≈ 0.016. (5.19)

Recall that Giblin and Thrane estimated this β to between 10−2 and 10−1.5 or

between. This estimate for β falls within that range. We also want to know how this

parameter varies for different qs. β approaches 0.0127 as q → ∞ and 0.01 as q → 0.

Thus, we get good agreement between our estimate and past estimates, implying we have

captured a good piece of the core physics involved in gravitational wave production.
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While this agreement is nice, it still does not explain the two-class amplitude

puzzle we found in Fig 3.7. This β function is nice and continuous and nearby values of q

give nearby values of β. Therefore, there is still important physics related to gravitational

wave production that we have not captured in this estimate for βs.

52



Chapter 6

Discussion

6.1 The two-class amplitude puzzle

Fig. 3.7 showed that the two-class amplitude behavior appears across all potentials

explored in this project. There are a few strategies we investigate this two-class amplitude

puzzle further. We can compare the time evolution of a high-amplitude signal and a low-

amplitude signal and see when along the process of reheating they diverge into their

separate classes. Doing so can tell us which stage of reheating to focus our studies on.

The results for this analysis can be shown in Fig. 6.1.

Fig. 6.1 shows that both signals start out close together, meaning that the signals

do not start in their separate amplitude classes. Instead, the gravitational wave ampli-

tudes grow further apart and separate into their respective amplitude classes over time

or scale factor. Fig. 6.1b shows that this divergence happens at around a scale factor of

a = 20 and the divergence slows at a scale factor of about a = 60.

However, the values of scale factor are not immediately meaningful. They only

tell us how much larger this simulated Universe is relative to some chosen starting point.

However, we can gain meaning from these scale factor values by looking at the evolution

of peak amplitude against time (or scale factor) and seeing what kind of growth these
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(a) (b)

Figure 6.1: ∆h2Ωgw,0 is the difference in h2Ωgw,0s between the high amplitude signal and
the low amplitude signal. Each curve represents that amplitude difference for a different
scale factor a. Fig. 6.1a shows this for model 1 on a linear scale and Fig. 6.1b shows
that same difference on a log scale.

scale factor values correspond to. Different growth behaviors correspond to different

periods of reheating. The time evolution of peak amplitude can be shown in Fig. 6.2.

Figure 6.2: Evolution of two signals’ peak amplitudes for g2/λ = 120 and g2/λ = 300
against time (scale factor) for a model 1 potential

There are a few points we can learn from Fig. 6.2. First, we can see that these two

different class of gravitational waves have different exponential growth rates. So given a

relationship of

peak amplitude we might observe today = |A|eµa (6.1)

the µ parameter or rate of exponential growth is higher for that of g2/λ = 120 than

54



g2/λ = 300.

Second, we can see that this divergence in high and low amplitude signals occur

at the exponential growth stage of reheating. We can see this to be the case for a variety

of g2/λs in Fig. 6.3.

Figure 6.3: Evolution of two signals’ peak amplitudes for more values of g2/λ.

So if we want to learn more about the two-class amplitude puzzle, we want to

focus our studies on gravitational wave production during the exponential growth phase

of reheating.

6.2 β - An estimate for reheating

We concluded that, given a completely real Gaussian distributed χ amplitude, β vanishes.

In other words, we get no gravitational waves. In hindsight, we should have expected

this result. Dufaux et al have already predicted this result from what they call their ‘no-

go theorem,’ which states that “scalar field configurations which can be represented as

the superposition of waves with wave-like dispersion relations and adiabatically varying

frequencies do not emit gravity waves at first order in the gravitational coupling.”

This no-go theorem means that if our scalar field’s frequency can be modelled as a

simple sum of waves (which a Gaussian certain can be), we should not expect gravitational
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waves. Dufaux et al make this prediction by making a conservation of helicity argument.

The graviton (which acts as the particle analog to gravitational waves) has a helicity

of 2 and the interacting scalar waves (in our case, φ and χ) have helicities 0. In any

given interaction, helicity must be conserved. And two scalar waves of helicity 0 cannot

produce a graviton of helicity 2 alone.

In our case, we make a direct calculation of this no-go theorem. We have a specific

wave-like scalar field model and evaluate T TTij to be zero given that model.

But, we ultimately do want to learn how we can recover gravitational waves. After

all, the simulation is getting non-zero signals. There are a few options we can explore

about our earlier assumptions.

We want our integral over ϕ or the azimuthal angle between p and k to be nonzero.

