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Abstract 
 

Phytoplankton underpin marine trophic systems and biogeochemical cycles. Estuarine 

and coastal phytoplankton account for 40-50% of global ocean primary productivity and carbon 

flux making it critical to identify sources of variability. This project focuses on the Kennebec 

River and Harpswell Sound, a downstream, but hydrologically connected coastal estuary, as a 

case study of temperate river influence on estuarine nutrient regimes and phytoplankton 

communities. Phytoplankton pigments and nutrients were analyzed from water samples collected 

monthly at 8 main-stem rivers stations (2011-2013) and weekly in Harpswell Sound (2008-2017) 

during ice-free months. Spatial bedrock and land use impacts on river nutrients were investigated 

at sub-watershed scales using GIS. Spatial analysis reveals a 10-fold increase in measured 

phytoplankton biomass across the Kennebec River’s saltwater boundary, which demonstrates 

ocean-driven phytoplankton variability in the lower river. The biomass pattern is accompanied 

by a transition in phytoplankton community structure with respect to which groups co-occur 

(diatoms, chlorophytes, and cryptophytes) and which are unique (dinoflagellates in Harpswell). 

Upstream, the timing of each community depends on land-use proximity and seasonal discharge. 

In Harpswell Sound, the nutrient regime and phytoplankton community structure vary 

systematically: first diatoms strip silicate, then dinoflagellates utilize nitrate, followed by 

chlorophytes and cryptophytes that utilize available phosphate. These findings reveal, for the 

first time, patterns in phytoplankton communities and nutrient dynamics across the fresh to salt 

water interface. Ultimately the Kennebec River phytoplankton communities and nutrient regimes 

are distinct, and the river is only a source of silicate to Harpswell Sound.  

 

Introduction  
 

 As the base of the aquatic food chain, phytoplankton support all marine trophic systems 

and biogeochemical cycles in ocean and river ecosystems. The conduit between these two 

ecosystems, estuarine and coastal waters, accounts for 40-50% of global ocean primary 

productivity and subsequent carbon flux (Paerl, 1997). Coastal estuarine phytoplankton 

communities are influenced by the variability in nutrients delivered by salty ocean water masses 

and freshwater rivers. Increased development of urban and agricultural land along rivers 

adjoining costal estuaries has caused accelerated eutrophication and subsequent degradation of 

fisheries due to the alteration of phytoplankton communities (Paerl, 2006). Recent shifts in these 

phytoplankton communities and coastal fisheries demonstrate the importance in understanding 
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estuarine phytoplankton seasonal and interannual variations in response to quickly changing 

river systems.   

Harpswell Sound and the Kennebec River  

 Harpswell Sound (HS) is a reverse and tidally impacted estuary in the Gulf of Maine 

(GOM) where the phytoplankton community varies in composition throughout the year, allowing 

for a diverse marine trophic environment and robust fishing industry. HS is a productive estuary 

with a median Total Chlorophyll a concentration of 3.30mg/m3 with 4 dominant phytoplankton 

groups: chlorophytes, cryptophytes and dinoflagellates, haptophytes, and diatoms (Kramer and 

Siegel, 2019). Its freshwater source enters from the mouth of the estuary, the plume arising from 

the upstream Kennebec River (KR) (Figure 1). This reverse estuarine structure is relatively 

unique. The KR is deflected into the mouth of HS by Coriolis (Figure 1), creating strong 

stratification at the mouth of the estuary and a more mixed water column at the estuary head 

(Wolovick, 2009).  

In addition to its unique structure, HS is a sentinel site for harmful algal blooms. 

Historically and presently, these blooms have been caused by Alexandrium spp., a dinoflagellate 

species that commonly causes toxic shellfish poisoning (Keafer, 2005; Barton et al., 2013; 

Hankinson, 2010; Townsend, Pettigrew and Thomas, 2005). In recent years, however, Pseudo-

nitzschia spp. and Dinophysis spp., two diatom species that can cause amnesic shellfish 

poisoning and diarrhetic shellfish poisoning, have emerged in HS (HABON-NE, 2019-2023). 

This recent shift in phytoplankton community, along with the continued seasonal presence of 

toxic dinoflagellates demonstrate the importance in monitoring and gaining a better 

understanding of the river and ocean influence on HS phytoplankton and nutrients.  
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  Harpswell Sound’s freshwater source, the KR, flows from the headwaters of Moosehead 

Lake to Merrymeeting Bay where it then converges with five other rivers before flowing out to 

the coast and into the mouth of HS (Figure 1). Along this upstream to downstream path, the KR 

transports and transforms crucial elements that provide a primary nutrient source to the KR and 

potentially to HS phytoplankton communities (Xenopoulos et al., 2017).  

River nutrients are derived from bedrock and land use, then utilized by river 

phytoplankton before entering the coastal waters (bold arrows, Figure 2). Ongoing chemical 

weathering of bedrock and surficial glacial sediment, which is greatly influenced by land use 

type, provides a primary source of dissolved silicate to rivers (Turner et al., 2003) (light arrows, 

Figure 2). Runoff from agricultural and urban land use represents a dominant nitrate and 

phosphate river nutrient source (Pratt and Chang, 2011; Sanders et al., 1997) (light arrows, 

Figure 2). Additionally, baseflow groundwater, containing nutrients from both bedrock and land 

use sources, is another important nutrient input into rivers and a direct input into coastal waters 

(Jung, 2020). Although the connection between river nutrients and coastal waters is not fully 

understood, it is clear that river phytoplankton nutrient utilization influences the concentration 

and composition of nutrients entering coastal waters (Devercelli and O’Farrell, 2013) (light 

arrows, Figure 2).  
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Figure 1. Map of the Kennebec River watershed (outlined in dark blue). Stations along the main 

stem (K01, K03, K05, K07, K10, K11, K12, K13) of the Kennebec River (light blue line) are 

labeled with a yellow dot and tributaries (K02, K04, K06, K08, K18) are labeled with a purple 

dot. Turbidity, the inset map (right), shows the convergence of the Kennebec and Androscoggin 

Rivers in Merrymeeting Bay and the path of the Kennebec River plume into Harpswell Sound 

(adapted from Figure 3 in Snyder et al., 2017). Yellow dots correspond to downstream stations 

K11, K12, and K13 on the map of the Kennebec watershed. The location of the LOBO buoy is 

also marked.  

 

 

Figure 2. Schematic diagram of the influence of bedrock, land use, river nutrients, and river 

phytoplankton on coastal phytoplankton communities and the interplay between each. It is not 

yet understood how river phytoplankton influence or compare to coastal phytoplankton so the 

connection between is labeled with a question mark.  

 

In previous studies of the GOM, rivers have been found to play a minor role in nutrient 

fluxes when compared to GOM water masses. In a study of nitrogen sources and cycling in the 
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GOM, Townsend, 1998 found that rivers only contribute 0.8x109 gat N/year to the advective flux 

of nitrogen into and out of the GOM while the Scotian Shelf Waters and the Northeast Channel 

Slope Waters, the two primary water masses in the GOM, fluxed 31.5x109 gat N/year and 

147.9x109 gat N/year, respectively. Based on these results, there have been extensive analyses 

conducted on ocean water mass dynamics in the GOM and water mass contribution to coastal 

water nutrients which then promote seasonal phytoplankton blooms.  

Deep slope water, delivered to the GOM through the Northeast Channel, provides a 

primary source of ocean-derived nutrients to coastal waters (Townsend et al., 2010). These deep-

water nutrients are mixed into the surface waters tidally and seasonally through winter 

convective mixing (Townsend et al., 2010; Ji et al., 2008). The nutrient enriched water column 

after the winter combined with the formation of a thermocline in the early spring allow for a 

large spring phytoplankton bloom (Ji et al., 2008). Although the nutrients are depleted in the 

summer, fall cooling and mixing promotes a smaller fall phytoplankton bloom (Song, 2010). 

In addition to the importance of ocean water mass nutrient sources, an increase in 

anthropogenic nutrient runoff, transported to estuaries through river systems, has stimulated 

phytoplankton blooms throughout the year, altering this seasonal cycle (Fennel and Testa, 2019). 

Nutrient loading from rivers and subsequent eutrophication of coastal waters has been found to 

increase harmful algal blooms (HAB) (Anderson et al., 2008). In the GOM, paralytic shellfish 

poisoning (PSP) poses the greatest threat to local Maine fisheries (Mcgillicuddy et al., 2003). 

PSP events are almost always preceded by high discharge from the KR during the spring (Hunt 

et al., 2005). With the increasing threat of anthropogenic nutrient loading and eutrophication, it 

has become increasingly important to understand the impact rivers have on adjoining estuaries.   
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 In the GOM shelf sea that is dominated by distributed river systems, we seek to reveal the 

drivers of one of the major river systems on the nutrient and phytoplankton regimes in the 

downstream coastal waters. As climate change warms the ocean and alters hydrologic patterns, 

understanding river to ocean connections is vital. We present an extensive analysis of bedrock, 

land use, nutrients, and phytoplankton to gain a deep understanding of the spatial and temporal 

variability in phytoplankton communities and nutrients within the KR. We then consider how 

these riverine communities and nutrients affect phytoplankton and nutrient variability in HS. In 

assessing the relationship between the KR and HS as a case study, results will help better 

understand how global rivers influence their coastal waters.  

Questions and Hypotheses 

 In an effort to understand the spatial and temporal co-variance between the river and 

estuarine ecosystem nutrient regimes and phytoplankton communities, we present our questions 

and hypotheses in a spatial format. We begin with a broad analysis of the KR watershed bedrock 

and land use. We then consider how the bedrock and land use inform the nutrients observed in 

the river water column and how these nutrients influence patterns in river phytoplankton 

communities spatially and temporally (Figure 2). Phytoplankton community structure is assessed 

based on the functionality of phytoplankton present within an ecosystem as revealed by pigment-

based taxonomic distinctions. Phytoplankton functionality is defined by their different 

biogeochemical roles; thus, tracking the community structure will help us track ecosystem 

function (IOCCG, 2006). Following the KR analysis, we transition downstream into HS and 

analyze the nutrient regime and phytoplankton community in the estuary using data collection 

years that overlap with the KR dataset and using the long-term HS dataset to track changes over 

a longer time period. Finally, we compare the river and estuarine phytoplankton communities to 
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gain an understanding of the connectivity between the KR and HS. Within this spatial and 

temporal format, we seek to answer the following questions: 

1) What is the impact of bedrock and land use on nutrient regimes and phytoplankton 

community structure from upstream to downstream in the KR? How do the nutrients and 

phytoplankton communities change seasonally and interannually? 

a. Do silicate, nitrate, phosphate, and ammonium display the same spatial and 

temporal trends from upstream to downstream in the KR?  

b. Is the phytoplankton community structure the same throughout the KR and do the 

PFTs vary the same seasonally from upstream to downstream in the KR? 

2) How does the phytoplankton community structure in HS vary seasonally in response to 

the nutrients? How has the HS phytoplankton community structure and nutrient regime 

shifted overtime from 2008-2017?  

3) How does the phytoplankton community structure and nutrient regime in the KR compare 

to the nutrients and phytoplankton observed in HS? Further, are the nutrients and 

phytoplankton in HS driven by ocean variability, river variability, or both? 

We present two contrasting hypotheses in response to these questions: 

H1) There is complete connectivity between the coastal waters and the KR in which 

downstream trends in nutrients and phytoplankton communities are maintained across 

the freshwater-saltwater interface. 

H2) Alternatively, there is no connectivity between the KR and HS, so the coastal waters 

can be considered a separate, ocean influenced ecosystem from the river ecosystem.  

By addressing these questions and testing these hypotheses, this work will advance our 

understanding of the spatial and temporal connections between nutrients and phytoplankton in 
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the KR and HS. This will not only help us better understand if the HS phytoplankton 

communities are driven by river variability but will also help to evaluate and predict the impacts 

of regional bedrock weathering rates, land use changes, river phytoplankton and overall river 

nutrient input on coastal phytoplankton communities, in particular as the hydrologic patterns are 

predicted to change significantly in response to regional warming (Hayhoe et al., 2007).  

