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The wall-associated kinases, WAKs, are encoded by five highly similar genes clustered in a
30-kb locus in Arabidopsis. These receptor-like proteins contain a cytoplasmic serine thre-
onine kinase, a transmembrane domain, and a less conserved region that is bound to the
cell wall and contains a series of epidermal growth factor repeats. Evidence is emerging
that WAKs serve as pectin receptors, for both short oligogalacturonic acid fragments gen-
erated during pathogen exposure or wounding, and for longer pectins resident in native
cell walls. This ability to bind and respond to several types of pectins correlates with a
demonstrated role forWAKs in both the pathogen response and cell expansion during plant
development.
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INTRODUCTION
The wall-associated kinases, or WAKs, are receptor-like kinases
that are linked to the pectin fraction of the cell wall, and have
a cytoplasmic protein kinase domain. WAKs are required for cell
expansion, are involved in the pathogen response, and their expres-
sion is activated by numerous environmental stimuli. Recent work
supports the idea that WAKs are receptors for both pectin in the
cell wall, and for pectin fragments, oligogalacturonic acids (OGs),
generated during some pathogen attacks. The history of WAK iso-
lation, and their characterization that led to the idea that WAKs
are OG and pectin receptors, follows.

IDENTIFICATION OF WAKs
The WAKs were identified though the chance isolation of their
cDNAs that subsequently led to the recognition of their signifi-
cance to the cell wall (Kohorn et al., 1992; He et al., 1996; Kohorn,
2000, 2001). The WAKs are defined as cell wall-associated recep-
tors by several key observations. WAKs could only be extracted
from cells by boiling in detergent and reductant and appeared
cross-linked to insoluble material. In addition, electron micro-
graphs with specific WAK-kinase antiserum showed WAK protein
in the cell wall and on the plasma membrane. Yet protease treat-
ment of protoplasts and Western blots revealed that the kinase
domain was cytoplasmic, and the receptor crossed the mem-
brane such that the epidermal growth factor (EGF) domain is
placed in the extracellular space (He et al., 1996). The five WAK
genes are tightly clustered in tandem in a 30-kb locus on chro-
mosome 1 (He et al., 1999), their encoded kinase domains are
85% identical, and the extracellular regions shows up to 65%
identity (He et al., 1999). However, all WAKs contain the same
conserved spacing of cysteine residues in the extracellular domain,
the hallmark of the EGF repeat of metazoans (Sampoli Benitez and
Komives, 2000).

WAK-LIKE GENES
There are at least 21 other genes for receptor-like kinases that
contain EGF repeats in Arabidopsis, and these have been coined

WAK-like or WAKL genes (Verica and He, 2002; Verica et al., 2003).
In crop plants, the WAKLs have greatly expanded in number and
are often present in several large clusters. The expansion and size
of this family indicates their importance, and some have sug-
gested they play a role in pathogen resistance (Verica and He, 2002;
Zhang et al., 2005). Stronger evidence for this idea is provided by
the observation that dominant mutant alleles of WAKLs in Ara-
bidopsis provide resistance to Fusarium, and a rice WAKL allele
is less sensitive to rice blast disease (Diener and Ausubel, 2005;
Li et al., 2009). Despite their importance and interesting biology,
there is insufficient evidence to conclude that the WAKL proteins
are wall-associated. The WAKLs instead may describe a class of
plant receptor that is defined by the presence of EGF repeats,
and whose additional domains and perhaps function has diverged
from the WAKs. One might expect, therefore, their functions to be
accordingly diverse.

WAKs ARE REQUIRED FOR CELL EXPANSION
Several lines of evidence point to a role of WAKs in cell expan-
sion. Antisense WAK RNA to the conserved WAK-kinase domain
can be induced using the Dex system, and this leads to a 50%
reduction in WAK protein levels and a smaller cell size, rather then
fewer cells. Thus, WAKs are required for cell elongation (Ander-
son et al., 2001; Lally et al., 2001; Wagner and Kohorn, 2001).
A WAK2 null allele, wak2-1, causes a loss of cell expansion in roots,
but only under limiting sugar and salt conditions (Kohorn et al.,
2006b). Individual loss of function alleles in any of the four other
WAKs do not result in an obvious phenotype, and unfortunately
genetic analysis of the Arabidopsis WAKs has been greatly ham-
pered by the fact that all five genes lie in a 30-kb cluster, making
it difficult to create double or triple mutants of the isoforms
(He et al., 1999).

