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A previouslyproposedtwo-stepalgorithm for calculating the expectationvaluesof arbitrary
Chern—Simonsgraphsfails to determinecertaincrucial signs. The stepwhich involvescalculat-
ing tetrahedraby solvingcertainnon-linearequationsis repairedby introducingadditional linear
equations.The stepwhich involves reducingarbitrary graphsto sumsof productsof tetrahedra
remains seriouslydisabled,apart from a few exceptionalcases.As a first steptowardsa new
algorithm for general graphs we find useful linear equationsfor those special graphswhich
support knots and links. Using the improvedsetof equationsfor tetrahedrawe examine the
symmetriesbetweentetrahedrageneratedby arbitrary simple Currents. Along the way we
describethesimple, classicalorigin of simple-currentcharges.The improvedskeinrelationsalso
lead to exactidentities betweenplanartetrahedrain level K G(N) and level N G(K) Chern—
Simons theories,where G(N) denotes a classical group. These results are recast as WZW
braid-matrix identities and as identities betweenquantum61-symbols at appropriateroots of
unity. We alsoobtain the transformationpropertiesof arbitrarygraphs,knots, andlinks under
simple-currentsymmetriesand rank—level duality. For links with knotted Componentsthis
requires precisecontrol of the braid eigenvaluepermutation signs, which we obtain from
plethysmand an explicit expressionfor the (multiplicity-free) signs,valid for all compactgauge
groupsand all fusion products.

1. Introduction

Topologically invariant Chern—Simonsgaugetheoriesin 2 + I dimensionsare
interacting— yet completelysoluble — quantumfield theories[1]. Quantizationof
sucha theorywith compactgaugegroup G forcesthe coupling constantK to be an
integer.The fixing of theseintegervaluesof K leadsto the appearanceof discrete
symmetriesassociatedwith automorphismsof the extendedDynkin diagramfor G
[2], as well as remarkablerelationsbetweenthose modelswith a classicalgroup

G(N) asgaugegroup andcoupling constantK andthosewith gaugegroup G(K)
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and coupling constantN [31.While the presenceof thesesymmetriesin several
contextshaslongbeenknown [4—6],only recentlyhavethe pervasiveimplications
of thesesymmetries for Chern—Simonstheories [3,7], integrablelattice models

[8,9], andquantumgroups[9] begunto be studied~. in much of this existingwork
the effectsof thesediscretesymmetrieshavebeenderivedonly for restrictedcases.
For the extendedDynkin diagramautomorphisms(which signal the presenceof
simple-currentsymmetriesin the associatedWZW model [4]) the propertiesof the
modular transformation matrix have been of central interest [5,10—13].This
correspondsin Chern—Simonstheoryonly to the expectationvaluesof the simplest
knot, the unknot, and the simplest link, two linked unknots(the Hopf link) [1].
Similarly, although the rank—level duality of the characteristicpolynomial of the
braid matrix or its spectraldecompositionholdsfor many tensorrepresentationsof
the groups involved, this result only leadsto a duality of expectationvaluesfor
specialclassesof knots or links [3,7]. The analogousresults for the associated
quantumgroupsand lattice models [8,9], which have proceededby explicit con-
structionof the quantitiesinvolved, haveonly beenobtainedfor restrictedclasses
of representations:the completelysymmetricandantisymmetricrepresentationsof
SU(N). Our goal in this paper is to attain an exact, general result, without
restrictionson the representationsor classesof links involved.

The advantageof examining this question in the contextof three-dimensional

Chern—Simonstheory is that, in addition to providing a powerful and unifying
approachto almost all the different areasin which thesediscrete symmetries
appear,it providesthe tools with which to demonstratethe generalimplicationsof
thesesymmetrieswithout having to explicitly solve for the quantitiesbeingrelated.

Of specialinterestare certain gaugeinvariant Chern—Simonsobservables:the
planar tetrahedra.This follows since all Chern—Simonsobservablescan be ex-

pressedas sums of products of these tetrahedra[11,14]. They are also the
q-6j-symbolsof the related quantumgroups evaluatedat the associatedroots of
unity. in addition, the planartetrahedraare relatedby simple phasesto limiting
values of the Boltzmannweights of integrablelattice models and to the braid
matricesof WZW theory [1].

Our strategywill be to examinesetsof skein relationsthat completelydetermine
the expectationvalues of arbitrary tetrahedra.A previously proposedset of
non-linearskein relations[14] suffers from a sign ambiguity that rendersthem
ineffective for the exact determination of all tetrahedra.We will remove this
ambiguityby supplementingthesenon-linear equationswith a set of inhomoge-
neouslinear equations.We are then ableto show that given any tetrahedronthere

* Thegeneralidea that Wilson lines with representationsrelatedby the Dynkin diagramsymmetries

are equivalentup to phaseshaslong been known [2], however, and has beenusedto understand
Chern—Simonstheorieswith gaugegroupsof the form G/(discretesubgroup).
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exists a classof tetrahedra,related to this one by the symmetriesof the extended
Dynkin diagramof the gaugegroup,whoseexpectationvaluesonly differ from that
of the original tetrahedronby (in general,vertex-normalizationdependent)signs.
If the tetrahedralexpectationvalues are intrinsic (i.e. independentof the sign
conventionfor vertexnormalization), then the relative sign is given by a certain
product of braid eigenvalues.We further show that given a tetrahedronin one
theory, thereare tetrahedrain the rank—level dual theorywith the sameexpecta-
tion values(up to sign). If the signsof the tetrahedraso relatedare intrinsic, the
relative sign is againgivenby a simple productof braid eigenvalues.

Since arbitraryobservablesin a G(N)K Chern—Simonstheory (including knots,
links andgraphs)canbe reducedto sumsof productsof tetrahedra,we expect that
all such observableswill fall into sets related by the Dynkin diagram automor-
phisms, and have, in addition, rank—level duals in the G(K)N theory. A general
proof along these lines is stymied by the presenceof certain undetermined,
normalization-independentsignsin mostsuchreductions.Nevertheless,on thebasis
of caseswhere an unambiguousreduction is possible and on the basis of the
propertiesof the linear equationswhich we obtain for any link-type graph,we state
the expectedgeneralresult for suchgraphsfor both typesof symmetry.Identities
betweenknot andlink expectationvaluesdefinedwith representationsrelatedby
the diagram automorphismscan be proved via a direct cabling argument; the
aforementionedidentities for the underlying link-type graphs then follow. The
identities that relateknot and link expectationvaluesin rank—level dual theories
areshown to follow from the conjecturedidentitiesbetweendual graphs.

Our approachonly dealswith the local, Lie-algebraicstructureof Chern—Simons
theory; to avoid conflicts with global constraints[15]we assumethat eachtheoryis
definedwith a compact, connected,and simply connectedgaugegroup. This is
appropriatesince such Lie groups are in one-to-onecorrespondencewith (com-
plex) Lie algebras(and sowith the standardset of Dynkin diagrams).For example,
in order to obtain a theory with the local structureof B1 or D,~with arbitrary
coupling constantK, and in order to include their spinor representations,it must
be definedvia the simply connectedcoveringgroup of S0(N), Spin(N). Since it
will be useful (in sect.4, essential)to characterizethesetheoriesusingthe tensorial
languageof the orthogonalgroupwe will refer to thesetheoriesas level K so(N)
theories(by which we meanlevel 2K Spin(N) theories)*

In sect. 2 we describethe known non-linearequationsfor tetrahedraandfind
the supplementalequationsthat removethe sign ambiguityof the non-linearset.
We pay particular attention to the permutationsigns appearingin the diagonal
actionof the braid matrix on the legs of trivalentverticesandthe normalizationof

* The (non-simply connected)level K SO(N) theory is definedby the level 2K Spin(N)/~2theory,

given appropriaterestrictionson K.
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thesevertices, in order to deal uniformly with real, pseudoreal,and complex
representations.We adopt a natural systemof permutationsigns different from
that commonly prescribedin the literature. in sect. 3 we show that replacingthe
representationsarounda closedloop of edgesof a tetrahedronwith representa-
tions relatedto theseby simple-currentsymmetriesleavesthe tetrahedralexpecta-
tion value essentiallyinvariant. We will call the tetrahedra(or representations)so
relatedco-minimallyequivalent[3,7]. In sect.4 we find that, given a tetrahedronin
a G(N)K theory, with G(N) denoting SU(N), Sp(N), or the double-coverof
SO(2n+ 1) ~, and with the representationson its edges specified by Young
tableaux,the tetrahedrain the G(K)N theorywith edgerepresentationsspecified
by the transposes(or certain cominimal equivalentsof the transposes)of these
Young tableauxhaveessentiallythe sameexpectationvalue. In sect.5 theseresults
are recastas identities for WZW fusion and braid matricesas well as for the
q-6j-symbolsappearingin quantumgroup [161theory. In sect.6, we examinemore
general graphs and the knots and links based on them. We give a simple,
graph-independent,and completely general derivation of the phasesthat relate

links (or knots) with co-minimally equivalent representationson corresponding
components.We state(andgive evidencefor, but do not prove)identities that we
expectto hold betweenarbitraryChern—Simonsobservablesrelatedby rank—level

duality.
The appendixfollowing the conclusion describescertain subtletiesof baryon

normalization,a proofof a useful identity by meansof plethysm,and severalother
resultson permutationsigns neededin the text, including an explicit formula for
thesesigns in the multiplicity-free case,valid for all compactgaugegroupsandall
fusion products.

2. Tetrahedral skein relations: A sign problem and its solution

We shall seelater that a previouslyproposedalgorithmfor calculatingarbitrary

Chern—Simonsobservables[14]suffersfrom sign ambiguitiesthat renderit ineffec-
tive for evaluatinggeneralgraphsand links. However, the part of this algorithm
that involves solving certain non-linear (associativity or pentagon)equationsfor
planartetrahedrais repairable,which is the task of the presentsection.Along the
way we give a more comprehensiveaccountof the permutationsignsthat arise in

the diagonalaction of the braid matrix than has previously appeared,and take
accountof certainsubtletiesof baryonnormalization.

We begin with a level K Chern—Simonstheorywith compact,connected,and
simply connectedgaugegroup G definedon the 3-manifold M = S3. Since G is

* Similar but more complicated resultshold for dual pairs involving so(2n); we will not, however,

presentthedetailshere.As a resultwe only examinerank—levelduality for so(2n+ 1)~with K odd.
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simply connected,G-bundlesover M are trivial and the theory is well definedby
the action [15]

K
Scs~Trf(AAdA+~AAAAA), (2.1)47T

where A is theG gaugeconnection,andquantizationforcesK to be an integer.In
order for the partition function

Z(S3) = fgiji ~ (2.2)

to be unambiguouslydefinedit mustbe regularizedby specifyinga framing [17]of
S3. We choosethis framing[171so that Z(S3)= S

00, where S00 is the identity—iden-
tity componentof the modulartransformationmatrix of the level K charactersof
the affinization of G. The gaugeinvariantobservablesif~,whoseexpectationvalues

are givenby

Z(~ S
3) = f~i~A~ (2.3)

correspondto linked — often knotted — Wilson lines and graphs.To obtain an
unambiguousdefinition of theseexpectationvalueswe will assumethroughouta
vertical framing of the Wilson lines and graphs[1]. We will be concernedexclu-
sively with the normalizedexpectationvalues,

Z(tf~’;S3)

= Z(S3) (2.4)

Among the graphobservablesare thosespecified by single-componentplanar
graphswith four trivalent gauge-invariantvertices — the planar tetrahedra.Any
tetrahedroncorrespondsto a pair of fusion-rule channels,with each channel
definedby a pairof compatiblefusion rules.Thesechannelscomein naturalsets
of threewhich, following ref. [141,we call the S, T, andU channels.Eachof these
channelscorrespondsto a basis of the Hilbert spaceon which some braid matrix
acts diagonally. The compatibility of thesebasesgives a set of equationsthat

constrain the basis change coefficients, which are, essentially,the expectation
valuesof planartetrahedra.

2.1. 5, TAND U CHANNEL BASES

Choosea surfaceS2 that dividesS3 into two halves(call one the interior half;

the other, the exterior),in sucha way that it is puncturedat exactlyfour pointsby
static charges,correspondingto the four representationsa, b, p(c) and p(d) of
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G(N). (For thegroupswe areconsidering,the dual representationp(r) of r is just
the representationconjugateto r.) The Hilbert space ~ associatedwith this
surface, consideredas the boundary of the interior half of S3, exists and is

f Ls1’Iat,51’Jcci dimensionalwheneverthe pair of fusion rules

= ENa!

14)s, 4~ = ENCd~’I~S, (2.5)
5~ S

has some representationin common (i.e. wheneverf ~ 0). Such a pair of fusion
ruleswill be called compatible.The path integralon theinterior half can producea
varietyof statesin A~”dependingon how the Wilson lines or graphsintertwine in
the interior. We will considerthe relationbetweenthreedifferent planarbasesof
this space,correspondingto the threesetsof compatiblefusion rule pairs

S-channel T-channel U-channel

= ~ ~ /~ = ~ ~ ~ = ~ N01,~~5,

— ~N~~çb5,
4p(b) — ENP(b)d~~t, 4p(b) — ENP(h)CU4U. (2.6)

Each non-zero fusion coefficient /V.r
2r3 correspondsto a set of Nrrr3 gauge

invariant couplings, each of which permits construction of a gauge invariant
trivalent vertex. In order to describethe properly framedgraphsthat specify the

basesof ~ constructedwith thesevertices,we must keep track of the (here
vertical) framing. This is done by a genericprojection of the graphonto a plane
and a restriction to certain allowed moves [18] in manipulating the resulting
diagrams— the standardChern—Simonslink andgraphmoves[1].

Then, with the basesdefinedby

I ~ =~::d It~= I a~”\b

eachof thesechannelscorrespondsto an f-dimensionalbasisof the Hilbert space
~. We will denotethe basis vectorsin the various channelsby a singlelabel

or I u~i where,for example, = lab —s cd; s, ‘-~b’ ye-cd) denotesthevector
createdby the path integral in the presenceof the S-channelgraphshown above,
with ~‘ab and 5f’~usedto couple the representationsassociatedwith the graph
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edges.Upper indices on a coupling indicate outgoingedgearrows at the vertex;
lower indices,incomingedgearrows.(For visualclarity, we will mostly omit explicit
displayof thesecouplingson graphvertices.)

