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When to approach novel prey cues? Social
learning strategies in frog-eating bats

Patricia L. Jones1,2, Michael J. Ryan1,2, Victoria Flores3 and Rachel A. Page2
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2Smithsonian Tropical Research Institute, Apartado 0843-03092 Balboa, Ancón, Republic of Panama
3Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA

Animals can use different sources of information when making decisions.

Foraging animals often have access to both self-acquired and socially acquired

information about prey. The fringe-lipped bat, Trachops cirrhosus, hunts frogs by

approaching the calls that frogs produce to attract mates. We examined how the

reliability of self-acquired prey cues affects social learning of novel prey cues.

We trained bats to associate an artificial acoustic cue (mobile phone ringtone)

with food rewards. Bats were assigned to treatments in which the trained cue

was either an unreliable indicator of reward (rewarded 50% of the presenta-

tions) or a reliable indicator (rewarded 100% of the presentations), and they

were exposed to a conspecific tutor foraging on a reliable (rewarded 100%)

novel cue or to the novel cue with no tutor. Bats whose trained cue was unreli-

able and who had a tutor were significantly more likely to preferentially

approach the novel cue when compared with bats whose trained cue was

reliable, and to bats that had no tutor. Reliability of self-acquired prey cues

therefore affects social learning of novel prey cues by frog-eating bats. Examin-

ing when animals use social information to learn about novel prey is key to

understanding the social transmission of foraging innovations.

1. Introduction
Social information, or information acquired from others, is used by a wide var-

iety of taxa in behavioural contexts that range from foraging (e.g. [1–3]) to mate

choice (e.g. [4–7]). Social learning is an efficient way to acquire information

because it avoids costly mistakes that can be made during trial-and-error learn-

ing. Social information, however, can have its own costs in terms of outdated or

inaccurate information, or costs associated with interactions with conspecifics

[8,9]. These costs and benefits of social information have led to the prediction

that animals should use social information selectively in combination with

self-acquired information, following particular ‘social learning strategies’

[9–12]. Extensive research in fishes has provided important insights into the

role of social information in decisions about where to find food (reviewed in

[9,12,13]). Less is known about social learning strategies in animals that use

social information to learn novel cues that indicate prey.

Owing to the risks of consuming unpalatable food, acquiring information

about novel food is suggested as one of the key advantages of social learning

[2]. Social learning of novel food has been demonstrated for a number of species

(e.g. [14–16]). To understand how behavioural innovations might spread through

natural populations, it is crucial to examine not only whether animals are capable

of using social information to learn novel behaviours, but also when animals are

likely to use that social information. This has been most thoroughly studied in

Norway rats, in which naive observers acquire information about novel food

from the breath of experienced conspecifics [17]. Satisfaction, uncertainty, pre-

dation risk and environmental stability affect the use of social information in

rats (reviewed in [18]). This research is key to predicting how and when food

preferences are transmitted in groups of rats. Addressing similar questions in non-

model systems is important in order to understand the generalizability of social

learning strategies. Here, we examined social learning strategies in wild-caught

frog-eating bats that can use social information to learn novel acoustic prey cues.

& 2013 The Author(s) Published by the Royal Society. All rights reserved.
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The availability of foraging information has been proposed

as an advantage leading to the evolution of bat coloniality [19],

and a number of studies have demonstrated social learning in

bats [20–23]. The fringe-lipped bat, Trachops cirrhosus, is a

Neotropical carnivore that hunts frog and insect prey by eaves-

dropping on the prey’s mating calls [24,25]. Trachops cirrhosus
differentiates poisonous and palatable frog species by their

calls [24], but is quite flexible in these associations and bats

can be trained to reverse their preferences [26]. Additionally,

T. cirrhosus can learn novel associations between prey cue

and prey quality by observing foraging conspecifics [22]. In

this study, we examined how the reliability of self-acquired

cues about prey influences the use of social information to

learn novel prey cues.

We created in captivity a scenario in which bats that are

foraging on a self-acquired prey cue can interact with a con-

specific that is approaching a different, novel, prey cue. We

wished to examine how the reliability with which bats

received rewards when they approached self-acquired cues

affects the use of social information to learn novel prey

cues. We used reward schedule (here termed ‘reliability’) as

a proxy for natural capture success. Our prediction was that

bats with 50% reliable self-acquired prey cues would be

more likely to use social information to learn novel prey

cues than bats with 100% reliable self-acquired prey cues.