Background  

Phytoplankton Classes  

Phytoplankton communities consist of different phytoplankton functional types (PFTs) 

that are grouped based on their biogeochemical role and their physiological characteristics 

(Kramer and Siegel, 2019; Lu et al., 2018). Each PFT carries out specific chemical processes 

(biogeochemical guilds) including, but not limited to, calcification, silicification, and nitrogen 

fixation (IOCCG, 2006). PFTs are used as proxies of ecosystem function and may reflect climate 

change and ocean carbon sequestration efficiency which makes them important to monitor 

(IOCCG, 2006).  

Gulf of Maine, Harpswell Sound, and Kennebec River Phytoplankton 

 

Diatoms, dinoflagellates, chlorophytes, and cryptophytes are four of the dominant PFTs 

in the Gulf of Maine (GOM) and in Harpswell Sound (HS). Litchman et al., 2015 provides a 

thorough assessment of each PFT. Diatoms, or phytoplankton silicifiers (20-200 μm) (Quéré et 

al., 2005), are part of the red algae superfamily and are a dominant PFT. As a member of the red 

algae superfamily, diatoms have low N:P ratios (10:1). However, diatoms require silicate in 

addition to iron and phosphate for growth, so they tend to dominate in nutrient-rich waters and 

are therefore responsible for most of the primary production during the spring bloom, when 

nutrients and light are abundant (Quéré et al., 2005; Kramer, Roesler and Sosik, 2018). Globally, 
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diatoms represent about 20-25% of primary productivity and due to their relatively large cell 

size, have a high sinking rate which exports carbon and silica to the deep ocean. Dinoflagellates, 

also belonging to the red algae superfamily, are part of the mixed PFT (2-200 μm) and are often 

related to more nutrient depleted environments (Barton et al., 2013; Hankinson, 2010). Since 

they have one of the largest cell sizes amongst the PFTs, they have slower growth rates, making 

them not as competitive for nutrients. Cryptophytes, a less dominant and less studied PFT, are 

also a member of the red algae superfamily and therefore also have a lower N:P ratio. 

Chlorophytes are a dominant member of the green algae superfamily. Phytoplankton within this 

family have higher C:N and N:P ratios than red algae, but do not perform any distinct 

biogeochemical functions like the other PFTs. Based on the Litchman et al., 2015 study and 

other related studies, there is a strong understanding of the PFTs within the GOM and HS.  

It is important to remember, in the context of HS, that the change in diatom and 

dinoflagellate presence overtime is particularly important to monitor since each can cause, and 

has historically caused, harmful algal blooms in HS and in the GOM (Townsend, Pettigrew and 

Thomas, 2005; HABON-NE, 2019-2023).  

Although there has not yet been a study assessing PFTs in the Kennebec River (KR), 

rivers have been found to be dominated by PFTs with faster growth rates. These include the 

diatom, cryptophyte, and chlorophyte PFTs described above (Reynolds, 1994; Bortolini and 

Bueno, 2013). 

Controls on Phytoplankton Functional Types 

Nutrients 

 

Seasonal variations in nutrients, along with temperature and irradiance, influence which 

estuarine phytoplankton communities thrive at different times of year based on their specific 
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nutrient requirements (Barraquand et al., 2018). The Redfield Ratio (C106:N15:P1) is often used to 

generally describe the elemental composition of plankton biomass (Tyrell, 2019). As cell size 

varies between different PFTs, the number of atoms for each element changes, but the proportion 

remains relatively constant (Tyrell, 2019). Silicate, as a limiting nutrient for diatoms, is often 

incorporated into this ratio (N15:P1:Si15). Since diatoms require silicate for growth, but green and 

blue algal groups do not, when Si:P and Si:N ratios are high, diatoms outcompete and dominate 

the phytoplankton community structure (D Tilman et al., 1982). In the Lagus et al., 2004 study, 

diatoms were also found to dominate at high N:P ratios while green algal groups tended to favor 

intermediate N:P ratios. In contrast, dinoflagellates were often found to dominate in nutrient-

limited environments because many of the species are mixotrophic. When dinoflagellates are 

smaller than diatoms, they have a relatively higher surface area to volume ratio which allows 

them to survive in nutrient-depleted conditions (Fogg, 1986). 

River Flow Regime 

 

Although access to required nutrients plays a primary role in taxonomic composition of 

river phytoplankton, physical and hydrological factors have been found to be a key driver in river 

phytoplankton community structure (Descy et al., 2016; Chen et al., 2015). Physical/light 

limiting factors include turbidity, suspended sediment, and CDOM (Color Dissolved Organic 

Matter) and hydrological factors include discharge, flow velocity, water depth, and water 

residence time (Chen et al., 2015). With higher turbidity from suspended material and lack of 

vertical stratification, river phytoplankton are often more light limited than lake or ocean 

phytoplankton (Chetelat and Pick, 2006). These environmental factors set river phytoplankton 

apart from lake, estuarine, and ocean ecosystems. Due to constant river flow, turbulence, which 

resuspends sediment, promotes a phytoplankton community structure that is often dominated by 
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diatoms and green algal groups, taxonomic groups with faster growth rates (Reynolds, 1994; 

Bortolini and Bueno, 2013). In temperate rivers, diatoms have been found to dominate 

phytoplankton biomass due to their ability to adapt to changing flow regimes and low water 

residence times (Descy et al., 2016). Light levels have also been found to impact river 

phytoplankton size distribution (Chetelat and Pick, 2006). Lower light, deep, or turbid waters 

have been found to favor diatoms while a shallower water column and less light limitation allows 

for green algae growth (Chetelat and Pick, 2006; Descy et al., 2016). 

River versus Ocean Influence on the Gulf of Maine and Harpswell Sound 

Kennebec River Influence  

 

 The 240 km-long KR is among one of the largest rivers in the state of Maine with an 

average annual discharge of 452 m3/year, draining an area of 14,790 km2 (Kelley et al., 2011). 

The river flows out of Moosehead Lake, the largest lake in Maine, down through central Maine 

and out to the coast where it joins with 5 other rivers in Merrymeeting Bay before flowing into 

the coastal waters of the GOM. When the KR reaches the coast, a salt wedge is formed with a 

strong vertical and horizontal salinity gradient, limiting mixing between the fresh and salt water 

(Figure 3). Limited mixing allows the KR to enter HS as a freshwater plume.  

 
Figure 3. Schematic salinity salt wedge diagram (left) with the farthest downstream freshwater 

station (K10), tidally impacted stations (K11, K12, and K13), and HS marked. The diagram is 

adapted from https://www.amap.no/documents/doc/basic-circulation-and-salinity-distribution-in-

salt-wedge-partially-mixed-well-mixed-and-fjord-type-estuaries-as-defined-by-wollast-and-

duinker-1982-numbers-and-shading-show-salinity-values/340. Table (right) lists each station 

with each respective range in measured salinity.  

https://www.amap.no/documents/doc/basic-circulation-and-salinity-distribution-in-salt-wedge-partially-mixed-well-mixed-and-fjord-type-estuaries-as-defined-by-wollast-and-duinker-1982-numbers-and-shading-show-salinity-values/340
https://www.amap.no/documents/doc/basic-circulation-and-salinity-distribution-in-salt-wedge-partially-mixed-well-mixed-and-fjord-type-estuaries-as-defined-by-wollast-and-duinker-1982-numbers-and-shading-show-salinity-values/340
https://www.amap.no/documents/doc/basic-circulation-and-salinity-distribution-in-salt-wedge-partially-mixed-well-mixed-and-fjord-type-estuaries-as-defined-by-wollast-and-duinker-1982-numbers-and-shading-show-salinity-values/340


 12 

 

Along this path from Moosehead Lake to HS, the KR accumulates nutrients from chemical and 

physical weathering of exposed bedrock and glaciomarine sediments and from anthropogenic 

land use runoff.  

Bedrock – Silicate  

 

 Metasedimentary and igneous rocks from the Lower Paleozoic compose the bedrock 

beneath the KR watershed (Kelley et al., 2011). However, the retreat of the Late Wisconsinan 

Laurentide Ice Sheet between 16 kya and 12 kya left glacial deposits that scatter across this 

bedrock framework (Kelley et al., 2011). The upper KR watershed consists primarily of glacial 

till dated to the Late Pleistocene while the middle and lower watershed contains glaciomarine 

silt, clay, and sand that indicate the complex sea level history of coastal Maine (Kelley et al., 

2011; Thompson and Borns, 1985). During glacial retreat, the depressed land surface was 

inundated with ocean water, allowing for the formation of these glaciomarine deltas (Kelley et 

al., 2011). The remaining high surface area, fine grained glaciomarine sediment along with 

bedrock exposure represent two important sources for weathering and subsequently, sources of 

nutrient input to the river water column.  

The rate of silicate weathering is controlled by climate and specific silicate mineral 

compositions. The type and intensity of weathering within a certain region generally reflects the 

regional climate (Bierman and Montgomery, 2014). With an average annual temperature of ~8°C 

in Maine, similar rates of physical and chemical weathering occur (Bierman and Montgomery, 

2014). Since bicarbonate and silica are not inputs associated with anthropogenic land use change, 

they are good indicators for chemical weathering (Bluth and Kump, 1994). Goldrich’s 

Weathering Series establishes the stability of minerals at the Earth’s surface. Minerals formed at 

high temperatures tend to be least stable at the Earth’s surface when compared to minerals 
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forming at low temperatures (Bierman and Montgomery, 2014). This implies that granitic rocks 

are the most stable and most difficult to weather while ultra-mafic rocks are the least stable and 

first to weather. More generally, felsic rocks are harder to weather than mafic rocks (Lasaga et 

al., 1994).  

Although silicate weathering is characteristic of many river systems, the KR displays 

above average silicate concentrations. In a study of global rivers, rivers at a similar latitude to the 

KR have average annual concentrations of dissolved silicate of about 1.2 uM (74.7 ug/L) while 

the KR has an average dissolved silicate concentration of about 28.7 uM (Turner et al., 2003). In 

this same study, silicate concentrations were found to be most dependent on discharge where 

higher discharge promotes lower silicate concentrations through dilution. Although the KR has 

seasonally high discharge in the spring, fall, and during dam releases in the summer, the presence 

of 6 dams along the KR (Figure 4) promote relatively higher silicate weathering (Sullivan et al., 

2000). The impoundment formed behind a dam allows silicate to accumulate (Sullivan et al., 

2000). Silicate accumulation promotes diatom blooms which leads to further biogenic silicate 

production and deposition (Sullivan et al., 2000). Ultimately, this promotes a silicate-rich water 

column along the transect of the KR. Highest silicate concentrations are observed in the winter 

when discharge is at a minimum, but silicate is never a limiting nutrient within the KR (Hunt et 

al., 2005). 

 
Figure 4. Google Earth generated elevation profile of the Kennebec River from the headwaters of 

Moosehead Lake to the coast. The 6 dams along the transect are labeled.  
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Land Use – Nitrate and Phosphate 

 

In addition to bedrock and glacial sediment weathering, as open ecosystems, rivers 

depend heavily on the surrounding landscape and therefore, are drastically affected by changes in 

land use (Ileva et al., 2009). Particularly, the development of urban and agricultural land has 

been found to increase nutrient loads and runoff into rivers (Pratt and Chang, 2011; Sanders et 

al., 1997). Removal of forested land for urbanization reduces nutrient uptake and increases 

impervious surfaces, causing an increased nutrient flux to rivers (Mouri et al., 2011). Similarly, 

fertilizer use on agricultural lands increases river nitrate and phosphate loads (Pratt and Chang, 

2011; Ileva et al., 2009).  

Previous work by Hunt et al., 2005 provides important observations about nitrate and 

phosphate patterns in the KR. The KR experiences highest nitrate concentrations in the winter 

and spring periods, correlated with snowmelt runoff. Lowest concentrations in nitrate are 

observed in summer months since New England experiences the highest biological activity 

within the river during this time. Phosphate is limiting in all seasons and therefore, when urban 

land introduces phosphate into the water column, there is often a peak in biological activity. 