We assumethat a basis of couplingscanbe chosenso that the relevantbraid
matricesact diagonallyevenin the caseof multiplicities. The basesdefinedabove
then havethe dualbases

Ks I ~

Ku I = ~ap(a)
1cp(c)

c\d

The permutationsigns ~ = ±1 appearinghere result from the signsof certain
baryon expectationvalues (as described in the appendixand subsect.2.2) and
insure that thesestatessatisfy the orthonormalizations

(s’ Is> = ~ssXq(ti)Xc,(
1))Xa(C)Xq(tl) >0, (2.7)

where xq(r) denotesthe q-dimensionof the representationr. The delta function
meansthat the entire intermediatechannel,as specifiedby a representationand a
pair of couplings, must be dual. Thus Is> is orthogonal to I s’) unless the
intermediaterepresentationis the same,and unlessthe couplingsat eachvertex
are the same,in the basischosenabove~.

2.2. PERMUTATION SIGNSAND BARYONS

Associatedwith eachplanarbasis of ~ is a pair of braid operatorsthat act
diagonallyon the basis vectorsby interchangingadjacentvertex legs of the basis

* I.e. since dual couplings satisfy.~~“5(i)~8~
5(i’)c~h,~with i, i’ 1 N~5’,this means,unless i = i’.
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vector graphs. For example, the action of the braid operatorBab on the dual
S-channelvectorsis specifiedby

Bab
0ab (2.8)

where the diagonalmatrix elements(which we will looselycall “eigenvalues”)are

0ab = .1~bq(Q(a)+Q(b)_Q(c))/4 with q = (2.9)

Here ~ = ±1 is the Chern—Simonspermutationsign, ~ is the dual Coxeter
numberof G, andQ(r) = 2(K + ~)h(r) with h(r) the conformalweight of the level
K representationof the affinization of 6 specifiedby r. For the simple, compact
gaugegroups consideredin depth here Q(r) is the quadratic Casimir of the
representationr. We will specify all braid eigenvalueswith reference to the
specific edge orientations shown in (2.8) so that Q~always correspondsto
C E a ® b and the quadratic Casimir of the lower-index representationalways

enterswith a minussign (asin eq.(2.9)).On the otherhand,we will adoptan index
conventionfor ~-j~ that keepstrackof edgeorientations:the sameindexconven-
tion as that of the coupling~7; namely,that upper(lower) indicesimply outgoing
(incoming) arrows.

Severalof the results in sect. 3 hold for Chern—Simonstheorieswith more
general compactgaugegroups,such as thosecorrespondingto various rational
conformal field theories. In these cases,Q(4) = 2(K + ~)h(4) with h(4) the
conformalweight of the primary field 4 of the associatedconformalfield theory.
In addition, eqs. (2.28)—(2.34) hold as identities between quantum 6j-symbols
(using the connectionwith planar tetrahedragiven in sect. 5) with the braid
eigenvaluesgiven by eq.(2.9) but with q not necessarilya root of unity.

The permutationsigns requirecareful considerationin order to give a consis-
tent treatmentin all cases,including that of groupswith pseudorealrepresenta-
tions. They satisfy the identity

aab,’ab~abj~ba (2.10)

where 3a~th: va ® Vb —* ® va is the permutationoperator.If a = b the sign

~aa is independentof the normalizationsign w of the coupling J~”~and only

dependson the embeddingof the representationc in the tensorproduct a 0 a. If
a * b, however,rj~ is fixed by the choiceof the relative sign of the normalization
signsw1 of the coupling ~ and w2 of thepermutedcoupling ~ Wewill refer
to the normalizationindependentsigns -q~as the intrinsic permutation signs.
Oncea consistentsystemof permutationsignsis chosentherestill remainsa single
undeterminedsign w for eachtriple {a, b; c} relatedby a 0 b ~ c. Baryonnormal-
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ization fixes the normalization~ of the dual couplings51~,in termsof the sign w
chosenfor ff~,so that for eachset ~

5ç{ha ~ 5~a} thereremainsjust one
undeterminedresidualsign w (whethera = b or not).

Throughoutthis paper,the sign of any expectationvaluewill be called intrinsic
or vertex-normalizationindependent,if, given a systemof permutationsigns and
baryonnormalizations,it is independentof the choiceof theseresidualnormaliza-
tion signs. Note that the word “intrinsic” is being usedfor two slightly different
concepts.

We can makeany choiceof the relative sign of the normalizations ~ and w2
for a particular set of couplings, and so any choice for ~ with a * b, that we
wish. However, in order to obtain a consistentset of topologically meaningful
graphicalmoveswith which to manipulatethe planarprojectionsof knot, link, and

graphobservableswith arbitrary representations,certainconstraintson thesesigns
mustbe satisfied.In the appendixwe find that, given the standardnormalization

of baryons,the following threeconditionsmust be satisfiedif we are to retain the
standardgraphicalmovesfor graphswith arbitraryrepresentationson their edges.

~ ,7.~ab= crossing,

2. = ~ah conjugation,

3. ~ = ~ap(a)~bp(b) for c E a 0 b fusion. (2.11)

(Here, and throughout, 0 denotesthe identity representation.)While we have
singledout thesethreeconstraints,the use of eq. (A.9) to reducevertices with
orientationsother than that of eq. (2.8) to this standardform (beforeacting with
Bab) leads to various other crossing constraintsof the form ~ah = ~,ahp(c) =

37p(a)p(b)c = ..., so that we needonly (andwill only) refer to the standardform ~qab

An immediateconsequenceof the fusion constraintin (2.11) is that the charge
conjugation signs must satisfy (with r(a) denoting the number of boxes of the
tableaua)

~ap(a) = (~Je(D))~) all classicalgroups,

= *l’P(4)qaP(a) so(N), (2.12)

for all tensorrepresentationsa andspin representations{~ a) with tensorpart a.
The fundamentalspinor is denotedby ~i, and U denotesthe fundamentaltensor
representation.A further usefulconsequenceof the fusion constraintin (2.11)for
a compatiblefusion rule channel(as in eq. (2.6)) is that ~ = ~cp(c)~dp(d)

The common (manifestly crossing-symmetric)proposal that 77~’be uniformly
chosenpositive in the caseswith a * b, p(c) * a, and p(c) * b (simultaneously),
cannotbe adoptedhere,since it runs afoul of the fusion constraintin (2.11) as
follows. ConsiderSU(N) with N = (2 x odd number),i.e. the unitary groupswith
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pseudorealrepresentations.Then, with a denoting the pseudorealrepresentation
specified by a single column of N/2 boxes,we necessarilyhave, from the first
equationin (2.12), that

77~37~ 1 (2.13)

eventhough ~ © is not an intrinsic sign, since U * p(U) unless N = 2. The
first identity in (2.12) thenfixes the chargeconjugationsigns of all representations
whose tableauxhave an odd number of boxes (only a fraction of which are
connectedby crossing to an intrinsic sign) to be negative.Therefore, the first
identity in (2.12) leads to a seriesof counter-examplesto the “positive if not

connectedby crossingto an intrinsic sign” prescription.
The other well-known systemof permutationsigns, the standardSU(2) group

theorysigns

~.!IJ2 = ( — 1)u1+2~3, (2.14)

cannotbe directly used in SU(2) Chern—Simonstheory since they do not, in fact,
obeythe crossingconstraintlisted in (2.11).

A crossing-symmetricsystemof signsthat also obeysthe fusion constraintcan,
however,bedirectly obtainedin termsof a certain,naturalsystemof group theory
signs.Thegroup theorysignsare definedby

~ah~ah = ~ah~~ha (2.15)

where ~II~ is the transposeof the matrix of Clebsch—Gordancoefficients

~ah : Va 0 Vb —* V~.Again, if a = b thesesigns are intrinsic but if a * b we may
choosethem at will. There is, however,a natural choice for theselatter signs. In
ref. [191thisnaturalsign systemis obtainedfor all compact,simpleLie groupsand
all tensorproducts.The centerpiecefor this systemis a generalformula for �~‘~(in
terms of the highest-weightvectorsof therepresentationsa, b, andc alone)in the
casewhere c occursin the tensorproduct a 0 b with no multiplicity

ab (©a±b—c)/2 .
= ( — 1) (no multiplicity). (2.16)

Here A is the level vectorfor the groupG (definedby the condition that (A I a) = 1
for all simple roots a of 6) *• (Since A = a for SU(2), eq. 2.14 turns out to be a
particularcaseof eq.2.16.)Theproblemsthat arisein the caseof multiplicities are

discussedin the appendix.This is a natural systemof signs in the sensethat e~”~
originatesin the structureof the embeddingof c in the tensorproduct a 0 b for
a * b in exactlythesameway that the signe~originatesin the embeddingof c in

* If a is long, we set (a I a)= 2, in which casethe level vectordiffers from the sum of positive roots

only if G is non-simplylaced.
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a 0 a (asshownin ref. [19]andillustrated in the appendix),andcorrespondsto the
choiceof normalization w1 = = w (with w a residual,undeterminedsign).

This naturalsystemof group theorysignssatisfiesthe identities

1. = crossing,

2. = conjugation,

3 ~cp(c) = ~ for c E a 0 b fusion. (2.17)

The first identity shows that thesesignsdo not satisfy the crossingconstrainton

the Chern—Simonssigns in eq. (2.11)when �~‘~ is negative.
While this natural systemof permutationsigns is not crossingsymmetric,the

modified systemgiven by

~ah = = ( j)(A a+h± )/2 (no multiplicity), (2.18)

doesprovidea consistentcrossing-symmetricsign systemfor Chern—Simonstheory
that satisfiesall the constraintsof (2.11).

Since the fusion identity in eq. (2.17) implies that �~f~= I if a = b (i.e. if
c E a 0 a), the intrinsic Chern—Simons permutation signs equal the intrinsic
group-theorysigns, as is well known. Since this fusion identity also implies that

= 1, eq.(2.18) also equatesthe Chern—Simonschargeconjugationsigns ap(a)

with the (natural)group theorysigns ~

2.3. THE NATURAL CHARGECONJUGATION SIGNS

Since the naturalchargeconjugationsigns ~p(a) appearpervasively,andsince
they often necessarilydiffer from the common expectationthat only pseudoreal
representationsrequire a negativechargeconjugationsign, we exhibit their values

in detail. Thesesignsaregiven — in all casessince the identity alwaysappearswith
multiplicity one — by eq.(2.18),which reducesto

~ap(a) = (~i)~”~ (2.19)

in this casesince (A I a) = (A I p(a)). In most casesthesesigns are actually com-
pletely determinedby the fusion constraint(or in any casefixed by being either
intrinsic or relatedby the fusion constraintto an intrinsic sign) so that thereis
actuallylittle freedomof choice in Chern—Simonstheory for thesesigns.

Since U =p(U) for so(N) and Sp(N), we must have flC~©~(~=I for so(N)
(which also follows necessarilyfrom the fusion constraint)and ~ 0) = — I for
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Sp(N) (which does not). Then eq. (2.12) requires,in agreementwith eq. (2.19),
that

1 so(N)
ap(a) —

0 (_1)r~ Sp(N), (2.20)

for all tensorrepresentationsa ~. For so(8n+ 4 ±1) (so(8n+ 4)) with n = 0, 1,
the fundamentalspinor(s) is(are) pseudoreal.Since ~ = — 1 in thesecases,
eqs.(2.12) and (2.20) then imply that the chargeconjugation sign is necessarily
negativefor all spin-tensorrepresentations(i/i; a) of thesegroups. However, for

so(8n+ 6) thefundamentalspinorsarecomplexandwe choose(thoughthis is not
requiredby eq. (2.11))the chargeconjugationsign to be — 1 in accordancewith eq.
(2.19).

For G2, F4, E6 andE8, the Chern—Simonsconstraintsin eq.(2.11)alonefix all
chargeconjugationsignsto be positive.For E6 this representsa constraintbeyond
pure group theory, since the fundamentalrepresentationis complex.For E7 the
charge conjugation sign of the fundamental is necessarilynegative since this
representationis pseudoreal.While this fixes all otherchargeconjugationsignsvia
eqs.(2.11), theseare all self-conjugateandso intrinsic.

For SU(N) the natural sign for the fundamentalis ~i~(0) = ( 1)N~.I In fact,
if N = (odd number)the fusion constraintforces ~ ~i( = 1, sincethe numberof
boxes modulo two is not conservedby the tensor ring. As noted previously, if
N = (2 x odd number)thenwe mustset ~ i’( 0) = — 1 dueto the fusion constraint
in (2.11). On the other hand,for N = (2 x evennumber)the natural sign for the
fundamental(which is negative)is not intrinsic and not requiredby the fusion
constraint.We will adopt— for all valuesof N — the naturalsystemfor the charge
conjugationsigns,so that

~ap(a) = (— 1)~i)r(a) SU( N), (2.21)

for all representationsa.
In table 1 we summarizetheseresults. In all casesthe representationsa with

~ap(a) = 1 form a closed(sub)ring. The fusion constraint aloneactually forces the

positivevalue on this (sub)ring. In mostother casesthe fusion constraintconnects
the chargeconjugationsign of the remainingrepresentationsto an intrinsic sign.
The (remainingfree) choice of the signs for the fundamentalrepresentationof
SU(4n) andthe fundamentalspinorsof so(4n+ 2) then leavesall signsfixed. Note

* Only for the(complex)tensorrepresentationsof so(4n+ 2) with self-associateYoung tableauxis eq.

(2.20)a constraintbeyondthat requiredby puregrouptheory.
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TABLE 1

Group

SU(2n),Sp(N) (_ 1Y~”~
SU(2n+ 1) 1
G

2,F4,E6,E5

E7 freal I
1, pseudoreal — I

SO(N4)

SO(N ) f tensors 1
1, spinors —1

= (7,8,9, I0} + 8n and
N ={3, 4,5, 6)+8n with n = 0, 1,...

that theappearanceof minussigns is (necessarily)not restrictedto the pseudoreal
case.

2.4. NON-LINEAR SKEIN RELATIONS FoRPLANAR TETRAHEDRA

Sincethe vectors I s>, It>, I u> (defined in subsect.2.1) form different basesof
the samespace,we canexpandany given basisvectorin terms of the otherbases.

Is)= ~F0It>,

Is> =

It> = ~(Qtcy’QP(c)hH lu>. (2.22)

The entriesin the fxf matricesF, G, and H are just the expectationvaluesof
planartetrahedra

F=0L~
a c b d
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G=°L~~
a d 6~ C

Hi=-~°

a~ d 6 c

(2.23)

Note that the edgeorientationson the baryonsimply (via eq. (A.14)) the possible
presenceof minussigns in the baryonexpectationvalues.