A survey of enzyme activity showed that in roots of the
wak2-1 null mutants there was a reduction in vacuolar inver-
tase activity. Since invertase RNA levels are also affected, it
suggests that WAK2 can regulate invertase at the transcriptional
level. These results support a model where WAKs regulate cell
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expansion through a control of sugar concentration and thus
perhaps turgor control. Consistent with this model is the obser-
vation that the wak2-1 phenotype could also be rescued by the
expression of sucrose phosphate synthase which alters sugar sinks
(Kohorn et al., 2006b). What remained was to establish how WAKs
might be sensing the cell wall to effect the turgor regulated cell
expansion.

WAKs BIND TO PECTIN
Wall-associated kinases are plasma membrane receptors, appear
to be cross-linked to cell wall material, and can be seen by electron
microscopy to lie in the cell wall. Pectinase, but not cellulase or
other cell wall degrading enzymes release WAKs from the cell wall
material. This led to the initial suggestion that WAKs are bound to
pectins (Anderson et al., 2001; Wagner and Kohorn, 2001). Indeed,
extracted WAK protein is still bound to a pectin epitope on dena-
turing gels, suggesting a covalent binding to a pectic fragment
(Anderson et al., 2001; Wagner and Kohorn, 2001). The purified
extracellular domains of WAK1 or 2 bind to pectin in vitro, and
have a higher affinity for de-esterified pectin than to esterified
molecules that did not have as negative a charge. Moreover, short
pectin fragments of degree of polymerization (dp) 9–15 effec-
tively competed with longer pectins for WAK binding (Decreux
and Messiaen, 2005; Kohorn et al., 2006b, 2009). Mutation of
the positively charged residues in WAK1 to neutral amino acids
lead to a loss of binding to de-esterified pectin suggesting that
the interaction was in part charge based (Decreux et al., 2006).
These in vitro results provided confirmation of a WAK–pectin
association, but also a puzzle as to why the WAK isolated from
plants after pectinase treatment, had a covalent attachment to
pectin. Moreover, it raised the question as to what type of pectin
WAK was binding to and was perhaps responsive to in plants. In
vitro, both WAK1 and 2 bind to a variety of pectins including
polymers of homogalacturonan (HA), OGs, and to rhamnogalac-
turonans (RG) I and II (Kohorn et al., 2009). The common feature
of these molecules is presence of a galacturonic acid backbone,
and this is therefore the predicted target of WAKs. However, the
backbone of RGII is not HA, suggesting that the binding require-
ments are not to a simple polymer of HA, but perhaps the presence
galacturonic acid.

An analysis of WAK-GFP expression noted that WAK is cross-
linked into a detergent-insoluble complex within the Golgi which
contains pectin, and this is independent of fucose modification or
cellulose synthesis. Thus, the assembly and crosslinking of WAKs
may begin at an early stage within a cytoplasmic compartment
rather than in the cell wall itself, and is coordinated with synthesis
of surface cellulose (Kohorn et al., 2006a).

The biological activity of pectin fragments, or OGs, has been
recorded for many years, with suggestions of a role in both defense
and stress responses, and in developmental processes (Yamazaki
et al., 1983; Willats et al., 2001; Mohnen, 2008; Harholt et al., 2010).
Pathogen invasion, physical wounding, and herbivory have the
ability to generate OGs in the cell wall and it has been suggested
by many that there was a specific receptor for these OGs. WAKs
may indeed be this receptor, but how it distinguishes OGs from
nascent pectins is not clear. The in vitro binding data raise sev-
eral other interesting questions. Pectin can be de-esterified once

secreted into the cell wall by a family of methyl esterases, revealing
a negative charge that permits a calcium-induced crosslinking with
other pectins, and perhaps other carbohydrates and proteins in the
wall (Bosch and Hepler, 2005; Krichevsky et al., 2007). Numerous
reports have also documented an unequal distribution of esterified
and de-esterified pectins in a variety of cell types, and correlations
between the degree of esterification and cell enlargement have been
observed (Willats et al., 2001; Mohnen, 2008; Caffall and Mohnen,
2009; Wolf et al., 2009; Harholt et al., 2010). How the differential
binding of WAKs to esterified and de-esterified pectin relates to
the unequal distribution has yet to be explored. WAKs in most
cells appear to be uniformly distributed (He et al., 1996) as viewd
by low resolution microscopy, but further imaging is needed. In
the emerging pollen tube WAK epitopes are only detected near the
tip. WAKs are present in the growing pollen tube, and its relation-
ship to pectin deposition and directional growth also needs more
exploration.