Spatially, the addition of point-source nutrient inputs from urban and agricultural land causes 

nitrate and phosphate concentrations to increase moving downstream. Based upon these results, 

we conclude that nutrient flux from urban and agricultural land along the KR shows both 

seasonal and spatial trends in relation to anthropogenic nutrient sources. These sources of 

nutrients include, but are not limited to, pulp/paper mills and 10 wastewater treatment plants that 

have been found to increase phosphate and subsequently, phytoplankton blooms.  
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Ocean Influence  

 

 In addition to river nutrient input, an alternation of characteristically different deep water 

masses provides a primary source of nutrients to phytoplankton in the GOM. The Labrador Slope 

Water (LSW), a cold fresh water mass, and Warm Slope Water (WSW), a relatively warmer 

saltier water mass, deliver nitrate and silicate in differing concentrations to the GOM (Townsend 

et al., 2010). WSW contains higher nitrate concentrations (>24 μM) than the LSW (15-17 μM) 

while both contain about 11-15 μM of silicate (Townsend et al., 2010). Relative amounts of each 

water mass may depend on the North Atlantic Oscillation (NAO) (Townsend et al., 2010; Smith 

et al., 2001). During high NAO years, an increase in LSW causes cooler, fresher surface waters 

that reflect an overall lower nutrient composition (Smith et al., 2001).  

 Biogeochemical nutrient cycling within GOM estuarine ecosystems also plays a role in 

fluxing nutrients into the water column. The structure of estuarine environments including 

insolation induced stratification and stratification from the amount of fresh and salt water 

influences how ocean nutrient cycling occurs within the estuary. In freshwater, phosphate 

generally limits primary production while nitrate is limiting in saltwater systems (Hartzell and 

Jordan, 2012). Since the amount of freshwater and saltwater shifts seasonally in estuarine 

ecosystems, the type of nutrient limitation also varies (Hartzell and Jordan, 2012). 

Summary  

 While we understand the seasonal cycle and ocean influence on coastal phytoplankton 

communities in the GOM and HS which is crucial for predicting changes in upper trophic levels 

and fisheries, we do not yet understand phytoplankton communities and nutrient regimes in the 

KR and their impact on HS. This study will use a spatial and temporal analysis of phytoplankton 
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pigments and nutrients in the KR and HS as a case study to identify the relationship between 

river and coastal phytoplankton communities and nutrient regimes.   

Methods  
  

 Water sampling for nutrients and phytoplankton pigments was conducted in two separate 

studies, one in the Kennebec River (KR) and one in Harspwell Sound (HS). Along the KR, 

samples were collected monthly from 2011-2013 during ice-free months March/April to 

November/December. Weekly sampling was conducted in HS from 2008-2017 during ice-free 

months March/April to October/November. To address the comparison between the KR and HS, 

the subset of HS data from 2011-2013 will be studied; however, the full-length time series for 

HS will also be assessed to understand changes within the estuary over the entirety of the HS 

dataset.  

 As part of this study, a GIS (Geographic Information System) analysis of the KR 

watershed and sub-watershed bedrock and land use was conducted to provide a background for 

interpreting the KR and HS trends in nutrient regime and phytoplankton community.  

Sample Collection and Processing 

Kennebec River 

 

 Eight stations (K01, K03, K05, K07, K10, K11, K12, K13) along the main stem of the KR 

(Figure 1) were used for bedrock, land use, nutrient, and pigment analysis. Stations are located 

near USGS (United States Geological Survey) gauging stations. Monthly surface water samples 

were collected from these main stem stations from May 17, 2011 to January 1, 2014, as part of a 

carbon study project conducted for NASA (Historical and Projected Changes in Carbon Export 

to the Gulf of Maine from Land Use and Climate Change) by Collin Roesler, Philip Camill, and 
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John Lichter. Water samples were syringe filtered through a 0.7 μm glass fiber filter and 

collected in dark, acid-washed bottles which were stored in a cooler for processing in the 

Bowdoin College lab. Filters were sent to NASA for filtrate analysis, generating nutrient data, 

and HPLC (High Pressure Liquid Chromatography) analysis, generating pigment concentration 

data for each station.  

Harpswell Sound  

 

 All data used for HS was collected at the Land/Ocean Biogeochemical Observatory 

(LOBO) located at 43° 45.70N 69° 59.30W (Figure 1). Weekly water samples have been 

collected by Bowdoin students and faculty from 2008 to the present during ice-free months of 

February through November (monthly data changes with each year) from the LOBO buoy. Water 

samples are filtered at Bowdoin College and filters are sent to NASA for filtrate analysis, 

generating nutrient data, and HPLC analysis, generating pigment concentration data. For the 

purposes of this study, pigment and nutrient data from surface depths (0 to 2.5 m) from 2008-

2017 was considered with an emphasis on water samples collected from a 2.5 m depth from 

2011-2013 (the overlapping years with the KR data). 

Phytoplankton Pigment as a Proxy for Phytoplankton Taxonomy 

 Phytoplankton pigments, obtained using HPLC, are used as a proxy for phytoplankton 

taxonomy (Table 1). HPLC is one of the most widespread methods available to measure 

phytoplankton taxonomic variability (Kramer and Siegel, 2019). Taxanomic groups of 

phytoplankton share similar sets of pigments, allowing for differentiation between taxonomy 

based on pigment. 
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Table 1. Primary phytoplankton pigments and their abbreviations, assumed taxonomic values, 

groupings, and taxonomic distributions. The pigments focused on in this analysis are highlighted 

in a color. Table cells are color coded based on phytoplankton groupings determined from the 

Harpswell Sound hierarchical cluster analysis results (Figure 16). Table 1 is adapted from Table 

1 in Catlett and Siegel 2018. 

 
 

Data Analyses 

 KR watershed/sub-watershed bedrock and land use data were obtained from USGS. 

Bedrock and land use analyses within the KR watershed and sub-watersheds feeding into each 

station were processed using ArcMap GIS version 10.7. Matlab R2019a was used for pigment, 

nutrient, Hierarchical Cluster, and Empirical Orthogonal Function (EOF) analyses for both the 

KR and HS. Matlab R2019a was also used for a lag correlation analysis for the KR. 

 Prior to all pigment Hierarchical Cluster and pigment EOF analyses, pigment data was 

mean centered and normalized with respect to Total Chlorophyll a (Kramer and Siegel, 2019). 

For the nutrient EOF analyses, nutrient data was mean centered.  
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Lag Correlation Analysis  

 

 Before beginning the KR analyses, an observational lag correlation analysis was conducted 

to estimate the time between a peak discharge event at an upstream station to the time of peak 

runoff observed at a downstream station (Seyam and Othman, 2014). KR main stem sites with 

USGS gauging stations (K03, K05, K07, and K10) were used to calculate lag time. Following 

the same methodology as Seyam and Othman, 2014, discharge was plotted from January 1, 2011, 

to January 1, 2014, to gain a visual understanding of the lag time between stations (Figure 5). 

Discharge accumulated moving downstream, but there was a minimal lag time between stations. 

The amount of time between two peak discharge events that occurred during the 3-year time 

series was approximately 5 hours, indicating that water was traveling at a rate of about 18 km/hr. 

This implies that water traveling from Moosehead Lake reaches the coast on a scale of days to 

weeks. Since the KR data was collected monthly, pigment and nutrient analyses will be 

interpreted as snapshots of phytoplankton communities and nutrient regimes that are then flushed 

into the coastal waters.  

 
Figure 5. Hourly Kennebec River discharge from 2011-2013 measured at mainstem stations K03, 

K05, K07, and K10. Inset map displays a peak discharge event around July 2013.  
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Hierarchical Cluster Analysis 

 

 A hierarchical cluster analysis was performed on mean centered and normalized (with 

respect to TChla) phytoplankton pigments for KR mainstem stations K01-K10 (upstream 

freshwater stations), KR stations K11-K13 (downstream tidally impacted stations), and HS to 

identify the relatedness between taxa within each ecosystem. The hierarchical cluster analysis 

clusters the co-occurrences between pigments using a correlation distance 1-R (R=Pearson’s 

correlation coefficient between pigments) and Ward’s linkage method (Catlett and Siegel, 2018; 

Latasa and Bidigare, 1998). 

Empirical Orthogonal Function (EOF) Analysis 

 

 To identify the space and time covariation of the phytoplankton communities identified in 

the cluster analysis, an EOF analysis was performed on mean centered and normalized (with 

respect to TChla) phytoplankton pigments for both the KR and HS from 2011-2013 in addition 

to surface (0-2.5 m) phytoplankton pigments from 2008-2017 for HS. The EOF function 

converts the pigments into a series of modes that represent the variability within each pigment 

dataset. The percent variance assigned to each mode decreases with increasing modes, meaning 

mode 1 describes the largest percent variance. Each mode is represented by loading values 

assigned to each pigment that indicate how much each pigment contributes to each mode. Each 

mode can therefore be interpreted as a distinct phytoplankton community. Additionally, the EOF 

amplitude function was used to plot a time series for the first 4 modes which shows the relative 

contribution of each pigment temporally and spatially. An EOF was also conducted on the HS 

mean-centered silicate, nitrate, and phosphate surface (0-2.5 m) nutrients from 2008-2017. In this 

case, each EOF mode can be interpreted as a distinct nutrient regime.  
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Results 

Kennebec Watershed Bedrock and Land Use 

The KR watershed is primarily composed of silicate-rich bedrock (Figure 6A). 

Sandstone, mudstone, quartzite, and granite comprise 56.5% of the total bedrock in the 

watershed (Table 1, Appendix). Sandstone, mudstone, quartzite, slate, and marble banding 

occurs in the southwest to northeast direction while granite, felsic gneiss, gabbro, and mafic 

metavolcanic rock types appear as isolated intrusions in the northwest and southern portions of 

the watershed.  

Reflective of the entire KR watershed, all sub-watersheds display high percentages of 

silicate rich bedrock (Figure 7A, Table 1, Appendix). Overall, upstream stations K01, K03, K05, 

and K07 dominantly consist of sandstone, mudstone, and quartzite while downstream stations 

K10, K11, K12 and K13 have higher slate and felsic gneiss percent bedrock types. K01 is both 

the largest sub-watershed and contains the largest amount of bedrock types. Moving 

downstream, stations K03, K05, and K07 contain fewer bedrock types, mostly sandstone, 

mudstone, quartzite, mélange, and schist. In particular, K07 is almost entirely composed of 

sandstone. At stations K10, K11, K12, and K13, felsic gneiss and slate begin to appear. 

Moreover, there is a defined shift at K11 from mafic metavolcanic to slate, forming the Chops.  

The bedrock informs the land use types observed within the watershed. The watershed is 

comprised of mostly forested land cover (65%) with pockets of harvested forest in the northwest 

and cultivated and developed land accumulating moving downstream toward K11 (Figure 6B, 

Table 1, Appendix). In addition to forested territory, swamps and open fresh water make up 13% 

of the watershed (Table 1, Appendix). Harvested forest, which makes up 4.6% of the KR 

watershed, is concentration in the NW region, in close proximity to the upstream stations K01-
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K05 (Table 1, Appendix). Cultivated and developed land are concentrated near downstream 

stations K06-K11. Cultivated land is established dominantly on sandstone bedrock while 

developed areas are concentrated on granitic bedrock. 

Similar to land use in the entire watershed, all sub-watersheds have the highest percent 

forested land coverage (Figure 7B, Table 1, Appendix). K01 contains the largest percent open 

fresh water. K03 and K05 have the highest percent forested land and also contain swamps. 

Cultivated and developed land coverage increase moving downstream, introduced significantly 

at K05 and maintained downstream. K10 contains the highest percentage of both cultivated and 

developed land. The K11, K12, K13 sub-watershed has the highest brackish water percentage 

with significant developed land and salt marsh/estuary presence.  

 
Figure 6. Map of the Kennebec River watershed (A) bedrock and (B) land use. The main stem of 

the Kennebec River is drawn in blue, main stem stations are labeled with a yellow dot, and 

tributary stations are labeled with a purple dot.  
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Figure 7. Map of Kennebec River sub-watershed (A) bedrock and (B) land use for each station. 

Pie charts display the percent (A) bedrock type and (B) land use type within each main stem sub-

watershed. The main stem of the Kennebec River is drawn in blue and main stem stations are 

labeled with a yellow dot and tributary stations are labeled with a purple dot.  

 

Nutrient Concentration and Composition  

Spatial Trends 

 

Each nutrient displays unique accumulation and/or depletion trends spatially from the 

headwaters of the KR to HS. Silicate concentrations are the greatest of all 4 measured nutrients 

in the KR and in HS. Silicate ranges from 0 μM to 40 μM in the KR and 0 μM to 15 μM in HS 

while phosphate, nitrate, and ammonium range from 0 μM to 0.1 μM, 0 μM to 2.5 μM, and 0 μM 

to 2 μM, respectively (Figure 8).  