Explicit calculationof the inversetransformationsalong with the orthogonality

andcompletenessof the threebasesshows that the matricesof tetrahedrasatisfy
[14]

FFT=I, FFt=I,

GGT=I, GGT=I,

HHT=I, HHt=1. (2.24)

From theseequationsoneconcludesthat F, G and H are real matrices.Written
out, the remainingindependentequationsfor theserealmatricesare

~ F5~F~= ~ L G51~G514= ~ = ~ (2.25)

Theseconstitute3f(f+ 1)/2 equationsfor 3f
2 realunknownsand so do not by

themselvescontainenoughinformation to solve for the tetrahedra.The associativ-
ity of the basischangeoperations(2.22) gives the further set of equations[141

F
5., = ~ (gcdP(c~P(b)c.~._i)G~Ht~, (2.26)

where .~ = qO~©

2 is the vertical-framingfactor incurredin undoinga self-cross-



S.G.NaculichCt al. / Simple-currentsymmetries 459

ing of a Wilson line carrying the representationc. This equationand its complex

conjugate provide 2f2 further constraints,so that we have in general more
constraintsthanunknowns.Theseconditionsostensiblyoverdeterminethe tetrahe-
dra, given that no unforeseendegeneraciesin the braid eigenvaluesoccur [14].

However,eqs. (2.25) and(2.26)havecertaindiscretesymmetries,a fact which is
bothnecessaryandproblematic.For if we havegenerictetrahedra(a, b, c and d
all different), thenchangingthe residualnormalization w of the coupling

5(ah at
the commonvertexconnectinga, b and s in F~andG51~,for example,will change
the sign of a row of F0 and of G5~,but the non-linearequationswill remain
unchanged.Since theseequationshold for arbitrary tetrahedra,they must allow
for and not determinethis sign ambiguity, since this is entirely a matter of the
arbitrarychoice of sign of the vertex normalization.However, certain tetrahedra

have intrinsic signswhich are thennot determinedby theseequationseventhough
their signs are independentof vertex normalization. Primary amongtheselatter
tetrahedraare the link-type tetrahedra,which haved = a and c = b:

(2.27)

Here theverticesoccur in dual pairswhoserelativenormalizationis fixed oncethe
permutation signs and baryon normalizationare fixed. Therefore a change of
residualvertex normalizationcancelsand doesnot affect the overall sign of such
link-type tetrahedra.Since this sign is intrinsic and since the non-linearequations
cannotdetermineit we needa further prescriptionthat will enablethe calculation
of theseintrinsicsigns.

2.5. LINEAR SKEIN RELATIONS FOR PLANAR TETRAHEDRA

The problem of determining the signs of link-type tetrahedrathat remain
unfixed by the (non-linear)orthogonalityand associativityequationsis solved by
appealto the following inhomogeneouslinear equations.While they are special
casesof the generalconstructionvalid for all link-type graphsdescribedin sect. 6,
they also follow directly from the definitions of the tetrahedrain eq. (2.22). By
actingwith Bab and B;,,

1 on the expansionof Is> in termsof It>, andvice versa,
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we obtain, from the braid closureof the resultingdiagrams,the 4f equationsfor
the f2 quantitiesF~

a~~U~b (
0ab)~ = ~F5~(Q(t~))±l b’a

(~aP(b))±l = ~F51(0~”)~
1 a5~~J~~b (2.28)

From the resultsof subsect.2.2 andthe appendixwe find that

a s 6

____________ I ~(h)

17~~\IXq(t) (2.29)

Then the equationsin (2.28)can be written in the form

(g~b)2~IXq(s) = ~ ( Pt F~~)~5(g~P(15)) -2

(gaP(b))2V~(t) = ~ ( P(b~abFgaP(b))~(~ (gab) -2 (2.30)

(or, usingthe fact that the F
5~are real, in the form of the complex conjugatesof

theseequations).For the following, the quantity

1bP(b)g~bF5~0~•P(b) (2.31)

will then be of prime interest.The non-linearequations(2.25) and (2.26) deter-
mine the absolutevalue of F0 the linear equations(2.28) fix the remainingsign
ambiguity.The signsof the link-type tetrahedraF5~clearlydependon the choiceof
a systemof permutationsignsandbaryonnormalizations.However,from eq.(2.30)
it is seenthat the quantity in eq. (2.31) only dependson the squares of braid
eigenvaluesandon the q-dimensions.It not only doesnot dependon the residual
vertex normalizationsigns; it also doesnot dependon any choice of a particular
systemof permutationsigns.

If we think of the freedom to choosethe vertex normalization(and so the
permutationsigns) as a local, discretegaugesymmetry (in which guise it does
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appearin integrablelattice models) then the product of tetrahedraand eigenval-
uesin eq.(2.31) is a naturalgaugeinvariant quantity.

In sect. 5 we shall see that the expressionsin (2.31) are essentially the
non-planartetrahedrathat equal the matrix elementsof a class of WZW braid
matrices.

Forf= 1, 2, 3 and4 the equationsin (2.28) alonedetermineF
0, andan explicit

general solution for all link-type tetrahedrais possible in thesecases without
appealto the non-linearequations.

For f= 1 onefinds that

r = ~hP(h)~0abgaP(h) (2.32)

Since x, =x5 when f= 1, this simplifies to

Fçj = ~bp(b)~ab~ap(b) (f = 1). (2.33)

In addition, the non-linear, orthogonality condition (2.25) yields F~= ±1 for all
tetrahedraif f= 1. Therefore,we must have0ab0ap(b) = (0abgae(h))_i = ±1, which

constrainsthe valuesof the quadraticCasimirsappearingin an f = 1 fusion rule.
For f = 2, with an arbitraryorderingof thetwo termsin eachof the fusion rules

• = ‘I~S, + and 4~a ~p(b) = + we find that

—2 —2r~ 1— 10ab~ (~ap(b)l

= ~bp(b) / ‘I 0ab0ap(b) 2 2 (f= 2) (2 34)
\I x,, 1 — (~aP(h)) (~aP(b)) —

In thesesolvablecaseswe see explicitly that F0 is a rational function of braid
eigenvalueswith an overall sign that dependsin a complicated way on the
permutation signs, baryonnormalization, and the form of this function. In con-
trast, the quantity in (2.31) is a rational function of the squares of the braid
eigenvaluesanddoesnot dependon the systemof permutationsignsor thebaryon
normalization. While its value dependson the values of the Casimirs and the
structureof this function, this information is just that encodedin the structureof
eq. (2.30). The samewill be true for any f by appeal to the whole systemof
non-linearandlinear equations(exceptthat an explicit solution of theseequations
will not be generallyavailable).This meansthat the symmetriesof this combined
set of equationswill be exactsymmetriesof the combinationr ~ ~ for
all consistentchoicesof permutationsigns andbaryonnormalization.

Although a specialcase,the link-type tetrahedraare importantbecausethey are
the only tetrahedrathat directly supportknot andlink invariants.Theywill also be
important in sect. 6 where their special properties lead to proofs of certain
identitiesfor morecomplexgraphs.



462 S.G. Naculichet a!. / Simple-currentsymmetries

Sincethe combinedskeinrelationsin eqs.(2.25), (2.26)and(2.30)are maximally
effective for the exact determinationof all tetrahedra,we can now explore the
symmetriesbetweentetrahedraby examiningthe transformationpropertiesof the
fusion coefficients,quadraticCasimirs,andpermutationsignsappearingascoeffi-

cientsof eqs. (2.26) and(2.30).

3. Simple currents, co-minimal equivalence,and planar tetrahedra

The fusion ring of a level K WZW model based on any simple, compact Lie
group G arisesas a quotientof the classicaltensorring of 6 by a certain ideal.

Such a fusion ring has automorphismsof the form

~ = NabC with cr”(r) = r for all r, (3.1)

for some positive integerp if and only if the centerZ of G is nontrivial — with
exactly one exception(the E8 level-2 fusion ring) [4,20]. Such automorphisms
correspondto the presenceof a discrete(integer)charge[101‘y that is conserved
mod p by the fusion product

Nab *0==sy(c)—y(a)+y(b) modp. (3.2)

Curiously,thesechargeshave — aswe shall see— a completelyclassicalorigin: the
classical tensorring hasexactly this mod p conservationlaw, so that the fusion
ring (asa quotient)necessarilyinherits the sameadditive conservationlaw. Since
all known rational fusion rings (those with a finite number of elements)are
obtainedfrom theseWZW fusion rings by forming further productsandquotients
and since these automorphismshave profound implications [101 for coset field
identifications[2,21],simple-currentfixed-point resolution,andthe constructionof
modular invariant partition functions [22], it is of interest to study their exact
consequencesin the associatedChern—Simonstheories.

Given rathergeneralpropertiesof any fusion ring, eq.(3.1) implies the follow-
ing constrainton the conformal dimensions[101for an automorphism0~of order
p:

h(u(a)) =h(a) +h(cr(0)) —k(a)/p, (3.3)

for someintegerk(a) (unknown at this level of generality).If we define

y(a)=k(a) modp (3.4)

then eq. (3.2) is satisfied. It will be useful to define the fractional charge
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q(a) = y(a)/p which is conservedmodone ~‘. Since q(p(a)) = —q(a)we havethe
braid eigenvalueidentities(from eq. (2.9))

0o~(a)h= ( ±)~e~”~’~’
1g~”,

0o(a)p(h) = (±) e —i1Tq(h~p(b) (3.5)

where the undeterminedsign dependson s (or t). In addition, it follows from
generalconstraintsand eq. (3.1) that the q-dimensions(given that they are real,
linearfunctions on the fusion ring) must satisfy [10]

Xq(0(a)) Xq(a). (3.6)

Preciseresults for the transformationpropertiesof the tetrahedralquantityin

eq. (2.31), as well as those of linked unknots, will only require the threecon-
straints,eqs.(3.1), (3.5) and(3.6), andwill not dependon anychoice of a systemof
permutationsigns. Therefore,theseresultswill hold in any Chern—Simonstheory

with simple currentsymmetries.
In order to obtain analogousresults for (linked) knots,or to calculatethe braid

eigenvaluesand permutationsign in eq.(2.31), we will needto know the integers
k(a) exactly. In additionwe will needsomeunderstandingof how the permutation
signs transform under the fusion rule automorphisms.We provide this level of
precisiononly for Chern—Simonstheorieswith compact,simply-connectedgauge
groups.In thecasesSU(N), Sp(N),so(2n+ 1), so(4n+ 2), E,, and E7 the center is
cyclic and isomorphic to the group generatedby a single automorphismu (of
orderp = dim(center})of the extendedDynkin diagramof G which permutesthe
affine vertexwith a vertexof theordinaryDynkin diagram.For so(4n)the centeris
isomorphicto the group generatedby two independentautomorphismso-~and o2

eachof order two. The elementsof the fusion ring are divided into equivalence
classes— we call them [3,71co-minimalequivalenceclasses— by the mapbetween
representationsassociatedwith the action of the aforementioneddiagramauto-

morphismgroups.
For the classical groups o- has a natural interpretation in terms of Young

tableaux:

SU(N )K

u actson a reducedtableaua by adding a row of length K to the top of a.
(A tableauis reducedif it hasno columnsof length N.)

* This charge q(a) is the samefraction (I q(a) I < I) defined in ref. [101via the leadingpole in the

conformal block of ~,, appearingin an operator product expansion,although there the integer
ambiguity is compoundedwith the question of which field in the conformal block occurs as the
leading pole.
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Sp(N)K
u(a) denotesthe complementof the tableaua in an N X K rectangle.

so(2n+ 1)K

a- mapsa tableauwith first row length l~to a tableauwith first row length
K — i~(but otherwiseidentical).

so(4n)K

o~hasthe samedefinition as the (tableau)map cr for so(2n+ 1)K.
a-2 denotesthe complementof a tableau in an ~N x /~Krectangle(with
N = 4n) if l~~ ~K and if 11572> 0; in general,l,(cr2(a)) +

1N/2+ ..,(a) = ~K.
If K is odd, O~2 interchangesspinorsand tensors.

so(4n + 2)K
a- = a-

2 o~is the compositionof the two operationsjust definedfor so(4n)

(exceptthat now N = 4n + 2 in the definition of 0-2); its order is four.

Forthe spin-tensorsof so(2n+ 1) or so(2n)we adda column of n half-boxesto
the Young tableauxin order to implementthe operationsjust described.(Consult
the initial paragraphsof the appendixfor the translationbetweenYoung tableau
row lengths,the labels1,, and Dynkin indices.)

Using the Dynkin numberingfor the E6 diagram,the Dynkin indicesof o-(a),
a~, are suchthat a’~= a0 the 12 generatora- for E7 is unambiguous.

The representationsrelated by the action of the groups generatedby these
mapsare usefully termed “co-minimally equivalent” since the quadraticCasimirs
(so also the conformaldimensions),fusion coefficients,andq-dimensionshave(by
explicit verification) the transformationproperties:

(N—1)K r(a)
2N forSU(N)

h(a)+~NK—~r(a) forSp(N)

h(a) + ~K—l1(a) for so(2n+ 1) and

h(cr(a)) = so(4n) if a-=o~
h(a)+~NK—~r(a) for so(4n+2) and

so(4n) if a- = a-2

h(a)+~2K—~(2(KIa)+3I1) forE,,

h(a) + ~3K—
1y(3(K I a) + 212) for E

7,

~ +*(c) — ~,j
*r~*(a)cr*(b) — ab

Xq(°(’1)) Xq(a). (3.7)
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Here

rank{G)

r(a) = ~ l,(a),
i= i

and the I~are given in terms of the Dynkin indices in the appendix. For all
representations a of SU(N) or Sp(N), r(a) equals the number of boxes in the
associated Young tableaux. For any (tensor or spinor) representationof so(2n)the
quantity r(a) and the numberof boxes r~(a)of the diagramof a are relatedby

r(a) = r5(a) — 2PI1N/2(a)I. (3.8)

Here v equalszero (one) if a~> a,, —

1(a,, <a,, — ~)• The diagram of a spin-tensor
(II’; a) is formedby adjoininga column of n half-boxesto the Young tableaufor a,
so that r~({~4r; a)) = r~(a)+ n/2. While for tensors of so(N) the label I,, is an
integer (the first Young tableaurow length), for spin-tensors{~‘;a) it is not:
l1({i/i; a)) = 11(a) + ~. With Dynkin numberingfor the E,, and E-,, Dynkin indices,

we haveset

I~=2a3+a~+a,, and 12=a1 +2a2+3a3+a4+a~.