WAKs ARE RESPONSIVE TO PECTINS
Several recent lines of evidence indicate that the binding of pectin
to WAKs activates several signaling pathways. The first is that
pectin treatment of protoplasts causes the induction and repres-
sion of hundreds of genes involved in cell wall biogenesis and
stress responses, and this response is blocked in cells lacking
WAK2 (Kohorn et al., 2006b, 2009). An invertase promoter-
RFP reporter in protoplasts was used to show that pectin can
activate invertase expression, but not in a wak2-1 null. While
there may be additional proteins in the membrane that medi-
ate the pectin response, the data are consistent with WAK1 and
2 serving as pectin receptors. This suggestion received more sup-
port from experiments in which the WAK1 extracellular domain
was fused to a different cytoplasmic kinase, EFR, creating a novel
chimeric receptor. The EFR kinase domain is known to activate
ROS accumulation, a rise in ethylene levels, and a change in
gene expression and these served as a recordable down stream
pathway for the WAK extracellular domain (Brutus et al., 2010).
Indeed, OGs activated a pathway downstream of the chimeric
WAK-EFR kinase, when the chimera was transiently expressed
in tobacco leaves. While these experiments entail a chimeric and
hence novel receptor in a heterologous tissue, and the down-
stream readouts are also in part activated by both the native
EFR kinase and the WAK kinase, they do support the idea that
WAKs are an OG receptor. Detailed structural analysis and kinase
activation studies are needed to understand how OG, or longer
pectins can bind to WAKs to actually activate the protein kinase
domain. These reports do not address the question of how WAKs
might distinguish longer pectin polymers present in the cell wall
from newly generated and bioactive OGs. Indeed, the ability to
bind different types of pectins mirrors the bi-functional role of
WAKs in pathogenesis and normal development, and is discussed
further below.

PROTEIN LIGANDS?
In addition to OGs and pectins, WAK may also bind to glycine-
rich proteins (GRPs) of the cell wall. GRP3 interacts in a yeast
two-hybrid assay with an extracellular domain of WAK1 that does
not contain the EGF repeats (Park et al., 2001). The WAK–GRP3
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interaction is specific to WAK1 but not WAK2 or 4 in the yeast
two-hybrid assay (Anderson et al., 2001). GRPs are a large family
of secreted proteins in Arabidopsis and it is possible that dif-
ferent family members interact with different WAKs (Anderson
et al., 2001; Mousavi and Hotta, 2005; Mangeon et al., 2010). It is
believed that GRPs are structural cell wall proteins (Ringli et al.,
2001), and since they might bind WAKs they may also have a
signaling capacity. Both GRP3 and WAK1 can be isolated in the
same 450 kDa complex in Arabidopsis extracts, yet this result is
surprising given that WAK1 is normally not detected as a water
soluble protein, and further analysis is needed to confirm this result
(Park et al., 2001). Blue native gel analysis of protein complexes
fails to identify this WAK–GRP complex, and indeed the relation-
ship between GRP, pectin, and WAKs warrants more exploration
(Anderson et al., 2001).

WAKs AND THE STRESS RESPONSE
Wall-associated kinases are clearly required for cell expansion but
they are also involved in the response to pathogen and stress. WAK
expression is induced by wounding, pathogen infection, and by
many stresses such as ozone and heavy metals (He et al., 1998;
Anderson et al., 2001; Kohorn, 2001; Wagner and Kohorn, 2001;
Sivaguru et al., 2003). This induced expression, however, is late
in the signaling response and does not necessarily indicate a role
for the WAK receptor itself. Dominant alleles of WAK1 that lack
the extracellular domain did cause a resistance to high levels of
salicylate, and antisense WAK1 plants had increased sensitivity to
salicylate (He et al., 1998). While it was not clear how WAKs were
involved, the work did establish a connection with pathogenesis,
and reinforced the need to explore the role that pathogen-induced
OGs might have in regulating WAKs. More recently a direct role for
WAKs in the pathogen response was established. A dominant allele
of WAK2, WAK2cTAP, was observed to cause ectopic lesions, ROS
accumulation, curling of leaves, and stunted growth, all hallmarks
of a pathogen effect, yet in the absence of pathogen (Kohorn et al.,
2009, 2011). WAK2cTAP alleles mutant in either the pectin binding
domain, the EGF region, or in the catalytic kinase site do not
induce these phenotypes indicating that active receptor function
is required. Moreover, the WAK2cTAP receptor is still responsive
to pectin stimulation, and appears to be a hyper-activated allele
(Kohorn et al., 2011).