So we need to find where we can get extra ϕ dependence in our integral over χ.

Our calculation of T TTij assuming isotropy, meaning that χ has no directional

dependence or preference. We made the same assumption of φ(k). We assumed this

because the source’s stress energy tensor is expected to be, on large scales, homogeneous

and to have no directional preference. However, gravitational waves are only produced if

there are ultimately inhomogeneities in energy distributions. Further investigation into

how initial conditions play a role in φ and χ behavior could give us insight into any

potential directional dependence that might emerge in T TTij .

Additionally, we assumed that χ was all real in k-space. And that assumption

led us to a vanishing β parameter. Recall from Eqn (2.1), Giblin and Thrane assumed

the energy tensor to have a complex phase factor associated with it as well. What this

complex phase factor is and how it might be modelled can also play a role in giving us

non-vanishing β. For now, we can clearly see that assuming a purely real source gives us

vanishing β.

While there is clearly more we can investigate about β, we were still able to do

an approximate calculation of β by considering what would happen if the integral over
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initial perturbations along the azimuthal angle were nonzero. The integral over random

fluctuations would be on the order of one. With that approximation, we were able to

compute β to relatively good agreement with previous estimates.

While the agreement means we are on the right track of capturing the relevant

physics involved in β and gravitational wave production, our calculation for β did not

give any insight into the two-class amplitude puzzle. So, we still need to find a way

to account for that. A good starting point for that is reheating during the exponential

growth stage, as we found in Fig 6.2.

6.3 Conclusion

We wanted to refine our understanding of cosmological gravitational wave production

during reheating in order to improve our ability to interpret these signals on the day we

actually get to see them.

In our numerical investigations, we found that the coupling parameter g2/λ had

no effect on frequency and that most chaotic inflation models had a peak frequency pro-

portional to λ1/4 . We were able to find that same proportionality through our first order

analytic investigation. We did this by approximating the gravitational wave signals to

respond at the same frequency as its driving force (the inflaton oscillations), assuming

that g2/λ had no effect on frequency, and then redshifting the initial frequency relation-

ship. This result is useful because it provides a direct relationship between an observable

quantity and a model parameter.

In particular, different models will have different values of λ. Being able to look

at a peak frequency and then identify a particular value for λ will enables us to identify

what model properly describes inflation.

In our numerical investigations, we also found that the parameter with the domi-

nant influence on amplitude was the coupling parameter g2/λ. We also found two classes
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of amplitudes for otherwise close values of the coupling parameter. While we are still

unable to explain this result in its entirety, we found that these classes emerge during

the exponential pre-heating phase after reheating. Knowing this will focus what stage

of reheating we choose to study to learn more about gravitational wave production from

reheating.

In our analytic investigation of the quadrupolar parameter β, we constructed a

toy model that features the core scalar field physics involved with gravitational wave

production from reheating. We built a model that calculated φ, which we could then use

to calculate χ. We found that χ grew exponentially over time, and that χ’s amplitude

could be represented in k-space as a Gaussian about some mean frequency k∗.

We used this real Gaussian form for χ’s amplitude to compute the source’s stress

energy tensor, applied the transverse traceless projection operator to the stress energy

tensor, and found that the transverse traceless components of the stress energy tensor

vanished, and β along with them. This process of computing φ, then χ, then the source is

a direct sequence of calculations showing the no-go theorem, which states that interacting

scalar fields that can be represented with a wave-like dispersion relation ought to give no

gravitational waves.

In our calculation for β, we found that components of the source’s stress energy

tensor disappear because each component’s integral over its azimuthal angle disappear.

In order to recover gravitational waves in future studies, we re-introduce directional

dependence by studying initial fluctuations in χ.

In the meantime, we did an order of magnitude estimate of β by assuming the

integral over these initial random fluctuations to be on the order of one. In doing so,

we estimated β to fall within 0.0100 and 0.0713, which agrees with estimates done by

previous researchers.

In summary, we found an analytic first-order relation between cosmological grav-

itational wave frequency and inflation parameters. We have more investigation to do
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with regards to the amplitude relationship. But our estimate of β suggests we are on

the right track. We have strings that we can pull on to investigate β and the two-class

amplitude puzzle further. In particular, we can think more carefully about how initial

fluctuations can give us a non-zero β, and we know to think about gravitational wave

amplitude in the context of the exponential preheating growth phase of reheating. While

we have some more exploring left to do, we are not lost.
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