In addition, the product of the (congruence)vector [23] K with the highest
weight of a is explicitly given by (‘< I a) = a1 + 2a2+ a4 + 2a3 for E,,, and by
(K I a) = a4 + a,, + a7 for E7.

3J. THE ORIGIN OF SIMPLE-CURRENT CHARGES

The formulae for h(a-(a)) provide explicit expressionsfor the simple current
charges.Inspectionof theseexpressionsshows that, in all casesof WZW simple
currents (apart from E8 level 2), thesimple-currentchargesy coincide[101exactly
with thecongruenceclassesof the groupG. The congruenceclassof a representa-
tion a of G is given by (K I a) mod p (where p is the order of the relevant
automorphism generator discussed above and K is the associatedcongruence
vector).The importanceof theseclassesstemsfrom the fact that, for all c E a 0 b,

(KIc)=(KIa)+(KIb) modp. (3.9)

This is the conservationlaw of the tensorring that is inheritedby the fusion ring.

In the case of the classical groups these congruence classes have simple Young
tableauinterpretations,which clearly indicatestheir origin in the GL(N) tensor

ring.

SU(N)
‘y(a) = r(a) mod N distinguishesthe well-known N-ality classes.

Sp(N)
y(a) = r(a) mod 2 distinguishes real (r(a) even) from pseudoreal(r(a) odd)
representations.
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so(2n+ 1)
y(a) = 2l1(a)mod 2 indicateswhethera is a tensor(l1(a) integer)or spinor
(I ~(a)half-integer)representation.

so(4n)
y~(a) = 211(a) mod 2 again distinguishes tensor and spinor representations.

y2(a) = r(a) mod 2 indicateswhetherthe numberof boxesassociatedwith a
tensorrepresentationis evenor odd. For spinor representationsit indicates
whetherthe numberof diagramboxesplus i.’ is evenor odd. (Therelationto

the standarddefinition of K is that r(a) mod 2 = ~[(K I a) mod 4] with (K I a)
= 2r(a).)

so(4n+ 2)
y(a) = 2r(a) mod 4 differentiates tensors (y = 0, 2) with an even (y = 0) or
odd (y = 2) number of boxes from spinors (y = 1, 3) with the numberof
boxesplus v evenor odd.

E,,

y(a) = 2(K I a) mod 3 coincides with the standardtriality classes{0, 1, 2),
exceptthat the labels 1 and2 are interchanged.

E7
y(a) = 3(K I a) mod 2 coincideswith the duality which distinguishesreal and
pseudo-realrepresentations(except that the labels 0 and 1 are exchanged).

If we define new congruencevectors for F,, (K’ = 2K), F7 (K’ = 3K) and 0-2 of
so(4n)(K = -~K2)then in all cases

y(a)=(KIa) modp. (3.10)

For the classicalgroupswe seethat all the tensorialchargesoriginate(ultimately)
in the exact conservation of the number of Young tableau boxes (i.e. in the fact
that c ~ a 0 b —.s r(a) + r(b) = r(c)) exhibited by the GL(N) or U(N) tensor rings.
In each case the classical tensor ring of G conservesthe chargemoda numberthat
reflects how G is defined as a subgroup of GL(N) or U(N). For example, the
various mod 2 quantities result from the existence of an invariant tensor that
implements contractions of tensor indices two at a time. For the orthogonal groups
the charge o distinguishesthe two irreducible representationsof so(N) that
branch from self-associaterepresentationsof 0(N). The distinction between
tensors and spinors is the only additional concept(which can be seenas exact
conservationof half boxes).

3.2. PERMUTATION SIGNSAND CO-MINIMAL EQUIVALENCE

The remainingambiguityin eq.(3.5) arisesfrom the permutationsigns. Forany
given sign ~ eq.(2.18) rapidly yields its value if c appears in the tensor product
a 0 b with multiplicity one. Difficulties can arise if one tries to obtain general
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formulae from this equationalonebecauseit is difficult to implementthe condi-

tion of no multiplicities. In the caseof SU(N), for example,with

r(a) +r(b) —r(c)

N (3.11)

we find (from eq.(2.18)) that

= exp[iir(K(N + 1) + r(b) + N~”)] ~ (3.12)

if c appearswith multiplicity onein the decompositionof a 0 b, and the same for
a-(c) in o-(a) 0 b. The iteration of eq. (3.12) (or direct calculation) in the case
b = a-(a)and c = a-(s) then leadsto

= exp[irr(r(a) + r(a-(a)) + N~ + N~))] ~ (SU(N)K), (3.13)

which holds exactlyif both s is multiplicity free in a 0 a and o-2(s) is multiplicity
free in a-(a)0 a-(a). If N is odd, then eq. (3.13) dependson the intermediate
channel

~r(~a),r(a) = exp[iir(K+ lN.1(s))]17” (N odd; multiplicity free). (3.14)

However, exactly this dependencealso arises from the transformationof the
conformal dimensions(3.7) in the braid eigenvalueso that (in agreementwith eq.
(3.5))

(r(a-(a)) +r(a))]Q~ (N odd) (3.15)

holdsif both multiplicity free conditionshold. For N even,eq. (3.13) reducesto

= e’~-,~ (N even;multiplicity free), (3.16)

andthereis no intermediatechanneldependenceto cancelthat coming from the
conformaldimensions.Then, given the multiplicity free conditions,

~(a)o~(a)
= exp[l~(lN (a) + 1N—i(s))]

N+ 1
Xexp i~T N (r(a-(a))+r(a)) 9aa (Neven) (3.17)

seems to contain some intermediate channel dependence. Despite this appearance,
this dependence is spurious. In order to demonstrate this, and to get at the cases
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with multiplicity, consider the following. From the (independently proved) result in
(6.30)for a trefoil-typeknot with an oddnumberof twists t (with t = ±3 beingthe

caseof the trefoil proper),

( o-(0)u(0))~( u(O)a)2t a
a-(a) ~ = ~i.~2(~) Qu(a

(3.18)

we obtain

~ N ~*.2(s)( o(a),r(a)\t / :r(O)O.(O)\t a(0)a 2tr(a)r(a) 0U2(s) ) Xq(a-
2(5)) = ~Q,~2(

0) ) (Or~a~) ~NaaS(Q~a)tXq(5),
S S

(3.19)

upon insertion of an S-channelspectraldecompositionon eachside of eq.(3.18).
Since a-2(0) alwaysappearsin a-(0) 0 a-(0) with multiplicity one we can use eq.
(3.13) to find that

o(0)~r(0)
~2(~) =(_1)K (3.20)

so that (using eq.(3.7))

0~0~’(0)(

u(0)a 2 1 N + 1 1
~2(~) Og(a)) = exp[i~(N+ 1)lNl(a)] expLi~ (r(cr(a)) +r(a)) I.

N

(3.21)

Usingthis result, eq. (3.19)becomes

EXq(5)(e15))1Vaa5{~7~ — exp[ —i~(r(a) + r(a-(a)) ~ + ~a(s)
S

(a)a(a))+(N+1)lNi(a))Ii~’2(S) j=0. (3.22)
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(Note that, unlike eq. (3.13), there is no factor of N multiplying either ii.)

Consider first the terms with single-multiplicity representationss. If N is odd
thesevanish identically (due to eq. (3.13)), while if N is eventhe expressionin
curly bracketsreducesto

~aa(I —exp[ilrlNI(s)]}. (3.23)

Now considerthetermswhere s occurswith multiplicity in thetensorproduct.It is
importantto realizethat,although NI,(a),,(a)~

2~~~= NaaS implies that (cf. eq.(A.19))

Na(a)a(a)a2(5)= N~a)U(a)a2(S)+ ~~a)U(a)’2~’~ = N~’+ Na~’= NaaS,

the map a- has not been defined for symmetric versus anti-symmetric copies in an
intermediate channel. Wewould like to define it so that the cases of multiplicities
and no multiplicities agree. If eq. (3.22) is written with the multiplicities of
symmetric and anti-symmetricterms explicitly displayed,it becomesan equation
for the differences Z.~NahS= N~,,S— N;,

~ — exp[ _ilr(r(a) + r(cI(a)) + ~jaa +

+ (N + l)1N-~(a))] ~Na(a)a(a)a2(5)} = 0. (3.24)

If N is odd we canallow the sumto just run over the termswith tensor multiplicity

greaterthan one,while if N is evenwe must include the single-multiplicityterms.
Since this equation must hold for all integers t, it will hold only if both the
expressionin curly bracketsin (3.23) vanishes(for N even)and if

N~ a2(s)_ 15j— a2(S) = + ~ N~5— N5~r(a)a-(a) a(a)a(a) — aa aa

(where the ±sign is just that in eq. (3.24)). Then the map a- can be extended so
that

N+1
= exp[i~(N+ fllNl(a)] exp[i~ N (r(a-(a)) +

N+I r(a)
= exp in N K exp 2nri—~— g~’ (SU(N), all N) (3.25)

holds, even in the case of fusion multiplicities. While this agrees transparently with

the direct calculationin the caseof N odd (3.15), for N even it implies the
Proposition. s multiplicity free in a 0 a and a-2(s) multiplicity free in
a-(a)0a-(a)imply that lNi(s) and INI(a-2(s)) areeven.
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The interesting contrapositive,
With s E a 0 a and a-2(s)E a-(a)0 o-(a) in SU(2n), if 12fl

1(s) or ‘2n — ~(a-(s)) is
odd, then either s occurs with multiplicity in a 0 a, or a-

2(s) occurs with
multiplicity in a-(a)0 a-(a),

is a useful (thoughincomplete)diagnosticfor the presenceof SU(N) tensorring
multiplicities. For the remaining groupswe obtain the relatively uncomplicated
formulas

e”~’< for Sp(N)

1 E,,, so(2n+ 1), and o-~of so(4n)
= .qaa x nK

(—1) a-
2 of so(4n)

(_1)K E7andso(4n+2). (3.26)

in the multiplicity-free case.The orthogonalgroup results hold for a either a

tensoror spinor.Examinationof thesevaluesshowsthat

= ~aa( — 1)~~00~ ~(~1)~~ SU(2n + 1)

I, 1 otherwise (3.27)

is correct in all cases.Explicitly,

I SU(N)

2 E,,,so(2n+1),so(4n)if o-=a-1

3 E7
(KIa-(0)) =Kx

2n—1 so(4n+2)

n so(4n)ifa-=a-2

N Sp(N). (3.28)

The trefoil-type-knot-basedargumentthen yields, with p the order of the auto-
morphism a-,

p+
1

= ~2~I~(a) ex~[in ~ (K I a-(0))jo~~ (3.29)

for all groups and all representations.It also implies that if s and a-2(s) are
multiplicity free in so(4n+ 2) Kroneckersquares,then li(s) and l

1(a-
2(s)) are even,

and if multiplicity free in Kronecker squaresof E,,, then a
2(s)+ a,,(s) and

a2(a-(s))+ a,,(a-
2(s))areeven.

Only eqs.(3.1)—(3.6)will beneededfor the argumentsin the restof this section.
This meansthat the following argumentshold for all Chern—Simonstheoriesthat
display simple-currentsymmetries.Eq. (3.29) will, however, be relevant for the
resultsof sect.6 that involve knot expectationvalues.
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3.3. CO-MINIMAL EQUIVALENCE OF TETRAHEDRA

We will henceforthdisplaycompatiblesetsof S, T, and U fusion rule channels
without thefusion coefficientswritten explicitly by assumingthat the sumsonly run
over the representationswith non-zero coefficients (but with multiplicity). For
example,the fusion rules in eq.(2.6) canbe written compactly(with a slight abuse
of notation)as

S-channel T-channel U-channel

a ~b= ~s, a .p(c) = ~t, a .p(d) = Eu,

c d = ~s, p(b) . d = ~t, p(b) c = Eu. (3.30)

The associatedmatricesof expectationvalues of tetrahedraare real and satisfy
non-linearequationsthat only dependon the coefficientsappearingin eq. (2.26)
(and on those in eq. (2.30) for link-type tetrahedra).We now consider the

co-minimallyequivalentset of fusion rules

S-channel T-channel U-channel

a-(a) b= Ea-(s), a-(a) p(c) = Ea-(t), a-(a) p(u(d)) = Eu,

ca-(d) = Ea-(s), p(b) .a-(d) = Eci(r), p(b) ~ ~u. (3.31)

The sumshere run over the samerepresentationsthat appearin eq. (3.30). The
pairs of fusion rules displayedhere exist due to eq.(3.1) (or the secondequality in
(3.7)) anddue to the fact that

p(cr(a)) =a-~(p(a)). (3.32)

Eachchannel providesa basis that spansa new Hilbert space~, of the same
dimensionalityf as ~‘. The tetrahedralexpectationvaluessatisfy eqs. (2.25) and
(2.26),but with the coefficientsin (2.26) now given by

o(V((o~)c~ i~ (3.33)

Insertion of the identities in eq. (3.5) shows that the complexpart of the relative
phasescancelsso that

gc(r(dr(a)P(c~P(h)c~~_ I = ~ 1 (3.34)

This meansthat the coefficients in the equationsthat determinethe two sets of
tetrahedraareequalup to sign, so that correspondingtetrahedraappearingin the
two casesareequalup to sign. Pictorially, by goingto the co-minimally-equivalent
set of fusion ruleswe havechangedthe representationsarounda particularclosed
orientedloop uniformly by r —s a-(r). The sameresult holds in general for all other
loops and for iterations aroundeach loop. In all casesthe channelsthat appear
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produceexactly the sameset of constrainingequationsup to sign. The general
result is that

O.n+m_l(C) c

o~(a) a

(3.35)

This is all that one cansayaboutthe generalcaseof non-link-type tetrahedra,
sincethe sign of eachtetrahedronis a matterof residualvertexnormalization.For
link-type tetrahedranote that the coefficients in the equationsin eq. 2.30 are
squaresand so do not dependon any of the undeterminedsigns in eq. 3.5.
Therefore,usingeq.3.35, as well aseq. 3.5 in eq.2.30, we obtain the exact result

b b

u(a) a

0cr(a)b0a(a)p(h) a(s) b ~(l) Qal~~aP(b) b

cr(a) a

(3.36)

While the permutation sign ~ cancels trivially in this particular case, the
generalresult

TTTh( b)

/(~\~
n+in (~) ~n-m (i)

o.m(b)

ci” (a)
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b

a

~bp(b~ab
0ap(b) ~ b

a

(3.37)

containscontributionsfrom thesesigns. The productof thesechargeconjugation
signsis givenby

= ( — i)”’~’~l)(Klo(0)) (3.38)

The complex parts of all the phasesin eqs. (3.36) and (3.37)cancel leaving only
a calculablesign. This relative sign resultsboth from the transformationproperty
of the permutation signs and from that of the conformal dimensionsinvolved.
While one might hope that the permutationsigns could be chosenin such a way
that the signs of tetrahedraare uniform within cominimal equivalenceclasses,
simple counter-examplesexist in which it is impossibleto arrangethis, evenusing
all possiblefreedomsof normalizations.