MPKs
MPK3 activity is elevated in cells treated with long polymers
of pectin (Kohorn et al., 2009), and OGs have been shown to
activate MPK3 (Moscatiello et al., 2006; Andreasson and Ellis,
2010). The idea that WAKs serve as pectin receptors is supported
by the observation that plants homozygous for the null allele
wak2-1 showed a reduction in the activation of MPK3 relative
to wild-type (Kohorn et al., 2009). Moreover, plants express-
ing the WAK2cTAP dominant allele have a constitutively active
MPK3 and 6. A WAK2cTAP allele in a mapk3−/− background had
more severe growth defects than WAK2cTAP alone, supporting
the concept that MPK3 is required for downstream WAK2 signal-
ing (Kohorn et al., 2009). In contrast, a mpk6 null allele is able
to suppress the effects of this dominant WAK2 mutation, thus
distinguishing MPK3 and MPK6 whose activity previously was

thought to be redundant (Andreasson and Ellis, 2010; Kohorn
et al., 2011). These results suggest that WAKs can activate dif-
ferent downstream pathways depending upon the state of the
wall, and a model is presented below. However, an analysis
of other MPKs is still needed to fully understand WAK-MPK
signaling.

WAKs DISTINGUISH THE STATE OF PECTIN: A MODEL
Wall-associated kinases are bound to pectin in native cell walls and
their activity is required for normal cell expansion, yet OGs also
bind to WAKs and mediate a response to pathogens and wound-
ing (Kohorn et al., 2006b, 2009, 2011; Denoux et al., 2008; Brutus
et al., 2010). Taken together, the results are consistent with a model
presented in Figure 1. Here the type and concentration of pectin
present in the wall could lead to a WAK-dependent activation of
different signaling pathways. Unchallenged but expanding walls
would preferentially activate via WAKs a cell expansion path that
includes MPK3 (that other receptors are signaling via MPK3 and
6 is indicated by additional arrows). When OGs are generated by
a wall disturbance, the WAKs may alter their signaling path to
help effect the stress response by now also activating MPK6 and
a new downstream response (Figure 1, right side). That the in
vitro binding assays reveal a higher binding affinity of OGs than
longer polymers for WAK (Decreux and Messiaen, 2005; Decreux
et al., 2006) suggests a mechanism by which WAKs can switch
from binding the native cell wall pectin to OGs, thus distingush-
ing types of pectin. Differential activation by various pectins might
be achieved by the specific pectin affinity of an individual recep-
tor, or perhaps combinations of WAKs with as yet unidentified
partners.

FIGURE 1 | A model for pectin–WAK regulation of growth and the

stress response. Cartoon of pectin in the cell wall (long brown lines)
activating WAK in the plasma membrane, and subsequent activation of
MPK3. MPK6 is either repressed or not activated, and downstream gene
activation leads to cell growth. In the presence of OGs, fragmented
pectins, generated by pathogens or wounding, WAKs now activate MPK6
as well as MPK3, and the subsequent change in gene expression leads to a
stress response. MPK6 and MPK3 are activated by many other pathways,
as indicated by black arrows not originating from WAK.
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CELL WALL “SENSORS”
Plant cell walls arise through a complex, developmentally regu-
lated coordination of synthesis, turnover, and interactions between
protein and carbohydrates. Screens for mutants in developmen-
tal processes have not surprisingly then revealed numerous alleles
of cell wall biosynthesis genes, and conversely mutations in cell
wall function have identified alleles in genes normally associated
with a variety of metabolic and developmental pathways (Seifert
and Blaukopf, 2010). These genes include receptor kinases such as
THESEUS (THE1; Hematy et al., 2007; Hematy and Hofte, 2008),
FERONIA (FER), HERKULES (HERK), and ANXUR (Hematy
and Hofte, 2008; Guo et al., 2009a,b; Miyazaki et al., 2009). This
class of receptor has been reviewed extensively elsewhere (Seifert
and Blaukopf, 2010; Cheung and Wu, 2011) and they have been
termed cell wall sensors. However, it may be more accurate at this
point to describe them as regulators of pathways that are linked
physiologically, biochemically, or physically to aspects of cell wall
biology.

The WAKs are like many other plant receptors in that they
regulate some aspect of cell division or growth, but also affect

aspects of the cell wall; perhaps WAKs are also cell wall sensors.
But WAKs remain unique in that they are known to bind directly
to a major structural component of the cell wall, pectin, which
appears to influence a WAK-dependent signaling pathway regu-
lating cell expansion. WAKs are also involved in the pathogen
and stress responses, but are likely activated in this case by frag-
mented pectins. An understanding of how WAKs are regulated by
the various forms of pectin in cell walls will be greatly aided by
a detailed knowledge of their structural requirements for bind-
ing pectin, and by an analysis of the distribution of WAKs and
pectins in the cell wall. With the realization that the cell wall is
so intimately involved in plant development and the pathogen
response, and in turn knowing that there are numerous signaling
pathways that regulate these events, it would not be surprising to
discover that WAKs form networks with numerous other receptor
pathways.
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