Silicate concentrations accumulate moving downstream from K01 to K10 and then 

decrease from K10 to 14 (HS) (Figure 8A). Highest silicate concentrations are observed at K07 
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and K10 with average concentrations of 35.1±11.6 μM and 41.3±14.5 μM, respectively (Table 

2). After K10, silicate concentrations decrease from 41.3±14.5 μM to 24.4±12.6 μM at K13. 

Lowest silicate concentrations are found in HS with an average concentration of 8.1±4.2 μM and 

a maximum concentration of 17.5 μM.  

Phosphate has the lowest concentration out of the 4 measured nutrients (Figure 8B). 

Upstream stations K01 through K10 range from 0.03±0.04 μM to 0.08±0.04 μM with highest 

concentrations in the upstream stations observed at K07 and K10 (Table 2). Phosphate is 

relatively higher at K01, then decreases slightly at K03 and increases again at K05. Beginning at 

K11, phosphate accumulates moving downstream and into station 14 (HS) where phosphate 

increases up to an average concentration of 2±2.18 μM. The highest maximum concentration of 

phosphate, 7.1 μM, is also observed at station 14.  

Nitrate is depleted moving downstream from K01 to K07 with relatively high average 

concentrations at K01 (1.6±0.3 μM) and lower average concentrations downstream at K07 

(1.2±0.4 μM) (Table 2, Figure 8C). K10 is a new source of nitrate with the highest observed 

average concentration of 1.6±0.6 μM and the highest maximum concentration, 3.5 μM. Nitrate is 

depleted again from K12 to station 14 with the lowest average (0.4±0.2 μM) and maximum (0.8 

μM) nitrate concentrations at station 14.  

Overall, ammonium accumulates from upstream to downstream excluding slight 

decreases in ammonium at K07 and K11 (Figure 8D, Table 2). The highest average 

concentration of ammonium is observed at K13, 3.5±1.7 μM. Ammonium decreases from K13 to 

station 14 where the average concentration is 1.7±2.1 μM. Overall lowest average concentrations 

of ammonium (0.8±0.4 μM) are found in the headwaters of the KR (K01).  
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Table 2. Mean ± standard deviation (SD) and maximum silicate, phosphate, nitrate, and 

ammonium concentrations for all mainstem KR stations and HS (station 14) from 2011-2013.  

 
 

Temporal Trends 

 

In addition to the spatial distribution of nutrients from upstream to downstream, nutrients 

also vary seasonally and interannually. High silicate concentrations dominate during the summer 

months, with the exception of downstream stations K11-K13 in 2011 and 2012 (Figure 8A). 

2013 has the highest silicate concentrations of downstream stations K10-K13. Silicate is most 

depleted during the spring and fall months for all three years. In HS, silicate is relatively depleted 

in all sampled months when compared to the silicate concentrations contained within the river.  

In contrast to the silicate concentrations in HS, phosphate maintains the highest 

concentrations in HS from 2011 through 2013 (Figure 8B). K13 also maintains relatively high 

phosphate concentrations in all sampled months from 2011 through 2013. Phosphate 

concentrations are relatively lower in upstream stations K01, K03, and K05 during the late 

summer months, but relatively high in the late spring/early summer during all three years. 

Concentrations are higher in the summer at K07 for 2011 and 2012, but low in the summer and 

high in the spring and fall in 2013.  
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For each of the 3 sampling years, the highest nitrate concentrations were observed at K01 

and lowest nitrate concentrations were observed in HS; however, significant seasonal variations 

are observed on top of this larger trend (Figure 8C). High nitrate concentrations are observed in 

the spring of 2012 and 2013 at stations K01-K12 and in the fall at K01 from 2011-2013. In 

addition to low nitrate concentrations in HS, markedly low concentrations of nitrate also appear 

at K13, excluding relatively higher nitrate concentrations in the fall of 2011 and 2013 and in the 

spring of 2013.  

Ammonium differs more interannually from upstream to downstream than the other 

nutrients (Figure 8D). In all sampled months from 2011 through 2013, K12 and K13 have the 

highest ammonium concentrations. Ammonium concentrations appear to be the greatest overall 

in 2013, aside from station 14 which has the lowest ammonium values. Station 14 has highest 

concentrations throughout the year in 2011, but significantly lower concentrations in 2012 and 

2013. From 2011 through 2013, K10 and K11 have anomalously high concentrations of 

ammonium in the spring and fall and lower concentrations in the summer. K05 and K07 display 

isolated high concentrations events in all three years with the addition of K01 and K03 during 

2012 and 2013.  
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Figure 8. Time series from 2011-2013 of nutrients (A) silicate, (B) phosphate, (C) nitrate, and 

(D) ammonium from the Kennebec River (main stem stations 1-13) and Harpswell Sound 

(station 14). Each subplot is color coded by the nutrient concentration.  

 

 The nutrient ratios N:P and N:Si reveal similar trends in accumulation and utilization 

from upstream to downstream (Figure 9, Appendix, Table 2). From K01 to K07, the N:P ratio 

decreases from 115.6±94.4 to 17.7±9.0 which indicates a gain in phosphate and/or a decrease in 

nitrate moving downstream. The N:P ratio increases from K10 to K11 and then decreases again 

at station 14 where the N:P ratio is lowest, 0.3±0.2. The range in N:Si, 0.04±0.02 to 0.09±0.06, is 

significantly smaller than the range in N:P. The small range in N:Si demonstrates that all stations 

have a high silicate concentration when compared to nitrate. All changes in the N:Si ratio are 

small when compared to the changes observed in N:P. 
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Figure 9. (A) Nitrate:phosphate (N:P) and (B) nitrate:silicate (N:Si) average molar 

concentrations plotted for each Kennebec River main stem station (1-13) and Harpswell Sound 

(station 14) for the 2011-2013 time period. Error bars represent the calculated standard deviation 

from first computing the nutrient ratio, then computing the standard deviation of taking the 

average of those nutrient ratios. A line of reference is plotted at 0.   

Phytoplankton Pigment Concentration and Composition 

 Spatial and temporal trends in phytoplankton pigments correlate with nutrient patterns.  

Relatively low nutrient concentrations in the upstream stations when compared to downstream 

stations is reflected by the relatively low phytoplankton pigment concentrations in upstream 

versus downstream stations.  

Spatial Trends  

 

 TChla (representing phytoplankton biomass) varies by an order of magnitude from an 

average concentration of 0.801±0.39 μg/L, measured at K05, to 8.544±7.745 μg/L, measured at 

K11, with the overall highest average and maximum concentrations recorded at downstream 

stations K11-14 (Figure 10A, Table 3). K11 has the highest observed maximum concentration in 
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TChla, 25.6 μg/L, with the second highest maximum and average concentrations recorded in HS. 

The overall lower TChla concentrations observed in upstream stations when compared to 

downstream stations are consistent with the overall lower nutrient concentrations in upstream 

stations.  

 TChlb (representing chlorophytes) reflects a similar upstream to downstream pattern as 

TChla with a shift in concentration from relatively low to high concentrations occurring between 

K10 and K11 (Figure 10B). Overall average concentration in TChlb ranges from 0.031±0.018 

μg/L to 0.239±0.128 μg/L, with upstream stations K01-K10 ranging from 0.031±0.018 μg/L to 

0.04±0.051 μg/L and downstream stations K11-14 ranging from 0.108±0.068 μg/L to 

0.239±0.128 μg/L. The overall highest average and maximum concentrations of TChlb are 

observed at station 14, with TChlb increasing from K12 to 14.  

 Fuco (representing diatoms and red algal PFTs) also closely resembles the pattern of 

TChla with highest average concentrations observed at stations K11-14 (Figure 10C). 

Downstream stations range in average Fuco concentration from 0.611±0.391 μg/L to 

2.597±2.806 μg/L while upstream stations range from 0.167±0.101 μg/L to 0.308±0.17 μg/L. 

Maximum (10.083 μg/L) and highest average concentrations occur at K11, the same station as 

the observed largest concentrations of TChla. Overall, each data point for TChla matches the 

relative magnitude of each point in the Fuco time series. 

 Perid (representing dinoflagellates) ranges from 0.005±0.006 μg/L, measured at K01, to 

0.171±0.174 μg/L measured at station 14 (Figure 10D). Thus, smallest and largest concentrations 

are observed at the headwaters of the KR and in the coastal waters at HS, respectively. There is 

minimal Perid in stations K01-K12 with the largest average concentration, amongst these 
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stations, observed at K10. The highest maximum concentration of Perid is found at K13 with a 

value of 1.83 μg/L. 

Table 3. Mean ± standard deviation and maximum Total Chlorophyll a, Total Chlorophyll b, 

Fucoxanthin, and Peridinin concentrations for all mainstem KR stations and HS (station 14) from 

2011-2013. 

 
 

Temporal Trends 

 

Temporally, the pigments appear to be overall less variable interannually than nutrients 

but display seasonal patterns that are co-related to the seasonal trends in nutrients. The temporal 

patterns in TChla and Fuco are the same, just with a smaller magnitude for Fuco concentrations 

(Figure 10A, C). Highest concentrations for both pigments are observed in almost all sampled 

months from 2011-2013 at K11. Anomalously high concentrations in each pigment are also 

observed at K03 in the fall and spring months for all three years. Overall, relatively high 

concentrations are observed in the fall and spring months in upstream stations K01-K10 while 

high concentrations are found in the summer in downstream stations K11-14. The high 

concentrations in Fuco and TChla seasonally corresponds with low concentrations of silicate in 

the fall and spring in upstream stations and summer in downstream stations (Figure 8A).  
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TChlb is highest during the summer months at all stations (Figure 10B). Downstream 

stations K11-14 maintain a strong presence of TChlb for the duration of the summer months in 

all 3 years while upstream stations K01-K07 have single high measurements in each year in the 

summer. K10 has anomalously high concentrations of TChlb during the mid-summer in 2011 

and 2012, but lower concentrations in 2013. Overall, lower concentrations of TChlb are found in 

the spring and fall months in all stations except station 14.  

Perid displays the lowest concentrations out of all 4 pigments in all 3 years from K01-

K12 (Figure 10D). K13 has the highest concentrations of Perid in the late summer months for all 

3 years and station 14 has high concentrations in the spring and summer in all 3 years. In May 

2012, an anomalously high concentration of Perid was observed at K03, K05, and K07, reaching 

a peak concentration at K05.  

 
Figure 10. Time series from 2011-2013 of dominant phytoplankton pigments (A) Total 

Chlorophyll a, (B) Total Chlorophyll b, (C) Fucoxanthin, and (D) Peridinin from the Kennebec 

River (main stem stations 1-13) and Harspwell Sound (station 14). Each subplot is color coded 

by phytoplankton pigment concentration.  
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Kennebec River Phytoplankton Communities  

Kennebec River Cluster Analysis 

 

 To begin to understand how phytoplankton communities are constructed and which 

pigments are co-located, a cluster analysis was conducted on all main stem stations from K01-

K13 (Figure 11). The cluster analysis revealed two dominant phytoplankton pigment clusters: a 

green algae cluster and a red algae cluster. A cluster between Perid and HexFuco, and ButFuco 

and Allo form the green algae cluster and a cluster between Caro, TChlc, Fuco, Diad, and Diato 

and a slightly separate green algal cluster consisting of TChlb and Zea form the red algae cluster. 

Thus, TChlb and Zea are co-located with the red algae pigments while the other green algae 

pigments cluster separately.  

 
Figure 11. Hierarchical cluster analysis of KR mainstem stations K01-K13 pigments using a 

correlation distance of 1-R (R=Pearson’s correlation coefficient between pigments) and Ward’s 

linkage method. Each cluster is color coded based on the dominant taxonomic value. 

 

Kennebec River Empirical Orthogonal Function Analysis 

 

To understand the spatial and temporal distribution of the pigment clusters found in the 

KR, an EOF analysis was first conducted on all main stem stations from K01-K13. The EOF 
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modes were consistent with the groupings found in the cluster analysis. The first four EOF 

modes explained 99.5% of the variance in pigment data and represent four distinct phytoplankton 

communities in the Kennebec River: diatoms; dinoflagellates; chlorophytes, cryptophytes, and 

prymnesiophytes; and chlorophytes, euglena, and cryptophytes (Figure 12).  