4. Rank-level duality of planar tetrahedra

The aim of this sectionis to showthat eachtetrahedronin an SU(N)K, Sp(N)K,
or so(2n+ 1)2k+1 theory has at least one partner in SU(K)N, Sp(K)N, or
so(2k+ 1)2,,+ ~, respectively,with the sameexpectationvalue up to sign. In the
caseof so(2n+

1)2k+ this only applies to tetrahedrawith tensorrepresentations
on all edges.The resultsof sect.3 thenshow that eachtetrahedronis also dual to
entireco-minimal equivalenceclassesof tetrahedrathat all havethe sameexpecta-
tion value (up to sign).

The map betweenintegrable representations of G(N)K andits rank-level dual
G(K)N given by tableautransposition

aEG(N)K—SãEG(K)N (4.1)

connectsrepresentationswith closely related quadratic Casimirs, fusion coeffi-
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cients, and q-dimensions, as follows. In order to treat SU(N), Sp(N), and
so(2n+ 1) in parallel,we extendeq. (3.11) by defining

(r(a) + r(b) - r(c))/N SU(N)

i~”= r(a) +r(b) —r(c) so(2n+ 1)

0 Sp(N). (4.2)

For all threegroupsthe non-zerofusion coefficientsof G(N)K are relatedto those

of G(K)N by [7,8]

N C — Nab ãb

(Note that the naiverelation Naj~= ~ does not hold in generalfor the fusion
coefficients.)For any tensorrepresentation[3,13,24]a

r(a) r(a)

—i--— 1—--~~-- for SU(N)K

h(a)G(N)K+ h(ã)G(K)N=

for so(N)K andSp(N)K. (4.4)

In addition [7], if s Ea 0 b,

h(S)G(N)K +

r(a)+r(b) r(a)+r(b)

2 (i_ NK )+Qab(s) forSU(N)K

= r(a)+r(b)

2 —F’°’(s) for so(2n+ l)2k+i

andSp(N)K, (4.5)

where ~ denotesthe numberof contractions(of tensorindices) neededto
obtain s in the tensorproduct a 0 b and

K
Qab(5) E c,(s). (4.6)

i=K—~
5+ 1

wherethe c,(s) are the column lengthsof the reducedtableaus. Both quantities
are integers.In addition, the q-dimensionssatisfy[3,121

{xq(a)}G(N)~~ ~Xq(a)}G(K)~. (4.7)
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Without consideringthe exact valuesof the permutationsigns, theseequations
yield the braid eigenvaluerelations

0ab0äi~ = (±)~e’~”~. (4.8)

wherethe sign (±), dependson the intermediatechannels in a complicatedway.
Here,and henceforth,

~ b\_f~(~~)~(b)/NKSU(N)K(a, so(N)KandSp(N)K. (4.9)

The dual identities for the special tetrahedralquantity in eq. (2.31) will only
requiretheseidentities.

For the caseof (linked) knots it will also be importantto understandhow the
permutationsigns ~aa and are related.We find that

-- ~ efl~*(~) for SU(N)K
~aa~aa,~ e’~~e1~~*~ for Sp(N)K andso(N)K. (4.10)

In the appendixwe obtain a proofof (4.10) for Sp(N)K, so(2n+ 1)2k+I, andfor
SU(N)K in the specialcase12”(s) = 0 (which often occursfor ~i~

5* 0), if s does
not appearwith reducedmultiplicity. While eq. (6.37) implies eq. (4.10) without
any such restrictionsvia an argumentusingthe t twistedtrefoil-type knot analo-
gousto that of sect. 3, we do not havean independentproof of eq.(6.37) unless
t = ±1, the caseof the twisted unknot [3],

K’ c111 ~ZIIIII~)GNK( IIIIII~~’~1III~~
Insertionof an S-channelspectral decompositionon both sides yields (by using
eqs.(4.3)—(4.7))

ENaa5Xq(s) e~5)[ ~“ — e1~0 ~ = 0, (4.12)

which constitutetwo realequationsfor the differencebetweeni~ in SU(N)K and
in SU(K)N (replacefl with F for the othergroups). If we useeq. (4.10)

for the terms that appearwith no reducedmultiplicity (or with Qaa(~) = 0 for

SU(N)), then we obtain two equationsfor the caseswith reducedmultiplicity (or
for thosewith flaa(5) * 0). This yields a proof of a restrictedbut infinite set of
caseswhere eq. (4.10) holds for all s andwith Qaa(~) * 0 in the caseof SU(N).
(That the map in eq. (4.1) is undefinedbetweensymmetric and anti-symmetric
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copiesof the sametableauin an intermediatechannelgives one the freedomto
define it so that eq.(4.10) will continueto hold in the caseof multiplicity.)

While the product of permutationsigns does dependon certain details of the
intermediatechannel,the productof braid eigenvaluesdoesnot:

0aa0 - = e”~’~’~e’”~”~ (4.13)
S 4s)

That the product doesnot dependon the intermediatechannelis the result of a
remarkablecancellationbetweenthe permutationsigns and a contributionfrom
the conformal dimensions.

4.1. TETRAHEDRAL DUALITY

Given the set of compatiblefusion rule channelsspecified in eq. (3.30) in the
level K G(N) theory, we now considera dual set of fusion rules in the level N

G(K) theory,

S-channel T-channel U-channel

a ~b= ~ a •p(~)= ~a-~’(i), a .p(a-
8(d)) =

= ~a-~5(~), p(.~).a-b(J) = Ea-~’(i), p(1) E= ~a-~”(ü).

(4.14)

The letters a,. .., t, u denoteG(N)K representationsandthe “tilde” symbolagain
denotesthe map from G(N)K integrablerepresentationsto G(K)N integrable
representationsgiven by tableau transposition. In addition, for Sp(N)K and
SO(2n + 1)2k+~, p(a) = a for all representationsa. The integerz.~”is defined in

eq. (4.2) and the quantity

ab~cd (4.15)

measuresthe failure of exact conservationof the number of boxes acrossan
intermediate(here the S-) channel.We havealso adopteda generalizationof the
indexconventionimplicit in ~ an upper(lower) indexindicatesthat r comesin
with a plus (minus) sign. For example,

(r(a) — r(b) — r(c))/N for SU(N)K

= r(a) — r(b) — r(c) for SO(2n+ l)2k÷1 (4.16)
0 for SP(N)K.

In all casesin which they appearthesewill be integers;in the examplejust given
this quantitywould only appearfor c E a 0 p(b).



S.G. Naculichci al. / Simple-currentsymmetries 477

This dual setof fusion rulesconsistentlydefinesthreef-dimensionalbasesof a
G(K)N Hilbert space,with eachchannel correspondingto a pair of compatible
fusion rules. This follows from the dual and cominimal propertiesof the fusion
coefficients in eqs.(4.3) and (3.7), respectively,as well as eq.(3.32). For SU(N)K
the identity

p(a) =a-~(p(a)) (4.17)

is also needed.This last identity is readily demonstratedby implementing the
operationson eachside of the equationdiagrammatically(i.e. via a seriesof Young
tableaux).The existenceof this dual set of fusion channelsestablishesa well-de-
finedmap from tetrahedrain onetheory to thoseof the other.

Correspondingto thesetwo sets of fusion rules is the following simplerelation
betweenthe S- and T-channelproductsof braid matrix eigenvalues:

Qab
0~h = ±~

= ±e’~”~. (4.18)

(The analogousU-channel identities are obtained as cases of the T-channel
identity by setting c —s d, etc.)

Usingtheseequationsandeq. (3.5) we find that the productsof eigenvaluesthat
appearas coefficients in the two sets of non-linearconstraint equationscorre-
spondingto the two setsof fusion rules in (3.30) and(4.14) are the sameup to sign
for generaltetrahedra

Cd a (C) (b)C — I I /~

5(d) dp(1) p(b)l~ ~P

0P ~ = ~ . (4.19)

Given this result it immediately follows from the nonlinearset of equations(eqs.
(2.25)and (2.26)) that the tetrahedraof onetheory andthe dual tetrahedraof the
dual theory satisfy exactly the sameset of equationsup to sign. The result for
generaltetrahedrais that

= ± ~ EEI (4.20)
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For link-type tetrahedra(for which ~ = 0 always) the exactresult

b

,
1.bp(b)~ab0ap(b)

a

b

= ~ -1

a (4.21)

follows from the supplementedskein relations(eqs.(2.26) and(2.30)),showingthat
the sameproductof tetrahedraandbraid eigenvaluesis an exact invariant under
both typesof discretesymmetries.The productof chargeconjugationsignsis given

by

(N+K)r(b)
~bP(b)~bP(b) = ( — 1) for SU( N) K

° 0 1 for SP(N)K andso(2n+ l)2k+I. (4.22)

5. Two applications: WZW models and quantum groups

We give two simpleapplicationsof the aboveresults.

5.1. WZW BRAID MATRICES

The WZW braid matricesare matricesof non-planartetrahedra[11.With the
edgeorientationsin the definition of the WZW braid matrix in termsof Chern—
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Simons graphschosento makethe connectionwith the basesdefined in subsect.
2.1 transparent,considerthe braid matricesspecifiedby

a ~ a=~B51{b ~)J~bP(b) a ________ a

(5.1)

which braid 4~,,and in the WZW correlationfunctionsK~a(t)hçbp(h)45p(a)>. The
relationto Chern—Simonstetrahedrais simply that

B5~[b P(b)]=Y~P(b)(Xq(a)Xq(b))1 ~

b

= (xq(a)xq( b) ~ ~~P(b)

(5.2)

This showsthat the WZW braidmatricessingledout by eq. (5.1) are expressiblein
terms of link-type tetrahedra.Since the planartetrahedraappearingin eq. (5.2)
areexactlythoseof F~,(with d = a andc = b)

= ~l(~bP(b~ab~aP(b)F) (5.3)
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Usingthis correspondenceand eq. (4.21)we find that

EBS~~[b p(b) p(~ J = ~ ~

a p(a) a p(a)

= ~ (5.4)

where 1(b, b) is defined in eq.(4.9). This complementsthe results in refs. [3,24]

on WZW braid- andfusion-matrixdualities.There,however,WZW braid matrices
that braid thepair of ~,, fields in K4~a4b~h’t~d>wereconsidered.Theselatterbraid
matricesareproportionalto a specialclassof non-link-type tetrahedra.

Similarly, the relationbetweenthe (link-type) WZW braid matricesthat differ
by co-minimal equivalenceis found from eq.(3.36) to be

b p(b) — b p(b)
Ba(s)a(t) — B~, . (5.5)

a-(a) p(a(a)) a p(a)

5.2. QUANTUM GROUP 61-SYMBOLSAND WZW FUSION MATRICES

Given appropriatenormalizations,the expectationvaluesof planartetrahedra
equal[1] the valuesof quantum6j-symbols(of ~q(G(N))) evaluatedat theroots of
unity q = exp(2nri/(K+ ~)). (In addition, the WZW fusion matrices are also
directly matricesof planartetrahedra.)Thereforesect. 3 and 4 immediatelyyield
identitiesfor thesequantities.Given the standardrelation [25,26]

a ~ d =E{a ~ a by d (5.6)

the correspondenceis

{a b s} = =G (5.7)

c d u q a d b ~~cII~EIII:~~

The resultsof sect. 3 yield the transformationpropertiesof quantum61-symbols
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underco-minimal equivalence.Forexample,

u(a) b cl(s) = + a b ~\• (5.8)

o-(c) d o-(u) q — c d U)q

Similarly, the resultsof sect. 4 show that thereis a rank-level duality between
the quantum 6j-symbolsof ~q(G(N)) and ~(q(G(K)) for q the common root of
unity q = exp(2ni/(K+ i)).

a b s = ± a b a-~5(.~)• (5.9)

c d u q E d a-dd(u) q

The ±signsappearingin thesetwo equationsdependon the phaseconventionsof
the61-symbols(which are inheritedfrom theresidualvertexnormalizationconven-
tions of the planar tetrahedravia eq. (5.7)). Exact identities can also be con-
structedin the specialcasecorrespondingto link-type tetrahedra.

6. Discretesymmetriesfor all Chern—Simons observables

Arbitrary planargraphscan be reducedto sumsof productsof planartetrahe-
dra [14]. The overall sign of a non-link-type graph dependson the arbitrary
normalizationsof the graphvertices,and the tetrahedrathat appearin its reduc-
tion can all haveexpectationvalueswith normalizationdependentsigns. However,

if we fix the normalizationof all verticesof the original graph,then,sincethe new
vertices that appearin the reductionprocesscomein pairs,the patternof relative
signs betweenterms in the sum is not normalizationdependent.It is not clear

what determinestheserelative signsor how to calculatethem. The situationdoes
not changefor link-type graphs.Such a graph has an unknown, intrinsic overall

sign (sinceeachvertex appearsan evennumberof times in the graph, so that a
changeof normalizationdoesnot changethe sign of the graph),and, in addition,
the relative signs betweenterms in a tetrahedraldecompositionare not known.
Without a way of calculatingthesesignsthe algorithmin ref. [14] is ineffectivefor
generalgraphs.

To makethis problemconcreteconsiderthe graph

b
./

33/

a
4

G(a,b,(s
1})= a b b a

a

Si (6.1)
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which has the reductioninto generictetrahedra

G(a, b, {s~})= ~P(a)~,,bP(b)(Xq(a)Xq(b))
1(Xq(51)Xq(52)Xq(53)Xq(54)) 1/2

b

a

i/k! Xq(t) ~ ~L(j)

b

x ~ C~(1)

(6.2)

The verticesnot in commonbetweeneachterm in the sum(i.e., thosethat do not
appearin the original graph)comein dualpairsso that a changeof residualvertex
normalization does not changethe relative sign of the terms. Since this is a
link-type graphthe verticesof the original graphalso appearin dual pairsso that
its overall sign is also clearly normalization independent.While the non-linear
identities (2.25), (2.26) do establishrelationsbetweenthe signsof certaintetrahe-
dra, the tetrahedrathat appearhere are not in the sameset of basis change
coefficientsand soare not relatedin thisway.