Different prey species emit different acoustic cues, but they

may also be associated with particular calling sites. Trachops
cirrhosus could learn to approach novel prey by observing a

conspecific approach a specific prey cue, by observing the

bat’s approach to a particular location or by a combination

of these mechanisms. We therefore also determined whether

bats are more likely to learn to approach the location from

which the novel cue was broadcast or the cue itself.

2. Material and methods
(a) Experimental animals and arena
We captured bats (n ¼ 18 adult males) between February and

December 2011 in Soberanı́a National Park, Panamá. Experiments

were conducted in a 5 � 5 � 2.5 m flight cage under ambient

temperature and humidity, illuminated by a 25 W red light bulb.

We placed Fostex FE103En speakers underneath 1.5 � 1.5 m

screens covered in leaf-litter in two corners of the cage. In the

third corner was a shelter to which the bat was trained to return

between cue presentations; the experimenter sat in the final

corner opposite the shelter with the sound playback and video

recording equipment. Sound playback was conducted through a

Pyle Pro PTA2 amplifier and a Lenovo T500 Thinkpad laptop.

We used two Sony Handycam DCR-SR45 digital video camera

recorders and additional Sony HVL-IRM infrared lights to

record responses. Before testing, bats that were housed and

tested together were given individual-specific haircuts to enable

experimenter recognition. After testing, all bats were individually

marked with passive integrated transponder tags (Trovan Ltd.)

and released at their capture sites.

(b) Experimental overview
The experiment consisted of five components: the initial training

phase (at least 40 trials), a set of pre-tests (six trials), an experimental

exposure phase (100 trials), a set of post-tests (six trials) and a set of

cue/location tests (four trials). A flow chart summarizes the order

of the experimental components (figure 1), while the subsections

below detail the methods used in each individual component.

(c) Initial training
We trained bats to associate one of two mobile phone ringtones

(A or B, figure 2; electronic supplementary material, videos) with

food rewards. Ringtones were of approximately the same duration

(0.6 s) and dominant frequency (750 Hz) as the call of the túngara

frog, Physalaemus (¼Engystomops) pustulosus, a preferred prey

species of this bat [24], but sounded very different to human ears.

We used ringtones to ensure bats had no previous associations

with experimental cues. To train bats to approach the ringtones,

we created stimuli in which we merged the túngara frog call and

ringtones using Adobe AUDITION v. 3.0, and adjusted the relative

initial training to A or B (100% rewarded)

trained to not respond to C, D & E

pre-tests

recognition:
A
B

choice (4×):
A versus B

UT-RS

trained 50%
novel 100%

RT-RS

trained 100%
novel 100%

tutortutor

UT-RA

trained 50%
novel 100%

no tutor

experimental exposure trials (100x): A versus B

A

B

cue/location
(sides switched)
recognition:

A
B

choice (2×):
A versus B

post-tests

recognition:
A
B

choice (4×):
A versus B

A

B

B

A

unreliable 
trained –
reliable asocial

unreliable 
trained –
reliable social

reliable 
trained –
reliable social

Figure 1. Protocol overview. Flight cage diagram is not to scale.
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RMS amplitudes to fade out the frog call and fade in the ringtone in

five steps [26]. Food rewards consisted of small pieces of baitfish

placed on the speaker for each stimulus presentation. Training

was completed in one to two nights, and the number of trials

required (mean trials+ s.e.: A ¼ 11.3+2.6, B ¼ 13.0+2.1) did

not significantly differ between the two cues (Welch two-sample

t-test: t ¼ 20.5, d.f.¼ 12.8, p ¼ 0.6). To ensure that each bat had

ample experience with the trained cue, they were presented with

the cue associated with a food reward at least 40 times (mean+
s.e.¼ 59.3+4.0 trials) before advancing to the pre-tests. During

this training period, the cue was rewarded every presentation

and broadcast alternately from the two speakers to ensure that

bats did not develop a location preference.

Frog-eating bats have been documented to generalize their

responses to known stimuli to respond to novel stimuli [27]. To

ensure that bats were selectively approaching their trained cue and

not all acoustic stimuli, we interspersed presentations of the trained

cue with presentations of other ringtones (C, D and E, figure 2) that

were never associated with food rewards. Generalization was extin-

guished rapidly with these unrewarded trials (mean number of

presentations required for extinction of generalized response+
s.e.: C ¼ 2.7+0.9, D ¼ 2.3+0.8, E ¼ 3.3+1.4). The number of

extinction trials required did not differ significantly between ring-

tones (negative binomial GLM: x2¼ 0.54, d.f. ¼ 2, p¼ 0.76). We

consistently rewarded the trained cue in these initial training trials

to facilitate specific associative learning of the trained stimulus and

reduce generalization to the other stimuli (C, D and E).