EOF Spatial Trends  

 

There is a distinct spatial boundary for all 4 modes between stations K01-K10 and K11-

K13 for modes 1 and 2 and K01-K07 and K10-K13 for modes 3 and 4. The diatom community, 

represented by EOF mode 1, is co-related to all other pigments and explains the greatest 

variance, 97.6% (Figure 12A). The phytoplankton within the river are therefore driven by diatom 

biomass and thus the other phytoplankton communities, while taxonomically distinct, are minor 

contributors to the overall variability. The EOF mode 1 amplitude ranges from -0.06 μg/L to 0.06 

μg/L with highest amplitudes observed at K11. Downstream stations K11-K13 are out of phase 

with upstream stations K01-K10 where the EOF amplitude is almost always negative.  

EOF mode 2 represents a dinoflagellate community co-related with chlorophytes and 

cryptophytes, explaining only 1.2% variance (Figure 12B). Diatoms are anti-correlated with 

these taxa. The EOF amplitude values range from -0.006 μg/L to 0.006μg/L. This community 

displays the overall highest EOF amplitude values at K13. Similar to mode 1, K01-K10 are out 

of phase with downstream stations K11-K13.  

Mode 3 defines a chlorophyte, cryptophyte, and prymnesiophyte community, explaining 

just a small fraction of the variance (0.4%) (Figure 12C). Because there is a clear distinction in 

the community structure, this small fraction of the variance is biologically important. Diatoms 

and dinoflagellates are anti-correlated with this mode. EOF amplitudes range from -0.008 μg/L 
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to 0.008μg/L with the highest EOF amplitudes observed at K10-K13. In this mode, K01-K07 

mostly display negative EOF amplitudes while K10-K13 have more positive EOF amplitudes.  

Mode 4 only explains 0.3% of the overall variance and represents a chlorophyte, euglena, 

and cryptophyte community (Figure 12D). Diatoms are anti-correlated with this mode. Mode 4 

EOF amplitudes have the smallest range compared to previous modes, ranging from -0.005 μg/L 

to 0.005 μg/L. Similar to mode 3, K01-K07 have overall lower, more negative EOF amplitudes 

than K10-K13 where the largest positive EOF amplitudes are observed.  

EOF Temporal Trends 

 

 The diatom community (mode 1) displays very similar seasonal trends interannually 

(Figure 12A). Highest EOF amplitudes found in downstream stations K11-K13 dominate in the 

late spring and summer months. Lowest EOF amplitudes in the downstream stations occur in the 

early spring and fall particularly for K12 and K13 while relatively high amplitudes are observed 

in almost all sampled months for K11. Upstream stations K01-K10 display negative EOF 

amplitudes for almost all sampled months and all 3 years.  

 The dinoflagellate community (mode 2) varies interannually with highest EOF 

amplitudes in downstream stations K11-K13 in 2011 and lower amplitudes in 2012 and 2013 

(Figure 12B). K13 has the highest EOF amplitude values for all 3 years which is consistent with 

the constant high Perid concentration (Figure 9). The overall highest amplitudes at K13 occur in 

the summer months with slightly lower amplitudes in the fall and spring. Upstream stations K01-

K07 maintain negative amplitudes with less negative amplitudes in the summer months.  

The chlorophyte, cryptophyte, and prymnesiophyte community (mode 3) demonstrates 

dominance in the summer months for all stations and across the 3 year time series (Figure 12C). 

K01-K07 have smaller magnitude positive amplitudes in the summer months, except for an 



 35 

anomalously high amplitude observed in the early summer at K07 in 2011. K10-K13 have the 

highest EOF amplitudes in the summer for all 3 years with negative EOF amplitudes observed in 

the spring and fall.  

The chlorophyte, euglena, and cryptophyte community (mode 4) also maintains high 

amplitude values in the summer months with lower amplitudes in the fall and spring at all 

stations (Figure 12D). Similar to the mode 3 community, highest amplitudes are found in K10-

K13; however, some of the largest negative amplitudes are also observed during the summer in 

2012 at K11 and K13. Negative amplitudes in the fall and the spring correspond with the anti-

correlated diatom community.  
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Figure 12. Pigment Empirical Orthogonal Function loadings of modes 1-4 (A-D) (right) and 

respective time series (left) for the Kennebec River main stem stations from 2011-2013. Bar 

plots are color coded to match the cluster analysis (Figure 11). The mode number and percent 

variance explained by each mode are displayed above each bar plot. Time series plots are color 

coded by EOF amplitude. 

 

 Overall, since upstream stations K01-K10 most often had significantly smaller EOF 

amplitude magnitudes and often were out of phase with downstream stations K11-K13, a 
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separate cluster and EOF analysis was conducted for downstream stations K11-K13 (Figure 1, 2, 

Appendix). Cluster and EOF results were almost identical to the cluster and EOF analysis 

conducted on the entire KR (Figures 11,12). This indicates that the downstream stations were 

driving the results for the entire river.  

Upstream Kennebec River Phytoplankton Communities  

To account for the clear differences between stations K01-K10 and K11-K13, a separate 

cluster and EOF analysis was conducted for upstream stations K01-K10.  

Upstream Cluster Analysis 

 

 Upstream stations have two different clusters than those found in downstream stations 

(Figure 13). A cluster with TChlb, Zea, Caro, and Allo along with HexFuco and ButFuco 

construct a green algae cluster and Fuco, TChlc, and Diad along with Diato and Perid construct a 

red algae cluster. This reveals that in upstream stations the green algae cluster separately from 

the red algae, but Perid clusters along with the red algae.  

 
Figure 13. Hierarchical cluster analysis of upstream KR mainstem stations K01-K10 pigments 

using a correlation distance of 1-R (R=Pearson’s correlation coefficient between pigments) and 

Ward’s linkage method. Each cluster is color coded based on the dominant taxonomic value.  
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Upstream Empirical Orthogonal Function Analysis  

 

Expanding on the results of the cluster analysis, the EOF analysis conducted on upstream 

stations reveals an upstream phytoplankton community structure that is distinct from the 

downstream community. The first four EOF modes explain 97.8% of the variance in pigment 

data in upstream KR stations (K01-K10) and represent four different distinct phytoplankton 

communities: diatoms, chlorophytes and cryptophytes, chlorophytes, and cryptophytes and 

euglena.  

EOF Spatial Trends  

 

The diatom community, represented by mode 1, explains 76.9% variance (Figure 14A). 

All pigments are co-variable in this mode. EOF amplitude ranges from -0.02 μg/L to 0.2 μg/L 

with the overall highest amplitudes observed in upstream stations K01 and K03 while lowest 

amplitudes are observed at K05.  

Mode 2, representing the chlorophyte and cryptophyte community, explains 12.7% 

variance (Figure 14B). This community is anticorrelated with diatoms, but co-related to 

dinoflagellates. Although dinoflagellates co-vary with this community, the loading value is 

significantly smaller than the dinoflagellate loading value observed in EOF mode 2 for all KR 

main stem stations (Figure 12B). EOF amplitude ranges from -0.008 μg/L to 0.008μg/L with 

highest amplitudes observed at K10.  

 Mode 3 represents a chlorophyte community which explains 6.1% variance (Figure 14C). 

This community is anti-correlated with cryptophytes. EOF amplitudes range from -0.008 μg/L to 

0.008 μg/L. All stations contain negative and positive EOF amplitudes with highest amplitudes 

at K07 and lowest at K05. The lowest amplitudes at K05 indicate the dominance of cryptophytes, 

the anti-correlated community.  
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 Mode 4, explaining 2.1% variance, represents a cryptophyte and euglena community 

(Figure 14D). EOF amplitudes range from -0.005 μg/L to 0.005μg/L. Chlorophytes and 

dinoflagellates co-vary with mode 4 while diatoms and cyanobacteria are anti-correlated. 

Positive amplitude values are maintained at K05. K01 has consistently negative EOF amplitude 

values, indicating the dominance of cyanobacteria and/or diatoms.  

EOF Temporal Trends 

 

Diatoms (mode 1) exhibit a strong seasonal pattern with high positive amplitude values 

occurring in the spring and fall and negative amplitudes in the summer (Figure 14A). K01 and 

K03 exhibit the largest positive amplitudes in the spring and fall with negative amplitudes during 

the summer for all 3 years. K05 has the most negative amplitudes but exhibits large positive 

amplitudes in the spring of 2012. All stations below K05 have relatively lower magnitude 

positive amplitudes in the spring and summer and more negative amplitudes overall when 

compared to upstream stations K01 and K03.  

The chlorophyte and cryptophyte community (mode 2) exhibits high positive amplitudes 

in the mid-summer months for all 3 years and in all upstream stations (Figure 14B). The overall 

highest EOF amplitudes are observed during the summer months at K10 and during the summer 

of 2011 at K07. Anomalously low concentrations of the chlorophyte and cryptophyte community 

occur when the diatom community (mode 1) exhibits positive EOF amplitudes in the fall and 

spring (Figure 14A, B). 

The chlorophyte community (mode 3) positive amplitudes have discrete peaks that vary 

monthly and annually (Figure 14C). The highest positive amplitude values are observed in June 

2011 and May 2013 at K07; however, the most consistent positive amplitude values are found at 
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K03 and K10. The anti-correlated cryptophyte community, represented by negative amplitudes is 

consistently present at K05, particularly in 2012 and at K01 in 2011.  

The cryptophyte and euglena community is consistently present at K05 in all 3 years with 

constant positive amplitude values (Figure 14D). At K01, K03, and K07, distinct spring and fall 

positive amplitudes are observed in all 3 years with the overall largest amplitude occurring in the 

spring, 2011 at K07. Negative amplitudes, representing cyanobacteria, are consistently present 

during the summer and fall at K01 for all 3 years. Distinct negative amplitudes can also be found 

during the summer in all 3 years at K07 and K10. This could relate to cyanobacteria or the 

diatom community which is also anti-correlated with this mode and displays positive loadings in 

mode 1 during the summer at these stations.  

 

 

 

 



 41 

 

 
Figure 14. Pigment Empirical Orthogonal Function loadings of modes 1-4 (A-D) (right) and 

respective time series (left) for the Kennebec River main stem stations 1, 3, 5, 7, and 10 from 

2011-2013. Bar plots are color coded to match the cluster analysis for upstream KR stations 

(Figure 13). The mode number and percent variance explained by each mode are displayed 

above each bar plot. Time series plots are color coded by EOF amplitude.  
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Harpswell Sound Nutrient Regime  

 In understanding the KR phytoplankton community structure and nutrient regime, we 

transition into the coastal waters of HS, beginning with an initial assessment of HS nutrients 

through an EOF analysis of the years overlapping with the KR data, 2011-2013.  

 The nutrient EOF defines 3 distinct nutrient regimes (Figure 15). Mode 1, which explains 

88.3% of the variance, is represented dominantly by phosphate with a loading value of 1 (Figure 

15A). Silicate and nitrate slightly co-vary with this mode. Mode 2 explains 11.5% variance and 

represents a silicate regime with co-varied nitrate and anti-correlated phosphate (Figure 15B). In 

mode 3, which explains only 0.3% variance, nitrate dominates with correlated phosphate, only 

minimally contributing to the variance, and anti-correlated silicate (Figure 15C). Although some 

of the nutrients are co-variable within each mode, each nutrient regime displays a unique 

temporal trend. 

EOF Temporal Trends 

 

Mode 1, the phosphate nutrient regime, has the largest EOF amplitude range, -10 μM to 

11 μM, and has minimal interannual variability (Figure 15A). The largest positive EOF 

amplitudes for each year are observed in late-April/early-May with the overall largest positive 

amplitude observed in the spring of 2011. More negative amplitudes are observed in the late 

summer. A mid-summer positive amplitude, however, is observed in all 3 years. There is similar 

interannual variability in the phosphate regime with all 3 years sharing a similar curve shape 

with only a slight lag time between peak positive and negative amplitudes for each year.  