Using thefusion rule identity in (3.7) onecanshow that to anarbitrarygraphin
a level K G(N) theory therecorrespondsa classof topologicallyidentical graphs
obtainedby uniformly replacing the representationsalong oriented, closedloops

by cominimal equivalents.Similarly, using eq.(4.3), onecan also show that in the
level N G(K) theory there are dual graphs with co-minimal equivalentsof
transposesof the G(N)K representationsalong the edges. In this latter case,
however,the fusion rule identitiesonly establishthat to eachvertexof one graph
thereis a dual vertex and one might ask whether thesecan be pieced together
consistently.This is always possiblesince the integers~ (defined in eq. (4.15)),
which measurethe absenceof exactbox conservationacrossintermediatechan-
nels,sumto zeroaroundclosedloops.Thenusingthe samepatternof reductionto
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tetrahedrafor both graphsand the symmetryresults for thesetetrahedra,we see
that co-minimallyequivalentgraphsare identical functionsof cominimally equiva-
lent tetrahedra,and that dual graphsare identical functions of dual tetrahedra.
However,we only know that the absolutevaluesof these(real)tetrahedraare the

same.Therefore the abovesign ambiguityonly allows one to conjecturethat the
resultsof sects.3 and4 generalizeto arbitrarygraphs.

The first part of this section is devotedto examiningsomeexceptionalcasesof
graphswhich can be calculatedby the abovealgorithm,providing further evidence
for the aboveconjecture.We then find linear equationsfor any link-type graph.
Theseplay the samerole for generalgraphsthat the analogouslinear equations
did for tetrahedra.In the last part of this sectiona graph-independentargument
yields the exact transformationproperty of knots and links under co-minimal

equivalence.An immediateconsequenceis a demonstrationof the transformation
propertyof link-type graphsunderco-minimal equivalence.Weobtain (but do not
prove) the analogoustransformationidentities for graphs,knots, and links under

rank-level duality.

6.1. CALCULABLE LINK-TYPE GRAPHS

The graphin eq.(6.1) hasthe alternatereductionentirely in termsof link-type
tetrahedra

G(a, b, {s~})= (xq(a)xq(b))2o~gf(o~g~fl~

x E Xq(t) - ‘(~P F
5,~~)* (~bP(b)~abFgaP(b))

x (~p(b)gabF gaP(

1~)( ~bp(b)OabFgap(b))* (6.3)

where F
5, is exactly that displayedin eq. (2.23) with c = b and d = a. The braid

eigenvaluesall comefrom insertionsof factorsof unity in the form of productsof
braid eigenvalues,suchas ~ In this casethe strategyoutlinedaboveis
successful,andeq.(3.36) leadsto

(g~~) -

1 g~G(a-(a),b, {cr(s,)}) = (~g~)- 1~~G(a,b, (se)).

(6.4)

Similarly, eq. (4.21) yields

(oo~)o~G(a, b, {s~})

= i)~ ~)
2R~0(S3)) G(a, ~, (a-~(~)}). (6.5)
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The entirecomplexpart of the (combined)phasefrom both sidesof eachof these
equations cancels,yielding the result that the related graphshave the same
expectationvaluesup to a (calculable)sign. Although other examplesof graphs
with suchreductionscanbe found, it doesnot seempossiblein generalto reduce
generallink-type graphsinto sumsof productsof link-type tetrahedra.

A generallink-type graphcan haveseveraltypesof intermediatechanneledges
which differ from thoseoccurring in eq.(6.1). In all, thereare four typesof such

channels.Dependingon the orientationsof the edgesadjacentto an intermediate
channeledge,onecanhavean 5- or T-channel.In addition,dependingon whether
the pair of representationsadjacentto one vertex are permutedat the opposite
vertex, one can have a twist (with permutation)or parallel (without permutation)
edge.The four intermediatechanneledgesin eq. (6.1) are S-channeltwist edges.
Link-type tetrahedraexhibit both S-channelandT-channeltwist edges,butparal-
lel edgesarenot possible.A simple examplewith paralleledgesis the graph

b

G(a, b, {s1, s2, t}) =

3~ a a

b a4 b (6.6)

The reductionof this graphto tetrahedra

.

1.~ap(a)

G(a b, (s1 s2, t}) = __________________
\!Xq(a)Xq(b)Xq(t)

b a

a b

~C~/i) ~2 ~ (6.7)

canbe written in the form

P(a~ab(0ab)
1G(a, b, {s

1, ~2’ t))

3/2 —1/2

=(xq(a)xq(b)) Xq(t)

X E (~~P(b~:bF,,(i)g~P ))( P(b)Q)F,,( i)~~~b)), (6.8)



S.G. Naculich ci a!. / Simple-currentsymmetries 485

where the sumis over the N
0~(~)’typesof the coupling ~1’~(or its dual)appearing

at the indicatedvertices.This exampleisolates a further problem, if the fusion
multiplicity is greaterthan two. If the multiplicity is exactly two, then the two
couplings (generally)correspondto symmetric and anti-symmetriccombinations
and the correspondingbraid eigenvaluesdiffer by a sign so that no degeneracy
needoccur.If, however,Nap(b)’ ~ 3 for somet, a degeneracywill necessarilyoccur,
in the sensethat thebraid eigenvaluesoccurwith multiplicity. To applythe results

of sects.3 and4 to this case(aswell, in fact, to the previouscase)we are implicitly
assumingthat an orthogonalbasis of the degeneratecouplingscanbe chosenso
that the tetrahedrathat only differ by suchcouplingsareexactlyequal.In thecase
of low multiplicity or where this is possible,we find that

-

1G(a-(a), b, {a-(sI), a-(~2),a-(t)})

= P(a~ab(~ab)’G(a, b, (si’ ~2’ t)). (6.9)

In addition,

~P(a)~ah(gab)1G(a, b, {s
1, ~2’ t))

= P(a)(0h))Qh()G(a, b, {a-(s1), a-o(s2)’ a-(t))) (6.10)

This exampleshows that no braid eigenvaluepre-factor appearsfor the parallel
T-channel.(Thesameresult holdsfor a parallel S-channel.)

6.2. LINEAR SKEIN RELATIONS FORLINK-TYPE GRAPHS

Let ussupposethat we have(presumablynon-linear)equationsthat constrain
the expectationvaluesof a set of general graphsof a given topology. Then they

should involve exactly the samesign ambiguity as the non-linearequationsfor
tetrahedra.Therefore,for the graphsof this topology with edge representations
andorientationschosenso that the graphscansupportknots or links, their overall
signs will be intrinsic but undeterminedby these equations.The number of
undeterminedsigns in the array of graphs G(s1,~2’~~•’ t3,...), indexedby the
intermediatechannels,is ~,f,. Herethe sumis over the edgeslabeledas interme-
diatechannels(in the caseof graphsthat supporttwo-componentlinks, this is just

(# crossings)xf). We now show how to construct (at least) this number of
inhomogeneouslinear equations.For eachintermediatechanneledgetherewill be
two representationsa and b at eachvertex. From onevertex, traceout a Wilson
line for a so that it follows the graphedgesandeventuallycomesbackto the other
vertexof the intermediatechanneledge.Thendo the samefor the representation
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b, but in sucha waythat wheneverastrandof a mustbe crossed,the b Wilson line
goesuniformly over (or under) the a Wilson line. If thereremainother external
edges(bearing representationsam) not traversedby this proceduretrace out
unlinked unknots until all edgeshavebeentraversed.The indicated(two-vertex)
graphis just a fancy way of specifyinga baryon(multiplied by a braid eigenvalue
and,perhaps,a product of unknot expectationvalues)*• On the other hand at
everycrossingwe caninsertan 5- or T-channelspectraldecompositionandobtain
the baryonas a sum of graphsfrom the arrayG(s1, ~ t3,...) (all of the same
topologyandwith the samerepresentationson the externallegs).

For example,usingthe graphin eq.(6.1), we candraw

b

a

\~•%
(6.11)

This graphleadsto the equations

(~)

2~Xq(S2) (xq(a)xq(b))2

= E ~Xq(51)Xq(53)Xq(54) (ab)2kabab)~ababG( b, {s~,~2’ ~3’ 54))]
S

1 ,S3,S4 (6.12)

They havebeenwritten in a waythat isolates(in squarebrackets)a specialproduct
of braid eigenvalueswith the graph;it is exactlythe specialquantity in eqs. (6.4)
and (6.5). These equations,with the unknowns consideredto be the special
products, are exact invariants of both co-minimal equivalenceand rank-level
duality, sincethe coefficientsaresquaresof eigenvalues.This equationis a precise
analogof the linear equations(2.30) found for link-type tetrahedra.In addition,
other patternsof crossingslead to further equations.For example, the mirror
imageof the graphin (6.11) yieldsthe complexconjugateof eq. 6.12.

* Actually, one can let the a strandcrossthe b strandin anyway that leavesthe graphtopologically

equivalentto a baryon; in which casefurtherequationsresult.
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Similarly, usingthe graph in eq. 6.6, we find that the non-planargraph

81~ -~

a (6.13)

leadsto the equation

3/2

~Xq(5i) (xq(a)xq(b))

= E~~Xq(52)~11(~)lG(a, b, {sI, S2, t})] (6.14)

This equation has been written in a way that isolates the exact invariant of the
discretesymmetriesthat appearsin eqs. (6.9) and(6.10).

For arbitrary graphsthe result is a set of equations,only slightly different for
eachof the four typesof intermediatechannelsappearingin the graph. For each
pair of representationsa and b which join at (at least)onevertexin the graph,a

subsetof the following equationsholds. Letting i~/denotethe numberof interme-
diate edgesof G, and ~ the sumof the crossingsigns of the (two-vertex)graph
constructedabove,the S-channeltwist, T-channeltwist, andparallel equationsare

(1Jxq(a,n))(~~)~5

= (xq(a)~q(b))~
2~ E (n ~ _w(k))

{r,,t
1,s5(k*t)} ,,j,k.~i

XG(a, b,...,{r~,~j,
5k’

(11xq(am))(~~/xq(ti)

= (xq(a)xq(b))~2~ E (n y~~)Xq(tj)Xq(5k)(O,j))(Os

5)~)

{rI,1J(j=�.l),sk} ,,j *l,k

XG(a, b (r1, ti, Sk
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(11xq(am))~tt)

= (~q(a)xq(b))~2~ E (n ~~)xq(tj)xq(5k)(gt,)J)(os

5)~H)

{r1(i ~ l),t1,s4) ,� l,j,k

XG(a, b,.. ., {r~,~ ~ • })~ (6.15)

where,in eachcase,the index i labelsparallelchannels(either 5- or T-type), the
index j labels twist T-channels,and the index k labels twist S-channels.The

representationsa,,, correspondto pathson the graph that yield unknots. In the
third equationthecrossingsignsw(j) = ±1 for T-channelcrossingsandw(k)= ±1
for S-channelcrossingssatisfy the constraintthat ~= E.w(j) + Lkw(k) = 0. (The
aboveconstructionimplies that 7= ±1 in the first and secondequations.)The
omittedsuperscriptson the braid eigenvaluescomefrom oneof the pairs (am, a),
(am, b}, (am, am), (a, b) according to the edges adjacentto the intermediate
channelin question.The sign ~ is given by

= ( .~.,aP(a)~bP(b))( [J37,,aP(a)) (6.16)

wherethe productsareover all S- and T-channelintermediateedges,respectively,
and a and b are the adjacentedge representationsof the given intermediate
channel.

Theseequationsprovideas many constraints(with the complexconjugatestwice
asmany)as undeterminedsignsfor the family of graphsindexedby the representa-

tions appearingon the intermediateedges.Sincewe have,with the index i running
over all intermediateedges,hf, graphs(for example, f(#crosslngs) graphs, for
graphssupportingtwo-componentlinks), theselinear relationsare insufficient in
generalto determinethe graphexpectationvalues.

They have, nevertheless,the samestructureas the analogousequationsfor

tetrahedrain eq.(2.30)andcanbe written in a similar mannerto isolatea quantity
that just dependson the squaresof eigenvaluesandon productsof q-dimensions.
If f= 2, theygive a completeset of equationsfor the graphsin (6.1) and (6.6) and

permit verification of the identities in eqs. (6.4), (6.5), (6.9) and (6.10) without
appeal to any results about tetrahedra.This direct, linear approachto these
identitiesdoesnot require, in the caseof fusion multiplicities, the existenceof a
specialchoiceof basisfor which tetrahedraof degeneratechannelsareequal.(Of
coursethis problemrecursfor the graphsthemselves.)
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In conclusion, it seemsreasonablycertain that

(n ~ ~w(k)(Q~(a)P(h)) W(J))~(rG(0-( a), b (u( ri), a-(t1), a-( sb), . . .

= (n ~ _w( k)(0a~(h))W(J) ) ~G(a, b, . . ., {r,, t1, Sk, . ..)) (6.17)

for any choice of the signs w(j) and w(k) as long as ~1w(j) + )kw(k) = 0, since
thesequantitiessatisfy some form of the relevantequationsin (6.15) which are
exactlyinvariantunderco-minimal equivalence.The signs ~ and ~“ (~below)are
definedby eq. (6.16), interpretedwith referenceto appropriategraphs.

Similarly, oneexpects

(n (O~b)_w(k)(~aP(h))W(J))~G(a b,..., (r1, t1, s~

-- iv(k), - - —w(j)— ~ ab I ap(h)

— j,k ~ ~~U”h’(//)

x~G(ã,b {a--~”(F~),a-~’(T~),a-~~”(~k)’. . .}) (6.18)

to hold underthe sameconditionon w(j) and w(k).
We haveshownthat eqs.(6.17) and (6.18)actuallydo hold for variousparticular

graphs. In addition, the linear constraintsthat exist for any link-type graph also

supportthe expectationthat theseequationswill hold for all link-type graphs.