(d) Pre-tests
After training, bats in all treatments were given identical pre-tests

to establish a baseline of their responses to the trained cue and

the ringtone that would be the novel cue for the experimental

exposure trials (A if the trained cue was B or vice versa). Pre-

tests were composed of two single-speaker recognition tests

(one for A and one for B) and four two-speaker preference

tests (A versus B). Recognition tests determined whether bats

responded to the cue; each consisted of one ringtone broadcast

from a single speaker 10 times with a 1 s interval of silence

between each ringtone, or until the bat landed on the speaker.

Preference tests assessed which of the two cues the bat preferred,

and consisted of presentations of A and B antiphonally from two

speakers in opposite corners of the arena (approx. 6 m apart)

10 times or until the bat landed on one of the speakers [26].

Pre-tests were rewarded with baitfish placed on both speakers.

(e) Experimental exposure
For the experimental exposure trials, focal bats were randomly

assigned to one of three treatments that varied in the reliability

(reward schedule) of the trained cue and the presence of a

tutor (n ¼ 6 bats per treatment). The novel cue was always

reliably (100%) associated with food rewards. In the unreliable
trained–reliable asocial (UT-RA) treatment, the trained cue was

50% rewarded (every other presentation) and the novel cue

was broadcast with food rewards placed on the speaker for

100% of the presentations but there was no tutor bat present.

In the unreliable trained–reliable social (UT-RS) treatment, the cue

to which the bats were trained was rewarded 50% of the time

(every other presentation) and there was a tutor bat foraging

on the reliable novel cue. In the reliable trained–reliable social
(RT-RS) treatment, the focal bats had a reliable trained cue (main-

tained 100% rewarded) and they were exposed to a tutor

foraging on the reliable novel cue (figure 1). Whenever the cue

playback was rewarded multiple small food rewards were

placed on the speaker. If both the focal and tutor bat approached

the stimulus, they both had an opportunity to get a food reward,

thereby reducing the likelihood of any competition between the

two bats.

In the experimental exposure trials, stimuli A and B were

broadcast antiphonally from the two speakers 10 times each or

until one of the bats landed on a speaker. One or both of the two

bats (focal bat and tutor) had to approach a speaker in order to pro-

ceed to the next trial. The 100 experimental exposure trials required

four to five nights to complete. During this time, the tutor and focal

bat were housed together. We recorded which cue the focal bat

approached for each trial. We compared the number of focal bats

in each treatment that approached the novel cue during the exper-

imental exposure trials with Fisher’s exact tests in R version 2.15

[28]. To examine the effect of treatment on the number of trials

required for focal bats to approach the novel cue, we conducted

negative binomial generalized estimating equations (GEEs,

GLM) using the R MASS package [29].

( f ) Post-tests
After the 100 experimental exposure trials, the tutor was removed

(if present) and the focal bat was given post-tests that were identi-

cal to the pre-tests (four preference tests and two recognition tests).

We compared the effect of treatment on preference for the novel

cue (clustered by individual bat) with a binomial GEE using the

R geepack package [30]. We also examined the effect of treatment

on the number of bats that approached each cue in the recognition

tests using Fisher’s exact tests.

(g) Cue/location tests
The sides of the arena from which the trained and novel cues

were broadcast were maintained for the pre-tests, experimental

exposure trials and post-tests. This was a precaution to ensure

that the tutor bat consistently approached the novel cue and

did not approach the focal bat’s trained cue. Focal bats therefore

had the opportunity to learn to approach either the novel cue

itself or the location from which the novel cue was broadcast.