 The silicate nutrient regime (mode 2) ranges in amplitude from -3 μM to 7 μM and 

demonstrates more interannual variability when compared to the phosphate regime (Figure 15B) 

The largest positive amplitude value is observed in the early spring (late-March) of 2012. 
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Positive amplitude peaks are also observed in the spring (late-April) and summer (mid-May and 

early-June) of 2011 and in the summer of 2013 (late-May). Negative amplitudes are also found 

during the summer months for all three years.  

 Mode 3, representing the nitrate nutrient regime, has the smallest amplitude range from   

-0.4 μM to 0.7 μM and has the greatest interannual variability (Figure 15C). The largest positive 

amplitude value is observed in the late summer (early-July) of 2011. Largest positive amplitude 

values for each year are observed during the summer months. Each year has a different pattern in 

positive and negative amplitudes, but in all years the transition from positive to negative appears 

to occur relatively quickly when compared to the other nutrient regimes.  

 

Figure 15. Nutrient Empirical Orthogonal Function loadings (right) and corresponding EOF 

amplitude time series (left) of modes 1-3 (A-C) for Harpswell Sound 2.5m depth measurements 

from 2011-2013. The mode number and percent variance explained by each mode are displayed 

above each bar plot. Time series are color coded by the largest loading value observed in each 

respective mode (mode 1: phosphate, mode 2: silicate, mode 3: nitrate). Data points for each year 

are connected with a line to discern trends. Line type indicates year: 2011 is a solid line, 2012 is 

a dashed line, and 2013 is a dotted line. A black line is plotted at 0 to help distinguish between 

positive and negative amplitudes. 



 44 

Harpswell Sound Phytoplankton Communities 

Harpswell Sound Cluster Analysis  

 

Similar to the KR, a cluster analysis was first conducted to understand which pigments 

co-locate and form communities. The hierarchical cluster analysis revealed 3 pigment clusters 

that dominate the co-variability of the HS pigment data: green algae, pelagophytes, haptophytes, 

and cyanobacteria; dinoflagellates and cryptophytes; and red algae and diatoms. Fuco, Diato, 

Diad, TChlc, and Caro form a diatom cluster, Perid and Allo form a cryptophyte and 

dinoflagellate cluster, and ButFuco, HexFuco, Zea, and TChlb form a green algae cluster (Figure 

16). Clusters also represent two size classes of phytoplankton: (1) nano-plankton (green algae) 

and pico-plankton (cyanobacteria) and (2) micro-plankton (diatoms).  

 
Figure 16. Hierarchical cluster analysis of Harpswell Sound pigments using a correlation 

distance of 1-R (R=Pearson’s correlation coefficient between pigments) and Ward’s linkage 

method. Each cluster is color coded based on the dominant taxonomic value.  

 

Harpswell Sound Empirical Orthogonal Function Analysis 2011-2013 

 

The same major taxonomic groups generated using the cluster analysis were found in the 

EOF analysis. The first four EOF modes explain 98.2% of the variance in pigment data and 
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represent four distinct phytoplankton communities in HS: diatoms; dinoflagellates, chlorophytes, 

and cryptophytes; chlorophytes and cryptophytes; and cryptophytes (Figure 17). Pigments 

representing a diatom community contribute most to EOF mode 1 which explains 82.8% of the 

overall variance (Figure 17A). All of the other pigments are co-related, but diatoms dominate the 

mode. Mode 2, which explains 11.0% variance, is represented by covariance between 

dinoflagellates, chlorophytes, and cryptophytes (Figure 17B). Prymnesiophytes minimally 

contribute to mode 2 as well. Diatoms display negative loading values and are therefore anti-

correlated with these taxa. In mode 3, dinoflagellates become strongly anti-correlated while 

chlorophytes and cryptophytes co-vary with diatoms which only minimally contribute to the 

variance of this mode (2.7%) (Figure 17C). Mode 4 only explains 1.7% variance and is 

represented by a cryptophyte dominated community (Figure 17D). In this mode, chlorophytes 

and dinoflagellates are anti-correlated while diatoms co-vary.  

EOF Temporal Trends  

 

 The diatom community (mode 1) has the overall largest EOF amplitude values compared 

to the other phytoplankton communities, ranging from -0.5 μg/L to 1 μg/L (Figure 17A). The 

overall largest EOF amplitude was observed in late-May of 2011. Positive amplitudes for 2012 

and 2013 were also recorded during the summer months. Negative amplitudes were found during 

the spring and late summer of 2011 and 2012 and in the mid-summer of 2013.  

 The dinoflagellate, chlorophyte, and cryptophyte community (mode 2) have amplitudes 

ranging from -0.2 μg/L to 0.4 μg/L with largest positive amplitudes anti-correlating with mode 1 

large positive amplitudes (Figure 17B). In 2011, the maximum peak positive amplitude occurs in 

early-May, preceding the mid-summer peak in the diatom community in 2011. Another positive 

peak amplitude event occurs in July for all 3 years while the diatom community has relatively 
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lower positive or negative amplitudes. The largest negative amplitude in the summer of 2012 

occurs during the same time of a peak positive amplitude value for the diatom community in 

2012. Since diatoms are anti-correlated with mode 2, the temporal anti-correlation between the 

two communities is expected.  

 Mode 3, representing the chlorophyte and cryptophyte community ranges from -0.1 μg/L 

to 0.1μg/L (Figure 17C). Largest positive amplitudes are observed in June and early-July for all 3 

years. The largest positive peak for 2011 and 2012 occur in early-July when the diatom 

community maintains negative amplitudes. The peak positive amplitude for 2013 occurs in mid-

June, preceding the late-June peak in the diatom community. In 2013, the mode 2 and mode 3 

communities display clear anti-correlation.  

 The mode 4 cryptophyte community ranges from -0.1 μg/L to 0.1μg/L and appears to 

precede blooms in the chlorophyte and cryptophyte mode 3 community (Figure 17D). In 2012 

and 2013, largest positive amplitude peaks occur in late-June and late-May, respectively, just 

preceding the peak positive amplitudes in the mode 3 community. Similar to all previous 

communities, the overall largest positive peak amplitude is observed in 2011. This peak occurs at 

a similar time as the mode 2 2011 peak positive amplitude event. Relatively lower positive or 

negative amplitudes occur when the mode 3 community has relatively higher positive values, 

representing the anti-correlation between these two communities.  
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Figure 17. Pigment Empirical Orthogonal Function loadings (right) and corresponding EOF 

amplitude time series (left) of modes 1-4 (A-D) for Harpswell Sound 2.5m depth measurements 

from 2011-2013. Bar plots are color coded to match the Harpswell Sound cluster analysis 

(Figure 16). The mode number and percent variance explained by each mode are displayed 

above each bar plot. The assumed taxonomic values of each mode are described within each 

subplot. Text color matches the EOF amplitude time series color which is based on the dominant 

loading value determined by each bar plot. Data points for each year are connected with a line to 

discern trends. Line type indicates year: 2011 is a solid line, 2012 is a dashed line, and 2013 is a 

dotted line. A black line is plotted at 0 to help distinguish between positive and negative 

amplitudes. 

 

Harpswell Sound Long Term Trends 

Since the 2011-2013 data is only a subset of the nutrient and phytoplankton pigment data 

for HS, EOF analyses for the HS nutrient and pigment data from 2008-2017 were conducted to 

assess the long-term trends in the HS nutrient regime and phytoplankton community structure.  

Harpswell Sound Nutrient Empirical Orthogonal Function Analysis 2008-2017 

 

 Over the long-term HS dataset from 2008-2017, silicate dominates the variance within 

the estuary (Figure 18). Mode 1 represents a silicate nutrient regime with co-variable nitrate and 



 48 

phosphate, explaining 79.9% of the variance (Figure 18A). Mode 2 explains 18.8% variance and 

represents a nitrate regime with co-varied phosphate and anti-correlated silicate (Figure 18B). 

Mode 3, which explains only 1.3% variance, represents a phosphate regime with anti-correlated 

silicate and nitrate (Figure 18C). 

 From 2008 through 2017, silicate displays a significant shift in concentration after 2014, 

nitrate displays the greatest interannual variability, and phosphate remains at relatively lower 

amplitude magnitudes (Figure 18D). Mode 1, representing a silicate regime, has the largest range 

in EOF amplitude, -4.4 μg/L to 27.5 μg/L. The overall highest positive amplitude is observed in 

2013, but relatively high amplitudes are observed from 2009 through 2013. In 2014, however, a 

shift in the silicate nutrient regime occurs with much lower EOF amplitudes observed from 2014 

through 2017. Mode 2, representing a nitrate regime, ranges in EOF amplitude from -2.7 μg/L to 

20.0 μg/L. Highest EOF amplitudes are observed in 2011 and 2016, but overall, the nitrate 

regime is quite variable interannually. Mode 3 (representing a phosphate regime) has the smallest 

range and maximum EOF amplitude value, ranging from -1.0 μg/L to 8.5 μg/L. Similar to mode 

2, the highest positive amplitudes are observed in 2011 and 2016. Throughout the time series, 

however, phosphate has relatively low amplitudes when compared to silicate and nitrate.  
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Figure 18. Mean-centered nutrient Empirical Orthogonal Function loadings of modes 1-3 (A-C) 

and the corresponding EOF amplitude time series (D) for Harpswell Sound from 2008-2017. 

EOF loading bars are color coded by nutrient. The mode number and percent variance are 

indicated above each bar plot. The EOF amplitude time series for each mode are plotted together 

with points color coded by the nutrient with the largest loading value (mode 1 is pink, mode 2 is 

yellow, and mode 3 is cyan). A black line is plotted at 0 to help distinguish between positive and 

negative amplitudes. 

 

Harpswell Sound Pigment Empirical Orthogonal Function Analysis 2008-2017 

 

The pigment EOF modes for the long-term analysis represent the same four distinct 

phytoplankton communities generated by the EOF conducted on the subset of data from 2011-

2013: diatoms; dinoflagellates, green algae, and cryptophytes; green algae and cryptophytes; and 

cryptophytes (Figure 19). The first four EOF modes explain 94.2% of the variance in pigment 

data with mode 1, representing the diatom community, explaining 69.8% variance. 

All phytoplankton communities identified by the EOF modes demonstrate an increase in 

the diatom community and decrease in the dinoflagellate, chlorophyte, and cryptophyte 

communities. Mode 1 (representing a diatom dominated community) has the highest positive 

amplitude, ranging from -0.3 μg/L to 0.9 μg/L (Figure 19A). The overall largest positive 
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amplitudes were observed in 2014 and 2017. Mode 2 (representing a dinoflagellate, chlorophyte, 

and cryptophyte community) ranges in amplitude from -0.2 μg/L to 0.6 μg/L with largest 

positive amplitudes observed in 2009 and 2011 and consistently lower positive amplitudes from 

2014 through 2017 (Figure 19B). The chlorophyte and cryptophyte community, representing 

mode 3, displays a similar interannual trend with lowest positive amplitudes observed from 2014 

through 2017 and largest positive amplitudes observed in 2009 and 2011 (Figure 19C). The 

mode 4 (representing a cryptophyte community) time series displays a similar amplitude trend as 

mode 1, but only ranges from -0.2 μg/L to 0.6 μg/L (Figure 19D).  
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Figure 19. Pigment Empirical Orthogonal Function loadings (right) and corresponding EOF 

amplitude time series (left) of modes 1-4 (A-D) for Harpswell Sound 2.5m depth measurements 

from 2008-2017. Bar plots are color coded to match the Harpswell Sound cluster analysis 

(Figure 16). The mode number and percent variance explained by each mode is displayed above 

each bar plot. The assumed taxonomic value of each mode is described in the bottom left corner 

of each bar plot. The EOF amplitude time series is color coded by EOF amplitude. A black line 

is plotted at 0 to help distinguish between positive and negative amplitudes. 
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Discussion 

Distinct River and Ocean Nutrient Regimes and Phytoplankton Communities 

Differences in raw nutrient and pigment concentrations along with differing community 

structures between the upstream stations and downstream stations including HS indicate that the 

KR upstream freshwater stations should be considered as a separate ecosystem from the tidally 

impacted downstream stations and HS. Thus, we reject our first hypothesis and confirm 

hypothesis 2: there is no connectivity (excluding silicate) between the KR and HS so the coastal 

waters can be considered a separate, ocean influenced ecosystem from the river ecosystem. The 

tidal influence at and downstream of K11 provides a flux of phosphate, nitrate, and ammonium, 

while silicate is primarily river-derived. Silicate concentrations accumulate moving downstream 

with highest concentrations observed in upstream stations K05 and K07 along with downstream 

stations. The presence of high silicate concentrations in both upstream and downstream stations 

indicate that silicate is a river-derived nutrient source to the coastal waters. In contrast, phosphate 

exhibits significantly higher concentrations in tidally-impacted stations when compared to the 

depleted upstream stations, indicating that phosphate is an ocean-derived nutrient source to the 

coastal phytoplankton communities. Because nitrate is depleted from upstream to downstream in 

the KR, nitrate at the mouth of the KR is also an ocean-derived nutrient. Ammonium exhibits 

lowest concentrations in the headwaters and highest concentrations at K13 which is reflective of 

the overall increase in primary productivity in the downstream stations (Clark et al., 2008).  