6.3. SYMMETRIES FOR LINKS AND KNOTS

Using eq. (3.5) we find that the characteristicpolynomial of the squareof the

braid matrix Ba(a)h

FT (B~(a)i,— (~o(a)h)2) = 0 (6.19)

transformsto

11 ((e l~~B~(5)h)
2— (~ah)2) = 0, (6.20)

which is exactlythecharacteristicequationfor the squareof the braid matrix B
5,,,

II ~ — (~)2) = 0. (6.21)
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This implies that a link ~f’(o-(a), b,. . .) with u(a) on an unknottedcomponentand
the same link with a replacing a-(a), ~‘(a, b, . .), multiplied by a phase
exp(±iirq(b)) for each (I signed) crossing for each component that the a
componentcrosses,satisfy identical skein relations.Similarly, using eq. (4.8) the
characteristicpolynomial of the squareof the G(N)K braid matrix B5h can be
written (with D(a, b) defined in eq.(4.9))

~ ((e ‘~~~B5,,)
2— (a~)2) = 0, (6.22)

which is exactlythe characteristicequationfor the squareof thebraid matrix B,~1
in the G(K)N theory. This implies that a linking of unknots 2~(a,b, ...) in a
G(N)K theorywill satisfy the sameskein relation as the mirror image link in the
G(K)N theory multiplied by a phasee”~’~ for each (± signed)crossing of
componentsa and b (and this holds for each pair of components).Similar
statementsresult from comparisonof thecharacteristicpolynomialof theknot-type
braid matrix Ba(a)a(a)

fj ( B,r(a)a(a)— :~‘~)= 0 (6.23)

with that of B
55 (by using eq. (3.29) which relates the braid eigenvalues).A

comparisonof the characteristicpolynomial for Baa in a G(N)K theorywith that
for ~ in a G(K)N theoryrequiresthe use of eq. 4.13 (which we haveproved in
many but not all cases).Sincenot all knots or links canbe untied with the skein
relations correspondingto characteristicpolynomials(such as (6.21) or (6.23)),
theseresultsalonewould only permit the comparisonof a restrictedclassof knots
and links.

In the caseof theDynkin diagramsymmetriesa cablingargumentyieldsa proof
of the exactconnectionbetweenany link and its cominimal equivalents(eq. (6.30)
below). To obtain the analogousrank-levellink relation(eq. (6.37))we will needto
examinethe caseof generalknots andlinks by meansof the reductionto planar
graphsfollowed by an appealto eq.(6.18). This will provide a completeproof of

eq. (6.37)only for specialclassesof links (i.e. thosebuilt on certainspecialgraphs
suchas thosestudiedin subsects.6.1 and 6.2).

Consideran arbitrary link Jt((a1)) with representationsa, on the link compo-

nentsandthe cominimally equivalentlink 2’(a-(a,), {a~,j * i}). The exactrelation
betweenthese links is obtained as follows. Given any link ~, with a specified
component..~l,let (~2, ,~ E 4 ~ be the set of links with representationss on
that component,and let ~ ~ be the link with an untwisted,two-cableof the
component.~‘ in placeof the original component.Then

K~~h~= ~ (6.24)
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alwaysholds.This fact and thefusion rule for cominimalrepresentations,4,,0))

= ~,r(a)’ permits replacementof the Wilson line with a-(a1)with the two-cableof
Wilson lines with a and a-(0) on the two (everywherelocally parallel) lines, in

order to obtain

(~(a-(a~),{a~,I * i))> = (~,(o)~{a~} )~. (6.25)

Then the one-term skein relation basedon the characteristicpolynomial (of the

samefusion rule)

B,,(O)r = (oflr)

2B~) = e2~’°~’1B,~)r, (6.26)

for r = a, b,..., can be used to lift up the a-(0) component,~ detachingit

from the restof the link, at the cost of one factor of the braid eigenvaluein eq.
6.26 (or its inverse) for every negative(positive) under-crossing by .~f~))of any

other component,to obtain

K-~(a-(a
1),{a~,j * i}))

= exp(—in~1~~q(a1)w(i,I)) exp(—2iriq(a,)w(i, i))(~ç(0)K~/’({a)})).

(6.27)

where w(i, j)is the sum of the crossingsigns[18]betweenthe componentsi and j.
Theneachcrossingin the knot ~ canbe replaced(at the cost of further braid
eigenvaluefactors)with an un-crossingby meansof the skein relationcorrespond-
ing to the characteristicpolynomial

B,r(O),r~))= ~r(0)~r(0)~ (6.28)

Since the expectationvalueof a a-(0) unknot equalsunity (eq. (3.6)),

0) 0) —w(i.i) ~ + I
= (o~t/~) = ex~(-in~ (K I a-(0))w( i, i)). (6.29)

Therefore,

(2~(a-(a~),{a~,j * i}))

/ p+l
= exp —in E w(i, I)~(a1))+ 2w(i, i)q(a1) + w(i, i) (K I a-(0))

1~1=1 p

(6.30)
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The explicit valuesof (K I o-(0))are listed in eq.(3.28),and p is theorder of a-. We
cannow use(6.30)to obtain further constraintson a setof graphsof a given type.
There will turn out to be enough(linear) equationsto completelydeterminethe
expectationvalueof any link-type graph in termsof the links they support.While
we do not know theseexpectationvaluesindependently(so that we cannotuse

theseequationsto calculatethe graphs)we do know their transformationproper-
ties (eq. (6.30)) and so can obtain the transformationpropertyof graphsgiven in
eq.(6.17).

First one can insert a spectraldecompositionfor eachcrossingin an arbitrary

link 5.~,, to get a representationof the link as a sum over planargraphs.At
eachcrossingonecanchooseto insertan S-channelspectraldecompositionso that

( ap(a) bp(b)’~ E (n ~ b1,.. . , {s~,...)) (6.31)

(~q(a)xq(b)) {s}

with ~‘ = E I w(i) I denoting the numberof crossingsof the link (alternately,the
numberof intermediate-channeledgesin eachgraph). Herethe indicatedgraphs
only haveS-channeltwist-type intermediateedges.(While all facesof G with just
two edgescanbe immediatelyexcised,this raisesthe powersof the braideigenval-
ues appearingin (6.31) and potentially introducesa variety of the four channel
types,which complicatesthe argumentsomewhat.)For example,thefamily of links

~(a, b; {n~))= a

b (6.32)

(whereeach n, equalsthe sum of the crossingsigns of the neighboringbraiding)
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has the decomposition

K~(a, b; {n~)))= S~S5S3S4~ ~Xq(a)Xq(b) (o~~b)~’) a

(6.33)

If a * b, theneachn mustbe odd so that the sumof the crossingsigns between
two different components,~ is even. The generalcabling result yields, in this
case,the equations

~(u(a), b; {n~))=exP(_in~(b)(~n1))~’(a~b; (nJ) (6.34)

which can be thought of as a set of f
4 linear homogeneousequations(para-

meterizedby the crossingsigns n,) for the f4 quantities G(o-(a), b; (u(s,))) —

G(a, b; {s,}), multiplied by certainbraid eigenvalues.While the n, run overall odd
integers,the braidpolynomial skeinrelationsrelatelinks with different numbersof
crossingsigns. Given that no unforeseendegeneraciesoccur this set of equations
can be solvedonly by requiringthat eq. (6.17) holds.

Assumingthe graphidentity in eq. (6.18)yields, via eq.(6.33),

~(a, b; {flj))G(N)K= exp(_ni~(a,b) ~n
1)~(a, ~ { —n~))0~ (6.35)

as the expectedgeneralresult for the link in eq.(6.32) (assumingthat a * b so that

~1n~ is even).
Similarly, the classof links

b

~(a, b; {n~})=

a (6.36)
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hasa decompositionas a sumof graphsof the type in eq. (6.6) via one T-channel
andtwo S-channelinsertionsso that eq.(6.30) for theselinks (which is identical to
eq.(6.34)) leadsto the graph identity in eq.(6.14).Again, assumptionof eq. (6.18)
for the underlyinggraphagain leadsto eq. (6.35).

In general,the rank-level-dualityidentity for graphs(eq. 6.18) implies the link
identity

= exp(ni~w(i,i)r(aj))

xexp(—niEw(i, j)~(a,,

r(a.)r(a.)/NK SU(N)K
i(a, a) = ‘ (6.37)

0 Sp(N)Kandso(2n+1)2k+I,

whereJ~’is the mirror imagelink of 5~’.On the basis of the concreteresults,and

the structureof the known constraintequations,we expectthat eq.(6.37) holdsfor
all knots andlinks.

7. Conclusion

In order to studythe exact symmetriesof arbitrary Chern—Simonsobservables
we need a systematicreductionof all such observablesto known quantities.A
previously proposedalgorithm involving the reduction of such observablesto
tetrahedrais ineffectivedue to the presenceof undeterminedsignsthat appearin
thesereductions.We havefound an extensionof this algorithmthat permits the
examinationof the symmetriesof tetrahedraand certain other Chern—Simons
observables.Using this, we havederivedthe exact form of co-minimal equivalence
and rank-level duality for tetrahedra.(This result doesnot dependon any choice

of a systemof permutationsigns.)For arbitrary link-type graphs(including tetrahe-
dra) we find a set of linear equations;theseequationssuggestthe generalform of
co-minimal equivalenceandrank-levelduality for arbitrary link-type graphs.In the
case of cominimal equivalencethis is confirmed by an argumentbasedon an
independentresult for links. For rank-levelduality weonly show that the expected
graphresult implies the expectedlink identities(andvice versa).In both caseswe
exhibit severalnon-trivial examplesconsistentwith theseidentities.

For knots these identities require precise control over the permutationsigns
and conformal dimensionsappearingin the braid eigenvalues.Study of these
quantitiesled to an exact formula for the permutationsignsin the multiplicity free
case (ref. [19]) and the examination of the simple current chargesled to the
identification of the simpleclassicalorigin of thesecharges(sect. 3).
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The most pressingproblem raisedby this work is to find an effective way of

calculatingarbitrary (or even just link-type) graphs in a systematicway. The
reductionof a knot, link, or graph to a sum of productsof tetrahedra(planaror
non-planar)is akin to evaluatinga lattice partition function, but with an important
difference: the Boltzmann weights of a (unitary) lattice partition function are

positive definite, but the tetrahedraarenot.

Appendix A. Plethysm,permutation signs,and baryons

Al. YOUNG TABLEAUX AND DYNKIN INDICES

The representationsof SU(N), Sp(N), and so(N) that appearon the compo-
nents and edgesof Wilson links and graphsare referred to primarily via Young
tableaux.For SU(N), Sp(N), andso(2n+ 1), the tableaurow lengthsare given in
terms of the Dynkin indicesof the highestweight by

rank{G}

~ for G=SU(N) andSp(N)

+ ~ a~ for so(2n + 1). (A.!)

For so(2n) the natural labels

n—2

~(a,,+a,,1)+~a1 forl<i<n—1

for i=n (A.2)

correspondto tableaurow lengthsfor i = I n — I. The final tableaurow length
is given by I 1,, I. If 1,, * 0, then the representationis characterizedby its tableau
and the number v ~ (0, 1) definedby (~1)~= sgn(a,,— a,, ). The tableaufor a
spin-tensor{~i; a) with tensorpart a is formed by adjoining a column of n half
boxesto the ordinarytableaufor a.

For SU(N) and so(N) we refer to reduced tableaux.A tableauis reducedif
= 0 for SU(N) and if c1 <N — c1 for so(N) (the c1 are column lengths).While

the tableauxdefined in the paragraphaboveare all reduced,unreducedtableaux
appearin the standardproceduresfor computingtensor productsusing Young
tableaux. In addition, for so(N), the associatetableaua(a) of a tableaua only
differs from a in that c1(a(a))= N — c~(a).If a(a)= a (requiring N = 2n), the
representationa is self-associate.Since I,, is non-vanishingfor theserepresenta-
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tions, specificationof self-associaterepresentationsrequiresthe sign ii in addition
to a tableau.All spinorsof SO(2n)are self-associate.

Implicit in this paperis the assumptionthat the tableauxappearingin a level K
G(N) theory label integrablerepresentationsof G(N)K. This meansthat 11 <K
for SU(N) and Sp(N) and l~+ ‘2 <K for so(N).

A.2. BARYON NORMALIZATION AND PERMUTATION SIGN CONSTRAINTS

The crossingconstraint?7~= in eq.(2.11) follows from comparisonof the
standarduntwisting

= b~a 0ab~~J (A.3)

with the alternateuntwisting

b~a ~ (A.4)

where ~- = qQ(a)/
2 is the framing factor incurred in undoing the (positive

crossing-sign)self-crossing.
We adoptthe standardnormalizationof baryons

Kap(C)b

b = ~~q(b)Xq(p(~5) (A.5)