After post-tests, bats were given cue/location tests to determine

whether bats learned to approach the novel cue or the side of the

arena from which the novel cue had been broadcast. Cue/

location tests consisted of two preference tests and two recog-

nition tests with the speaker locations opposite those in the

post-tests. Owing to a logistical problem, one bat in the UT-RA

treatment and two bats in the UT-RS treatment did not receive

0
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Figure 2. Waveforms of experimental stimuli: the túngara frog call used for
training, experimental ringtones/cues A and B, and extinguishing ringtones
C, D and E.
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cue/location tests. Within each treatment, we compared the

proportion of trials bats preferentially approached the novel

cue between the post-tests and the cue/location tests using

paired t-tests. We then determined whether the preference for

the cue differed significantly between playback locations. For

the recognition tests, we compared the number of bats in each

treatment that approached the novel cue in the opposite location

using a Fisher’s exact test. We also examined if bats differed

in their recognition of the novel cue depending on whether

they had recognized the novel cue in the post-tests using a

Kruskal–Wallis one-way analysis of variance.

3. Results
(a) Pre-tests
Focal bats always approached the trained cue and did not

approach the novel cue in any of the pre-tests.

(b) Experimental exposure trials
A few focal bats in each treatment approached the novel cue

during the experimental exposure trials. More bats in the

UT-RS treatment approached the novel cue than in the other

treatments, but there was no statistically significant difference

(Fisher’s exact test: p ¼ 0.095). Bats in the UT-RS treatment

also approached the novel cue for more of the 100 experimen-

tal exposure trials (25.8+10.1 trials) than bats in the RT-RS

(2.2+1.1 trials) or UT-RA treatments (11.0+8.5 trials), but

the response was not significantly predicted by treatment

(negative binomial GLM: x2 ¼ 4.74, d.f.¼ 2, p ¼ 0.093; figure 3).

(c) Post-tests
We found a significant effect of treatment on preference for

the novel cue (GEE: Wald x2 ¼ 319, d.f. ¼ 2, p , 0.001;

figure 4a). When the novel cue had been demonstrated by

a tutor bat, focal individuals whose trained cue was unrelia-

ble (UT-RS) approached the novel cue significantly more

than individuals whose trained cue was reliable (RT-RS)

(Wald ¼ 8.73, p ¼ 0.0031). When the trained cue was unreli-

able, bats that had a tutor (UT-RS) were significantly more

likely to prefer the novel cue than bats that had no tutor

(UT-RA) (Wald ¼ 3829, p , 0.001). There was no significant

difference between the RT-RS and UT-RA treatments

(Wald ¼ 0, p ¼ 1.0). Therefore, reliability of the trained cue

and the presence of a tutor in combination affected preference

for the novel cue.

We found no significant differences between treatments

in recognition of the novel cue (Fisher’s exact test: p¼ 1.0;

figure 4b). A few bats in all of the treatments recognized

the novel cue in the post-tests. Most of these bats had appro-

ached the novel cue during the experimental exposure trials.

Neither the absence of a tutor nor a reliable trained cue deterred

some bats from investigating the novel cue. There was also no sig-

nificant difference between treatments in recognition of the

trained cue (Fisher’s exact test: p¼ 1.0; figure 4c). Bats that shifted
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Figure 3. Boxplot of the number of experimental exposure trials (out of 100)
for which focal bats in each treatment approached the novel cue over the
trained cue.
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their preference to the novel cue therefore maintained recognition

of the trained cue.

(d) Cue/location tests
To determine whether bats had learned the cue or the

location from which the cue was broadcast, we reversed

the playback locations for the cue/location tests. We found

no significant difference in preference for the novel cue

between locations (paired t-tests; UT-RA t ¼ 21, d.f. ¼ 4,

p ¼ 0.37; RT-RS t ¼ 20.69, d.f. ¼ 5, p ¼ 0.52; UT-RS

t ¼ 1.57, d.f. ¼ 3, p ¼ 0.23; figure 4a), indicating preference

for the cue itself rather than the playback location.

In the cue/location recognition trials, the only bats to

approach the novel cue in its new location were those that

had a tutor present in the experimental exposure trials, a

treatment difference that approached statistical significance

(Fisher’s exact test: p ¼ 0.07; figure 4b). Bats that recognized

the novel cue in the post-tests approached the novel cue

when it was broadcast from a different location significantly

more often than bats that had not recognized the novel cue in

post-tests (Kruskal–Wallis: x2 ¼ 8.2, d.f. ¼ 1, p ¼ 0.004). All

bats approached the trained cue when it was broadcast

from the new location (figure 4c), further demonstrating bat

response to the acoustic cue rather than the playback location.