The flux of ocean-sourced nutrients sustains phytoplankton biomass that is 10 times 

greater in the tidally impacted stations and in HS when compared to upstream freshwater 

stations. This trend is not only observed in TChla (representing biomass), but also TChlb (green 

algae), Fuco (diatoms), and Perid (dinoflagellates) phytoplankton pigments. This indicates that 
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the biomass of phytoplankton taxa represented by these pigments increases significantly in 

downstream stations and in HS. In addition to the change in raw phytoplankton biomass, the 

composition of the phytoplankton communities in each ecosystem is distinct. In upstream 

stations, the four dominant communities consist of diatoms, chlorophytes, cryptophytes, and 

euglena while downstream stations and HS have the addition of a dominant dinoflagellate 

community. In addition to structural differences, the upstream diatoms behave differently in 

response to silicate concentrations when compared to the tidally impacted diatom communities.  

What drives these fundamental differences in nutrient regime and phytoplankton 

community structure between the river and ocean ecosystems? 

Upstream, Freshwater Nutrients and Phytoplankton Communities 

Upstream phytoplankton communities display a seasonal turn-over in phytoplankton 

community related to bedrock, agriculture and urban land use types, environmental limitations, 

and the presence or absence of competitive taxa. Temporally, diatoms bloom in the spring, 

chlorophytes and cryptophytes bloom in the summer, followed by just cryptophytes and euglena 

in the late-summer, and diatoms again in the fall.  

Seasonality in the upstream chlorophyte and cryptophyte phytoplankton communities and 

patterns in nutrient concentrations are governed by proximity to cultivated and developed land. 

The phytoplankton communities are spatially and temporally distributed in response to 

competition and access to necessary nutrients. Overall, the source of nitrate and phosphate 

transitions from upstream to downstream as an increase in cultivated and developed land starts 

establishing and influencing the nutrient regime beginning at K05. This is not only reflected by 

raw nitrate and phosphate concentrations, but also by the decrease in the N:P ratio moving 

downstream. These results corroborate the mechanisms described in Hunt et al., 2005 who found 
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that an increase in point-source inputs moving downstream would increase nitrate and phosphate 

concentrations, promoting biological activity. Increased biological activity due to point source 

nutrient input is also reflected by the isolated high concentrations of ammonium at K05 and K07 

(Clark et al., 2008). Unlike the stations downstream of K05, upstream stations K01 and K03 rely 

heavily on the nitrate and phosphate supply that accumulates in Moosehead Lake, the headwaters 

of the KR, and swamp input from the K01 and K03 sub-watersheds (Atkinson et al., 2019).  

The chlorophyte and cryptophyte community (upstream EOF mode 2) dominates in the 

summer months at K07 and K10, sub-watersheds that contain a relatively high percentage of 

cultivated and developed land. Temporally, blooming in the summer, and spatially, blooming at 

K07 and K10, allow for minimal competition with diatoms. Comparing the upstream mode 1 and 

mode 2 time series reveals that diatoms display a larger presence at K01 and K03 and precede 

the chlorophyte and cryptophyte blooms observed in the mid-summer months. In addition to the 

lack of competition in the summer, K07 and K10 provide ample amounts of nitrate and 

phosphate from cultivated land fertilizer runoff and from the accumulation of these nutrients as 

the KR flows downstream. Along with the highest concentration of cultivated land at K07, there 

is also a sewage treatment plant along the river that has been found to discharge many 

unregulated contaminants into the KR. The chlorophyte and cryptophyte community is then able 

to maximize on this new flux of nutrients. The chlorophyte community (upstream EOF mode 3) 

also dominates during the summer months at K07 for these similar reasons. The anti-correlated 

cryptophyte community however, dominates almost year-round at K05, just upstream of the 

chlorophyte community. Lack of competition from the chlorophyte community in addition to a 

presence of cultivated and developed land at K05 provides nutrient runoff and allows 

cryptophytes to dominate here.  
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The cryptophyte and euglena community (upstream EOF mode 4) also dominates during 

the summer months at all upstream stations, particularly at K05. The anti-correlated cryptophyte 

community in upstream EOF mode 3 and the upstream EOF mode 4 cryptophyte and euglena 

community are able to coexists at K05 with limited competition from the diatoms upstream and 

the chlorophytes downstream.  

The anti-correlated cyanobacteria community appears throughout most of the year for all 

3 years at K01 and during the summer at K07 and K10. Cyanobacteria often dominate in warmer 

water temperatures and nitrate/phosphate enriched environments (Havens et al., 2019). K01 is 

Moosehead Lake, the headwaters of the KR. The cyanobacteria community dominates at K01 in 

the summer months when the water is warmer and stagnant (Zhang et al., 2016). Moosehead 

Lake also sustains some of the highest concentrations of nitrate year-round amongst the upstream 

stations, providing the cyanobacteria with ample nutrient supply to maintain a dominant 

community almost year-round. Cyanobacteria also dominate at K07 and K10 from the surplus of 

nutrients delivered by cultivated land, and in the case of K07, unregulated nutrients from the 

sewage treatment plant. K07 has the lowest N:P ratio of the upstream freshwater stations which 

reflects the high phosphate inputs from the treatment plant. Pulses of these nutrients in the 

summer and fall allow cyanobacteria blooms to flourish.  

With high biological activity of the chlorophyte and cryptophyte community during the 

summer months, the seasonal trend in nitrate is consistent with Hunt et al., 2005 findings of 

lower nitrate concentrations in the summer and higher nitrate in the spring and fall. The trend in 

phosphate also agrees with Hunt et al., 2005. Phosphate limits productivity upstream, but 

movement downstream and an increase in point-source phosphate inputs promotes chlorophyte 

and cryptophyte blooms.  
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Contrary to the varying upstream to downstream source of nitrate and phosphate to the 

KR that is utilized by the chlorophytes and cryptophytes, the source of silicate remains constant 

throughout the watershed; silicate is derived from the bedrock and surficial geology of the KR 

watershed and accumulates from upstream to downstream. All KR stations contain a plethora of 

silicate (Turner et al., 2003), demonstrated by the low N:Si ratios for all stations, due to silicate 

rich bedrock exposure, easily weatherable high surface area glacial sediment deposits, and the 

presence of dams that promote further silicate weathering and accumulation (Sullivan et al., 

2000). 

Although there is a sufficient amount of silicate in the river water column (up to 40 μM), 

the diatom community (mode 1 for the upstream EOF) does not dominate at all stations; rather, 

they appear in anomalously high concentrations at K01, K03, and K10 during the spring, fall, 

and occasionally during the mid-summer. In the spring and fall, KR discharge tends to be high 

with snowmelt and rain. Discharge can also be high at select times during the summer due to 

recreational dam releases. Lower silicate during the spring and fall and during select times in the 

summer is attributed to dilution and also due to utilization by diatoms. Based on Sullivan et al., 

2000 findings, we expect dam water to be relatively enriched in silicate, with a longer water 

residence time, indicating that lower silicate concentrations in the mid-summer is most likely 

attributed to diatom utilization. In previous studies, diatoms have been found to dominate during 

periods of high discharge since they are able to withstand high turbulence waters while other 

taxonomic groups cannot (Reynolds, 1994; Bortolini and Bueno, 2013). It is surprising, however 

that much of the silicate during other seasons is unutilized by the diatoms and that silicate is, in 

fact, increasing moving downstream due to additive tributary sources.  
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Silicate is highest at K07 and K10 since these stations have accumulated unutilized 

silicate that originated upstream and are also positioned below dams, but diatom presence is still 

limited. Although the K07 sub-watershed almost entirely consists of sandstone, which is more 

difficult to weather based on Goldrich’s Weathering Series (Bierman and Montgomery, 2014) 

and results from Lasaga et al., 1994, the Madison dam just upstream of K07 most likely 

accumulates high silicate concentrations with a longer water residence time behind the 

impoundment (Sullivan et al., 2000). This is reflected by the 40μM of silicate in the water 

column in almost all sampled months. Diatom presence here, however, is limited. Much of this 

unused silicate is probably transported to K10 where high silicate concentrations are also 

observed in all sampling months. K10 also has a high sub-watershed percent sandstone, but also 

is positioned below the Waterville dam, promoting silicate accumulation (Sullivan et al., 2000).  

Perhaps there is a light limitation at K05-K10 that prevents the diatoms from maximizing 

on the silicate nutrient load (Chetelat and Pick, 2006). Although diatoms have been found to 

withstand lower light levels, the high turbidity of the KR in downstream stations may limit light 

too much for diatom survival. Further research on the specific species of diatoms dominating in 

the river is necessary to understand why their presence is limited with ample silicate.  

Overall, the phytoplankton communities found in the upstream, freshwater stations 

corroborate previous studies on river phytoplankton. The KR upstream phytoplankton 

community was dominated by green and red algal groups which have faster growth rates and are 

therefore able to better withstand constant river flow, turbulence, and lower light (Reynolds, 

1994; Bortolini and Bueno, 2013). Diatoms were found to dominate the upstream biomass, 

explaining 76.9% of the variance in upstream, freshwater stations which is consistent with the 

Descy et al., 2016 study of temperate river phytoplankton communities. Additionally, lower light 
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levels in the fall and spring due to higher discharge and more resuspended sediments allowed 

diatoms to dominate while less light limitation during the lower discharge summer months 

allowed for green algal group dominance (Chetelat and Pick, 2006; Descy et al., 2016). 

Dinoflagellates were not a dominant phytoplankton community which may indicate that the 

dinoflagellate in the river have a larger cell size, slower growth rate, and therefore, an inability to 

withstand the unstable river water column (Litchman et al., 2015).  

Downstream, Tidal Nutrients and Phytoplankton Communities 

 Upon the entrance into the coastal waters, a shift in nutrient regime and phytoplankton 

community occurs, therefore rejecting H1, the hypothesis that there is complete connectivity 

between the KR and coastal waters. The lower KR gains nitrate and phosphate from the ocean 

and silicate from the river which allows for an increase in phytoplankton biomass. Additionally, 

the river widens and river flow rate decreases. Here, dinoflagellates are introduced into the 

community structure (mode 2 of the entire KR EOF).  

 The phytoplankton community within the downstream KR stations, K11, K12, and K13, 

is more spatially variable based on competition between taxa for specific nutrients. Diatoms, 

representing the mode 1 community for the EOF on downstream stations, dominate during the 

mid-summer months at K11 while dinoflagellates dominate just downstream at K13. With 

abundant silicate from the river and a plethora of ocean nutrients transported tidally to K11, 

diatoms dominate. As silicate becomes depleted by the diatoms, the dinoflagellates also 

maximize on the available ocean nitrate and phosphate but dominate spatially separately from 

the diatoms. Since dinoflagellates do not require silicate for growth, they sustain high 

concentrations where there are sufficiently available nutrients and minimal competition at K13. 

Chlorophytes and cryptophytes vary temporally with the diatoms and dinoflagellates. They 
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utilize any residual nitrate and phosphate during the summer months that was previously left 

over by the diatoms and/or the dinoflagellates (Margalef, 1958). 

 The increase in primary production in the downstream, tidal stations is reflected by the 

accumulation and increase in ammonium. The furthest downstream KR station, K13, has the 

highest ammonium concentration which is an indicator of phytoplankton nitrate uptake (Clark et 

al., 2008).  