Kap(C)b

This normalization and the crossing constraint implies a definite relation
betweenany coupling and its dual and leadsto the conjugationconstraint r~~’=

~~~p~a

1)p(h) in eq.(2.11). Given a consistentchoice of a systemof permutationsigns

thereis onesign w left for the set of four couplings/~“, ~ ~ ~
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In the remainderof thissubsectionwe discusstheorigin of thefusion constraint
in eq. (2.11). Examinationof the U-channelspectraldecompositionof the identity

showsthat

=A(a, b) 0 (A.6)

(~Th bb

where A(a, b)= ±1.Then

A(a, b)sj~”(”) f 0 (A.7)

(~Th ,i~N

If a = b then the sign A(a, a) is intrinsic in the sensethat it doesnot dependon
the residualnormalizationof any couplings,but if a * b then A(a, b) dependson

the residual normalizationof the couplings ~ and ./f’,~’. It is natural (though
perhaps not necessary)to set the normalizationof ~ which couples the
ingoing states 0~0 I p(a), i) to the outgoing states I p(a), i), equal to the
normalizationof ~ This implies that

a p(a)
= (A.8)

which, from eqs.(A.6) and(A.7), leadsto the equality A(p(a), b) =A(a, b).
Similarly, we find that,necessarily,

~IIIE~II~= R, (A .9)
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with R, = ~ = ±1. The couplingsthat appearon the left- andright-handside of
eq. (A.9) are related by the action of the charge conjugation operator ~“~‘~‘:

t —, p(t). For example, ~p(t)d = ~~(1)t(~I)Ti (where T1 is the partial transpose
that effectively raisesthe indiceslabeling the statesof t). That the right-handside
of eq. (A.9) canbe constructedfrom the left by an odd numberof applicationsof
this operatormakesit reasonablethat a non-trivial sign could appearin eq. (A.9).
In this light it is also reasonablethat while R, dependson t it doesnot dependon
the other representationsin eq. (A.9). Using theseresultswe will now show that
A(a, a) = 1 andthat R, =

Using eq.(A.7) we find that

=A(a, a)~7~P(5)W a (A.10)

Since R~= 1 eq. (A.9) leadsto

= A(p(a) a)~0a

Thesetwo decompositions,eq. (A.8), and eq.(A.5) imply that

a ~ (A.12)
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which from eq. (A.7) yields A(a, a) = 1. If p(a) = a, then eq. (A.12) holds
necessarily,i.e. with any choiceof residualcouplings.The importantpoint here is
simply that (almost necessarily)not all baryonscan be normalizedto be positive.
Sincethis is the casewe haveadoptedeq.(A.8) in order to put all representations
on the samefooting. Similar manipulationsstarting from tetrahedrawith only one
edgecarrying the identity, such as

a

b

0 , (A.l3)

b

a

show that for any a, b, and c, with cea oh

b = cp(c) b = 7)CP(C)X(a)X(b)X(C)

This result and eq. (A.9) immediately imply that R( = ~i~’~- Thesebaryonsigns
are responsiblefor the permutationsigns in the dual basis equationsin subsect.
2.1. By reversingall the arrowsin a baryon,eq.(A.14) implies thefusion constraint

~ap(a)~hp(h) = ~cp(C) that appearsin eq. (2.11).
In this way we obtain the threeconstraintson the signs in eq. (2.11) from the

standardbaryon normalizationand the apparentlyinnocuouschoice of vertical
framing.

A.3. THE NATURAL PERMUTATION SIGNS

In the traditional quantumgroup constructionof link andgraphinvariants[27]

finite-dimensionala-matricesact diagonally on matricesof q-Clebsch—Gordan
coefficients,with the diagonal elementsgiven by eq. (2.9), except that the non-
crossing symmetric e~appearsin place of the crossing-symmetrics~.This
differencereflectsthe fact that the diagramcalculusinspiredby quantumgroups
[27] differs from that appropriate to Chern—Simons theory by singling out a
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particulardirection(a “time” direction). In this sensethe Chern—simonsgraphical
calculusis a lagrangianversion of the (“hamiltonian”) quantum group graphical
calculus. Due to the close correspondencebetween these two approacheswe
expecta simple relation between r~’~and �~, which, in fact, is the case (eq.
(2.18)). The quantum group permutationsigns can be deducedfrom (if a * b

definedvia) the matricesof q-Clebsch—Gordancoefficients(~,,(q))~,that appear
in the tensorproductdecompositions

Ic, k) = ~ (~(q))~I a, i> o I b, j), (A.15)

by meansof the identity

= ~ahc,~ba(q— I) (A.16)

(Iteration of eq. (A.16) shows immediately that �~‘ = er.) The classical limit
(q —s 1) shows that ~ is simply the (ordinary) group theory permutationsign.

While the intrinsic signs e~can just as well be calculatedfrom the classical
Clebsch—Gordancoefficientsby setting q = 1 in eq.(A.16), in the caseof e~’~’with
a * b the powersof q keeptrack of a naturalorderingof states.For example,the
fact that in SU(3) onehas ~mm = — I may be deducedby applying eq.(A.16) to

the embeddingof the highest-weightstateof in 1D ® ~

(A.17)

wherethe statesare labeledby Dynkin indicesand w = ±1 remainsunfixed after
imposing (2121) = 1. The permutation sign is intrinsic in the sense that it
originatesin the relativesign betweenthe leadingterm andits permutationin such
decompositionsand is independentof w. The sameprocedure,when applied to
the embeddingsof the highest-weightstateof in the tensorproduct LIII 0 U
andin its permutationU 0 ED, respectively,

Ill> w1 y[

31q (

1/~qI/4 20)0 I—li) _ql/
2~01)o liD))

Ill> =W

2~/~ (ql/2I10) 0 lOl) — 1/f~]~q~/4I—11)0 I20)) (A.18)

yields ~ = w1w2. We havedefinedthe normalizationsign to be the sign of

the highestpowerof q. Given this it seemsnaturalto takea uniform sign of the



S.G. Naculichci a!. / Simple-currentsymmetries 501

squareroot when imposing (11 Ill) = 1 so that ~I = w
2. The permutationsign

then indicatesthe relativesign betweenthe leadingstate(asorderedby powersof
q) andits permutation(with the inversepowerof q).

In all cases,oncea systemof permutationsigns is chosen,we haveexactlyone
sign choice w remaining for each c ~ a 0 b. This correspondsto the residual
normalizationremainingfor Chern—Simonsvertices.

These natural — or structural — permutationsigns can be obtained without
having to compute the couplings~I~,,(q).The explicit formula eq. (2.16) for the
multiplicity-free caseis derived in ref. [19] and allows rapid evaluationof �~ in
thesecases.While this is useful for many purposes,a spuriousdependenceon row
lengthssometimesappearswhich would actually disappearif one knew how to

imposethe condition of no multiplicities in general.
Sincethe fusion ring is a quotientof the tensorring by a certainideal,the terms

& remainingin the fusion of 4,, and ~,, inherit the permutationsign from the
tensorring. This is unambiguousif c appearsin the tensor product a 0 b with
multiplicity one,or if the fusion multiplicity equalsthe tensormultiplicity. There
remains a problem if the fusion ring multiplicity is less than the tensor ring
multiplicity (but not zero),which we call the problem of reducedfusion multiplici-

ties. In suchcases,the known algorithms[29] for computingthe fusion product do
not indicate whethersymmetric or anti-symmetricterms are removedfrom the
product; they only yield the sumof symmetricand anti-symmetricmultiplicities

N,,1,’ = N~,’+ N~7,’. (A. 19)

We havefound two ways to obtain information about Nj~C (via Chern—Simons

theory itself). First, by expandinga singly-twisted unknot (or its mirror image)
with a spectraldecompositionof the crossing,two equationsfor the difference
N,~,C— N,~C are obtained. While this (allied with the single-multiplicity formula
(2.18)) is effective in many situations, it seemspossible that more than two

separatecasesof reducedmultiplicities could appearin a fusion product. Second,
the result in eq. (6.30), which embodiesthe exact symmetry under co-minimal
equivalence,often correlatesreducedmultiplicities in one fusion product with
non-reducedmultiplicities in co-minimal fusion products.

A.4. CO-MINIMAL EQUIVALENCE AND PERMUTATION SIGNS

The applicationof this Chern—Simonsargument(in eq.(3.l8)—(3.29)) usesthis
latter approach(i.e. that via eq. (6.30)) to demonstratethe braid eigenvalue
relationsdirectly in almostall cases,including that of reducedmultiplicities. In

addition, the identities in eqs. (3.12) and (3.13)for SU(N), and eq. (3.26) for the
remaininggroups, follow in the case of no multiplicity directly from the level
formula. One reasonthat this is possibleis that the leading sign in the caseof
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multiplicities (i.e. that spurioussign given by the level formula to all copiesof a
representationin thecaseof multiplicity) satisfiesthe singlemultiplicity equations
without further constraintso that no spuriousrow length dependenciesappearin
thesesinglemultiplicity formulae.

In contrast,in the similar situation for rank-level duality, the analogouslevel
formula relationcontainsa complicateddependenceon row lengths.This depen-
dencewould disappearif oneknew in generalhow to imposethe condition of no
multiplicity. It is at this point that the complementaryapproachvia plethysm
comesto the rescuesinceit is not restrictedto the multiplicity-free case.

AS. THE RANK-LEVEL DUALITY OF PERMUTATION SIGNS FROM PLETHYSM

The Littlewood—Richardsonproductof tableaucharactersis denotedby

char(a) .char(b) = Echar(c).

If the characterof any tableauwhosefirst column length exceedsa given integerN
(N> 2) is set to zero identically, then this product is just the tensorproduct of
(purelycovarianttableauxof) GL(N). If, in addition, the characterof any tableau
whosefirst column length equalsN is identifiedwith the characterof the tableau
obtainedby removingthis first column of length N, then this product is just the
tensorproductof SU(N). The productof charactersneededfor Sp(N) andS0(N)
is defined in termsof the Littlewood—Richardsonproductby

char(a)x char(b) = Echar((a/d) . (b/d)). (A.20)
d

Here(a/d) denotesthe sumof all tableauxad suchthat ad . d containsa. Define
F(ad) = r(d) (i.e. the number of boxes in the tableaud). The tensorproductof
Sp(N) and S0(N) (tensor)representationsis obtainedfrom eq.(A.20) by impos-
ing certain characteridentities (that are more involved than in the SU(N) case
[28]). Then, for c E a 0 b, the quantity 1(c) gives the numberof contractionsof
tensorindicesneededto obtain c in the tensorproduct a 0 b.

The permutationsignsfor SU(N), Sp(N), and SO(2n+ 1) may all be obtained
from GL(N), via

ab ~_. ab

CC SU(N)EC GL(N)’

ab — i~i(C)aah,
1

E~ 5p(N)~ CC GL(N)’

E~50(2,,+1) = EcGL(N)~ (A.2i)

where ad ~ (a/d), b,1 e (b/d) and c ~ ad b,1.
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Under rank-level duality a representationc in the decompositionof a 0 a is

often pairedby transposition(4.1) with E E a 0 a (the case ~aa = 0 in eq. (4.3)).
For all thesecaseswe canusea standardresult of the calculusof plethysmto show
that [31

= e”~~ GL( N) (A.22)

Here we give the proof of this result. We will denote the operationof plethysm
betweentwo tableauxby a star:

a*jc (A.23)

denotesthe plethysmof the tableaua by the tableaup.. We will be interestedin
the casep. = ED (which correspondsto the symmetricproductof a) and p. = H (the
anti-symmetricproduct).A classictheoremof plethysmstatesthat:

Theorem.(p. 54 of ref. [30])

Given that a * p. =

if r(a) is eventhen a * p. = E~,while
if r(a) is odd then a * =

Proofof eq. (A22): Considerthe product E~IUE~~a.First assumethat s is in the

symmetric part of a 0 a so that p. = EU. Then, if r(a) is eventhe abovetheorem
statesthat ~ is also in the symmetricpart of a ® a. Therefore E~’5E~= 1 = e’~”~,
since r(a) is even. If r(a) is odd then the abovetheoremstatesthat § is in the
anti-symmetricpart of a 0 a, so that �~“�~“ = — 1 = e’~”t. Similarly, assuming

that s is in the anti-symmetricpart, so that p. = ~, meansthat § is also in the
anti-symmetricpart if r(a) is even,but is in the symmetricpart if r(a) is odd and
in eithercasec~”�~”= e’~”~.Therefore,eq.(A.22) holds for all a. U

For Sp(N)K the fusion rule identity NaI,C = Nahe, eq. (A.21), and the GL(N)
result (A.22) yield the rank-level permutationsign transformationin the intrinsic

case a = b, except in the caseof reducedmultiplicities. With F(s) denoting the
numberof contractionsin the tensorproduct,

/ aa\ / — / a,

1a,~\ isri(s)/ ã,~,ã,,\ iwF(/)~ES )5p(N)~t~.t ).Sp(K), — ~ )GL(N) e k~t )GLK C ,

where s ~ a~1 ad and§ E a,, . a~.Using the fact that F(s) = 1(i) andeq.(A.22) we
find that

(E~”)sp(N)~(E~)sp(K) = e~n(51)= eb0(5)~~~O. (A.25)

But r(d) F(s), andwe find that

/ aa\ / dd\ — isr(r(a)—T(,s))~~Ec )5p(N),~,~4 )Sp(K)5.— e
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holds in all cases(given that s and § do not appearwith reducedmultiplicities).
Note that eq. (A.22) implies that if the tensorand fusion multiplicities are equal
then

N+C — N_C = isrr(a)IN±c’— N_Caa aa e ~ ~ ~

so that N~C= Na~Cas r(a) is evenor odd. Thenwe can extendthe definition of
the transposition map so that eq. (A.26) holds both in the single and full
multiplicity cases.

The identical result follows for the SO(2n+ 1)2k±I fusion rule by similar
reasoningas follows. From the fusion rule identity Nafl’ = ~ we know that
e~’5is pairedwith er” if i~” = 0 mod 2 andwith E~

5) ~f ,~aa= 1 mod 2. In the first
case

/ aa\ / äã\ — I a1a1\ / adad\
~ C5 )so(2n+ I)25+,t~E.i )so(2k±l)2,+I — ~E5 )GL(N)l~.r )GL(K)

andexactlythe sameargumentsshow that

/ aa\ / dd\ — isr(r(a)—1(s))
~~s ) so(2n+ ‘

12k + ~ )so(2k ± I )~,* — e

holds (apart from the case of reducedmultiphicities). If ~ = 2r(a) — r(s) =

1 mod 2, then r(s) is odd.This canonly occur if the reductionrule hasbeenused

in producing r(s) via eq. (A.20). Since e~”= Eq,) anda(s) = uC~), where a(s) is

the associatetableauof the representations,we have

as
( aa\ ( aa \ = / aja

4\ E = e”5~5d) (A 29
~i )so(2n±~ I)2,*, ~E,,(5) )GL(N)

a(s) GL(K)

where a(s) E ad 0 ad anda(s) E ado ad. Then r(aa) = r(a) — F(s), so that

/ aa\ ( ~ — iiT(r(a)—F(s)) A 30

~ ~ )so(2n+ I ~2k * I~E(,~4~~(.i))so(2k+ 1)2,,+I — e

holdsin all cases(except thoseinvolving reducedmultiplicities).
If ~ = 0 then eq.(A.22) is exactly the SU(N) result for this case.If z~* 0

but f2~(s)= 0, which meansthat the unreducedtableaus” has l~’<K, then the
tableaufor a-~”~~)is just that for s” so that

(~)suNK(e~~~(s))5U(K)S= (e’)GLN(E) = e’~ (for Qaa(s) = 0)

s’ (iL(K)

(A.31)
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holds in all (non-reducedmultiplicity) cases.A considerationof various specific
casessuggeststhat, in fact,

= ~ (A.32)

for SU(N)K.
Since i~

5” = �~“ all theseresultshold directly for the Chern—Simons(single and
full multiplicity) permutationsignsas well.

While all thesetensorring permutationsign resultsare inherited by the fusion
ring in the indicatedsituations,to obtain resultsfor the reducedmultiplicity case
for all groups and the Q”(s) * 0 cases for SU(N) we must appeal to the
Chern—Simons knot-basedarguments. For cominimal equivalencethe cabling
argumentyields a completeconfirmation that the singlemultiplicity caseextends
to all caseswith multiplicity (whetherreducedor not). For rank—levelduality we
canonly usethe figure-eightandits complexconjugateto get two equationsfor the
reducedmultiplicity signs. While this only implies that the singlemultiplicity case
necessarilyextendsto fusion productswith at mosttwo reducedmultiplicity terms,
this representsan infinite class of non-trivial examples, on which to basethe
generalresult.
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