4. Discussion
We found that bats whose self-acquired prey cues were unre-

liably associated with rewards were significantly more likely

to approach a novel cue demonstrated by a conspecific tutor

than either bats with reliable trained cues and a tutor, or bats

with unreliable prey cues and no tutor. The reliability of self-

acquired prey cues therefore affects bats’ use of social infor-

mation to learn novel prey cues. This result is consistent

with multiple theoretical social learning strategies: ‘copy

when uncertain’, ‘copy if better’, ‘copy when dissatisfied’

and ‘copy when asocial learning is costly’ [9,12]. The 50%

reward schedule of the self-acquired prey cue could be inter-

preted as generating uncertainty about prey quality or

environmental stability. Previous studies that have examined

‘copy when uncertain’, however, use uncertainty to refer to

when the animal has very little, or conflicting, self-acquired

information [31–35]. The bats in our experiment had substan-

tial experience with their trained cue, and no conflicting

information. We therefore feel that ‘copy when uncertain’,

as it has been previously applied, is not likely to be the

strategy exhibited by bats in this experiment.

‘Copy if better’ [12,36,37] is another relevant social learn-

ing strategy because the novel prey cue was always 100%

rewarded, and thus ‘better’ than the 50% rewarded self-

acquired prey cues in the unreliable treatments. We did not

manipulate the reward schedule of the novel prey cue, and

therefore did not directly test whether this is the strategy

employed by the bats. ‘Copy if better’ is a relatively sophisti-

cated social learning strategy, because it requires animals to

evaluate and compare their own success with the demonstra-

tor’s success. A much simpler strategy is that individuals

copy the behaviour of conspecifics when they are dissatisfied

or when there are costs to individual learning [12,34,38].

‘Copy when dissatisfied’ and ‘copy when asocial learning is

costly’ are consistent with our experiment and do not require

animals to assess the demonstrator’s success. In T. cirrhosus,

as in many animals, responding to a prey cue does not

reliably result in a meal [39,40], making approaching prey

cues costly and potentially resulting in dissatisfaction.

‘Copy when asocial learning is costly’ and ‘copy when dissa-

tisfied’ are likely to be applicable in other taxa that use social

information to learn novel foraging behaviours.

A few bats in all of our treatments approached the novel

cue in the recognition tests. The availability of reliable known

prey and the absence of a tutor do not appear to preclude

investigation of novel prey. This disposition towards explora-

tion of acoustic stimuli even in the absence of a conspecific

tutor has been demonstrated previously for T. cirrhosus
[22,26]. Only bats that had been exposed to a conspecific

tutor, however, preferentially approached the novel cue

over the trained cue when the tutor was removed. The pres-

ence of a tutor therefore appears to facilitate or reinforce a

general tendency towards exploration of novel acoustic cues.

We found considerable individual variation in bat

responses to novel prey cues and use of social information.

For example, not all bats learned to approach novel cues, and

of those that did, most learned the cue regardless of location,

but a few were affected by playback location. All of the bats

in this experiment were wild-captured adults and probably

varied in their previous social and foraging experiences. Tra-
chops cirrhosus generally roost together in small groups [41],

and it is not unusual to capture two adult males in the same

net in close succession (P. Jones 2011, personal observation),

indicating the potential for transfer of foraging information in

the wild. The variation we observed in this experiment may

result in part from the previous social and foraging experiences

of individuals in the wild. One of the advantages of conducting

learning experiments with wild-caught adult animals is that

it is more likely to encompass behaviourally relevant varia-

tion owing to previous experience. Results indicating social

learning are therefore more robust and ecologically relevant,

while at the same time revealing variation that is present in a

wild population.

There is a growing literature on the factors that affect

the use of social information when animals are presented

with conflicting private (self-acquired) and public (social)

information (e.g. [33,42–45]). Many animals, however, may

not encounter such conflicts, but rather use social information

to expand their behavioural repertoires. The study of when to

use social information to learn novel prey or novel behaviours

is crucial for understanding how novel behaviours can spread

through populations and thereby create the potential for

animal culture.

Capture in Soberanı́a National Park was approved by the Panama-
nian authorities (Autoridad Nacional del Ambiente, ANAM permit
nos. SE/A-91-09; SE/A-95-10; SE/A-6-11; SE/A-46-11; SE/A-94-
11). Animal care was conducted according to approved Institute for
Animal Care and Use Committee protocols from the University of
Texas (protocol AUP-2009-00138), and the Smithsonian Tropical
Research Institute (protocol 20100816-1012-16).
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