Harpswell Sound Nutrients and Phytoplankton Communities 

Phytoplankton communities are uniform across the freshwater to saltwater interface 

between the lower KR tidally impacted stations and HS. KR stations K11-K13 and HS share the 

same 3 dominant phytoplankton communities: diatoms, dinoflagellates, and chlorophytes and 

cryptophytes, although the timing of each of these communities differs from the Chops to HS. 

While in the downstream stations, phytoplankton communities are more spatially variable, in 

HS, the phytoplankton communities vary seasonally.  

In the analysis of HS from 2008-2017, the nutrient regime and phytoplankton community 

structure were found to vary systematically: diatoms bloomed first, stripping the waters of 

silicate, and dinoflagellates, chlorophytes, and cryptophytes bloomed subsequently, utilizing 

available nitrate and phosphate. In isolating a limited amount of surface data from 2011-2013, 

the nutrient regime and turn-over of the phytoplankton communities was contrary to this 

expected systematicity. While often diatoms are found to dominate in the spring and fall, the 

EOF time series displayed a diatom bloom in the mid-summer that was preceded by a 

dinoflagellate, chlorophyte, and cryptophyte bloom. In HS, however, there are often large diatom 

blooms that occur in February and therefore, this data captures and places emphasis on the 

secondary bloom (personal communication with Collin Roesler; 
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https://mclanelabs.com/imaging-flowcytobot/). Thus, data was not able to be collected early 

enough in the spring to observe the spring diatom bloom that would then be followed by the 

dinoflagellate, chlorophyte, and cryptophyte bloom, as expected in phytoplankton species 

succession (Margalef, 1958). 

Additionally, while the nutrient EOF for 2008-2017 displayed the dominance of a silicate 

nutrient regime, followed by nitrate, then phosphate which correlated with the nutrient 

requirements for diatoms, followed by dinoflagellates, chlorophytes, and cryptophytes, the 2011-

2013 time series presented phosphate as the nutrient regime explaining the highest percent 

variance, followed by silicate, then nitrate. This is most likely due to the dinoflagellate 

community preceding the diatom bloom within this set of data. A compilation of more surface 

water data points could help resolve this correlation between nutrients and phytoplankton 

community for the overlapping KR and HS years.  

2011 was clearly driving the patterns shown in the nutrient and phytoplankton EOF 

analysis for the 2011-2013 time period. In the EOF nutrient analysis from 2008-2017, nitrate and 

phosphate EOF amplitudes displayed anomalously high positive amplitudes and silicate also 

displayed higher positive amplitudes. There were also larger EOF amplitude magnitudes 

observed in 2011 for the pigment EOF analysis from 2008-2017. Thus, when isolating the years 

2011-2013, 2011 dominates the EOF results in nutrient regime and phytoplankton community. 

Higher phytoplankton biomass is also reflected by the anomalously high concentrations of 

ammonium observed in HS in 2011. Highest EOF amplitude magnitudes were also observed in 

upstream phytoplankton communities, indicating that 2011 was overall an anomalously high year 

for phytoplankton biomass and nutrients.  

https://mclanelabs.com/imaging-flowcytobot/
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The nutrient EOF for 2011-2013, however, still displayed the non-correlation between 

nutrients, confirming that either the sources or utilization of the nutrients is sequential and not 

covariant. In other words, each nutrient EOF time series for 2011-2013 reflected the variability 

in nutrient source or utilization. Considering source, phosphate displayed minimal interannual 

variability which we might expect because not only is it an ocean-sourced nutrient to the estuary, 

but it also has the longest ocean residence time when compared to other biologically limiting 

nutrients (Martiny et al., 2019). In contrast, river-derived silicate is more variable interannually 

due to the variation in KR discharge seasonally and interannually. Nitrate displays the greatest 

interannual variability, as it is primarily sourced by deep ocean water replenishment through 

mixing across the pycnocline (Rebuck and Townsend, 2014). In considering utilization, since the 

dinoflagellate, chlorophyte, and cryptophyte bloom precedes the diatom bloom, we would expect 

nitrate and phosphate to be utilized first, quickly followed by silicate uptake by diatoms which is 

reflected in the nutrient EOF for 2011-2013.  

Although the HS surface water data was relatively limited from 2011-2013, the same 4 

dominant phytoplankton communities observed in the 10-year time series were still obtained 

within this 3-year time series and allowed us to confirm the consistency in phytoplankton 

community structure between downstream stations K11, K12, and K13 and HS. This consistency 

reveals that both downstream, tidally-impacted river stations and estuarine ecosystem 

phytoplankton communities are driven by ocean variability while upstream, freshwater 

phytoplankton communities are governed by land use, bedrock, and physical river properties. 

Change Overtime in Harpswell Sound Phytoplankton Community and Nutrient Regime 

Over the past decade, the phytoplankton community structure and nutrient regime has 

shifted in HS. With a dramatic increase in diatom concentrations and a slight decrease in 
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dinoflagellates, chlorophytes, and cryptophytes, in 2014, the estuary has observed a shift from a 

more diverse phytoplankton community to a diatom-dominated structure. With this increase in 

diatoms, Pseudo-nitzchia spp., an amnesic shellfish poisoning diatom species, is showing up in 

significant populations at the Bowdoin College Schiller Coastal Studies Center (HABON-NE, 

2019-2023). The increased concentration in diatoms forced a decline in silicate concentration, 

with values remaining well-below the mean from 2014-2017. These findings have negative 

implications for marine upper trophic levels and the Maine fishing industry (Sellner et al., 2003).  

Conclusion 
 

Overall, this study sought to understand the influence of the Kennebec River (KR) on 

Harpswell Sound (HS) through a spatial and temporal approach. Results revealed the minimal 

connectivity between the KR upstream, freshwater ecosystem and the KR downstream, tidally 

impacted and HS estuarine ecosystems. Seasonality and spatial distribution of upstream 

phytoplankton communities are driven by river-variability based on bedrock, surrounding 

agriculture and urban land use types, environmental limitations, and the presence or absence of 

competitive taxa while seasonality in downstream and HS phytoplankton communities is driven 

by ocean variability and KR silicate input. These differences are reflected by the minimal 

influence of river nutrients on coastal waters (excluding silicate), the increase in phytoplankton 

biomass by a factor of 10 in the KR tidal downstream stations and in HS, the absence of a 

dominant dinoflagellate community in the freshwater upstream stations, and the difference in 

seasonality between each ecosystem.  

These findings are not to say that the river does not have an influence on the estuarine 

ecosystems, as silicate from the KR does reach and impact the HS phytoplankton community; 

rather, this study reveals the necessity to strongly consider changes taking place in the ocean that 



 63 

may have a greater impact on coastal Maine estuaries and other tidally impacted environments. It 

is therefore important to continue to monitor river systems as increased anthropogenic nutrient 

input and increased high discharge events with climate change could increase river impact on 

coastal waters; however, future studies must strongly consider variation in the ocean nutrient 

reservoir along with other nutrient sources to coastal waters including groundwater.  
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Appendix 
 

Table 1. Main stem Kennebec River station sub-watershed bedrock and land use area coverage 

and percent coverage. The bedrock section describes each rock type observed within each sub-

watershed and its respective area and percent coverage. The land use section describes each land 

use type within each sub-watershed and its respective area and percent coverage. Bedrock and 

land use data was obtained from USGS and was processed in ArcGIS.  
Bedrock Land Use 

Sub-

Watershed Rock Type 

Area 

Coverage 

(km2) 

Percent 

Coverage 

(%) 

Land Use 

Type 

Area 

Coverage 

(km2) 

Percent 

Coverage 

(%) 

K01 mudstone 347.95 40.62 Forested 449.51 52.49 

 sandstone 166.73 19.46 

Open Fresh 

Water 314.63 36.74 

 gabbro 116.71 13.62 Swamp 52.15 6.09 

 

felsic volcanic 

rock 56.54 6.6 Floodplain 13.55 1.58 

 melange 52.26 6.1 

Harvested 

Forest 10.44 1.22 

 limestone 27.52 3.21 Barren land 4.46 0.52 

 greenstone 23.22 2.71 

Cultivated 

Land 2.19 0.26 

 diorite 17.48 2.04 Wetland 1.15 0.13 

 quartzite 13.75 1.6    

 

metasedimentary 

rock 12.45 1.45    

 rhyolite 8.95 1.05    

 granite 8.54 1    

 slate 4.37 0.51    

 schist 0.16 0.02    

K03 quartzite 23.52 34.21 Forested 77.14 81.89 

 mudstone 14.62 21.26 Swamp 8.41 8.92 

 melange 10.98 15.97 

Harvested 

Forest 3.54 3.75 

 sandstone 10.77 15.67 

Open Fresh 

Water 2.33 2.47 

 

metasedimentary 

rock 6.97 10.13 Floodplain 2.33 2.47 

 phyllite 1.06 1.54 Developed 0.87 0.92 

 gabbro 0.44 0.64 Barren Land 0.59 0.63 

 

mafic volcanic 

rocks 0.4 0.59 Wetland 0.09 0.1 

K05 quartzite 51.15 78.99 Forested 43.87 67.8 

 schist 8.18 12.63 Developed 6.42 9.93 
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 shale 5.12 7.9 

Cultivated 

Land 3.42 5.29 

 sandstone 0.3 0.47 

Open Fresh 

Water 2.93 4.53 

    Floodplain 2.81 4.35 

    Swamp 2.78 4.3 

    

Harvested 

Forest 2.13 3.29 

    Barren land 0.29 0.45 

    Wetland 0 0.01 

K07 sandstone 64.32 96.99 Forested 38.83 58.57 

 schist 1.5 2.26 

Cultivated 

Land 7.87 11.87 

 marble 0.32 0.48 Developed 6.86 10.35 

 

metasedimentary 

rock 0.11 0.16 Floodplain 4.87 7.35 

 quartzite 0.07 0.1 Swamp 4.09 6.16 

    

Open Fresh 

Water 2.22 3.35 

    

Harvested 

Forest 1.45 2.18 

    Barren Land 0.06 0.1 

    Wetland 0.02 0.03 

K10 slate 56.87 37.28 Forested 71.63 46.97 

 sandstone 50.35 33 Developed 24.65 16.16 

 quartz monzonite 18.29 11.99 

Cultivated 

Land 23.71 15.55 

 calc-silicate rock 15.34 10.05 Swamp 14.93 9.79 

 mudstone 11.71 7.67 Floodplain 8.82 5.79 

 marble 0.02 0.01 

Open Fresh 

Water 5.61 3.68 

    Harvested 1.74 1.14 

    Barren Land 1.14 0.75 

    

Salt 

Marsh/Estuary 0.02 0.01 

    Wetland 0.01 0.01 

K11, K12, 

K13 slate 116.65 78.33 Forested 65.13 43.74 

 granite 15.78 10.6 Salt Water 35.66 23.95 

 

mafic 

metavolcanic rock 7.58 5.09 Developed 14.74 9.9 

 metavolcanic rock 4.46 2.99 

Salt 

Marsh/Estuary 11.44 7.68 

 

metasedimentary 

rock 3.27 2.19 Swamp 11.34 7.61 

 granodiorite 0.86 0.58 Floodplain 3.98 2.67 

 limestone 0.33 0.22 

Cultivated 

Land 3.18 2.13 

    

Harvested 

Forest 2.56 1.72 

    

Open Fresh 

Water 0.49 0.33 

    Barren Land 0.34 0.23 

    Wetland 0.02 0.01 
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Table 2. Mean ± standard deviation N:P and N:Si nutrient ratios for all mainstem KR stations 

and HS (station 14) from 2011-2013. 

 

 
Figure 1. Hierarchical cluster analysis of downstream KR stations K11, K12, and K13 pigments 

using a correlation distance of 1-R (R=Pearson’s correlation coefficient between pigments) and 

Ward’s linkage method. Each cluster is color coded based on the dominant taxonomic value.  

 



 71 

 

 
Figure 2. Pigment Empirical Orthogonal Function loadings of modes 1-4 (A-D) (right) and 

respective time series (left) for the Kennebec River downstream stations K11, K12, and K13 

from 2011-2013. Bar plots are color coded to match the cluster analysis for downstream stations 

(Figure 1, Appendix). The mode number and percent variance explained by each mode are 

displayed above each bar plot. Time series plots are color coded by EOF amplitude.  
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