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A previously proposed two-step algorithm for calculating the expectation values of arbitrary
Chern~-Simons graphs fails to determine certain crucial signs. The step which involves calculat-
ing tetrahedra by solving certain non-linear equations is repaired by introducing additional linear
equations. The step which involves reducing arbitrary graphs to sums of products of tetrahedra
remains seriously disabled, apart from a few exceptional cases. As a first step towards a new
algorithm for general graphs we find useful linear equations for those special graphs which
support knots and links. Using the improved set of equations for tetrahedra we examine the
symmetries between tetrahedra generated by arbitrary simple currents. Along the way we
describe the simple, classical origin of simple-current charges. The improved skein relations also
lead to exact identities between planar tetrahedra in level K G(N) and level N G(K) Chern-
Simons theories, where G(N) denotes a classical group. These results are recast as WZW
braid-matrix identities and as identities between quantum 6j-symbols at appropriate roots of
unity. We also obtain the transformation properties of arbitrary graphs, knots, and links under
simple-current symmetries and rank-level duality. For links with knotted components this
requires precise control of the braid eigenvalue permutation signs, which we obtain from
plethysm and an explicit expression for the (multiplicity-free) signs, valid for all compact gauge
groups and all fusion products.

1. Introduction

Topologically invariant Chern—Simons gauge theories in 2 + 1 dimensions are
interacting — yet completely soluble — quantum field theories [1]. Quantization of
such a theory with compact gauge group G forces the coupling constant K to be an
integer. The fixing of these integer values of K leads to the appearance of discrete
symmetries associated with automorphisms of the extended Dynkin diagram for G
[2], as well as remarkable relations between those models with a classical group
G(N) as gauge group and coupling constant K and those with gauge group G(K)
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and coupling constant N [3]. While the presence of these symmetries in several
contexts has long been known [4-6], only recently have the pervasive implications
of these symmetries for Chern—Simons theories [3,7], integrable lattice models
[8,9], and quantum groups [9] begun to be studied *. In much of this existing work
the effects of these discrete symmetries have been derived only for restricted cases.
For the extended Dynkin diagram automorphisms (which signal the presence of
simple-current symmetries in the associated WZW model [4]) the properties of the
modular transformation matrix have been of central interest [5,10-13]. This
corresponds in Chern—Simons theory only to the expectation values of the simplest
knot, the unknot, and the simplest link, two linked unknots (the Hopf link) [1].
Similarly, although the rank-level duality of the characteristic polynomial of the
braid matrix or its spectral decomposition holds for many tensor representations of
the groups involved, this result only leads to a duality of expectation values for
special classes of knots or links [3,7]. The analogous results for the associated
quantum groups and lattice models [8,9], which have proceeded by explicit con-
struction of the quantities involved, have only been obtained for restricted classes
of representations: the completely symmetric and antisymmetric representations of
SU(N). Our goal in this paper is to attain an exact, general result, without
restrictions on the representations or classes of links involved.

The advantage of examining this question in the context of three-dimensional
Chern-Simons theory is that, in addition to providing a powerful and unifying
approach to almost all the different areas in which these discrete symmetries
appear, it provides the tools with which to demonstrate the general implications of
these symmetries without having to explicitly solve for the quantities being related.

Of special interest are certain gauge invariant Chern—Simons observables: the
planar tetrahedra. This follows since all Chern-Simons observables can be ex-
pressed as sums of products of these tetrahedra [11,14]. They are also the
g-6j-symbols of the related quantum groups evaluated at the associated roots of
unity. In addition, the planar tetrahedra are related by simple phases to limiting
values of the Boltzmann weights of integrable lattice models and to the braid
matrices of WZW theory [1].

Our strategy will be to examine sets of skein relations that completely determine
the expectation values of arbitrary tetrahedra. A previously proposed set of
non-linear skein relations [14] suffers from a sign ambiguity that renders them
ineffective for the exact determination of all tetrahedra. We will remove this
ambiguity by supplementing these non-linear equations with a set of inhomoge-
neous linear equations. We are then able to show that given any tetrahedron there

* The general idea that Wilson lines with representations related by the Dynkin diagram symmetries
are equivalent up to phases has long been known [2], however, and has been used to understand
Chern-Simons theories with gauge groups of the form G /(discrete subgroup).
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exists a class of tetrahedra, related to this one by the symmetries of the extended
Dynkin diagram of the gauge group, whose expectation values only differ from that
of the original tetrahedron by (in general, vertex-normalization dependent) signs.
If the tetrahedral expectation values are intrinsic (i.e. independent of the sign
convention for vertex normalization), then the relative sign is given by a certain
product of braid ecigenvalues. We further show that given a tetrahedron in one
theory, there are tetrahedra in the rank—level dual theory with the same expecta-
tion values (up to sign). If the signs of the tetrahedra so related are intrinsic, the
relative sign is again given by a simple product of braid eigenvalues.

Since arbitrary observables in a G(N), Chern-Simons theory (including knots,
links and graphs) can be reduced to sums of products of tetrahedra, we expect that
all such observables will fall into sets related by the Dynkin diagram automor-
phisms, and have, in addition, rank-level duals in the G(K), theory. A general
proof along these lines is stymied by the presence of certain undetermined,
normalization-independent signs in most such reductions. Nevertheless, on the basis
of cases where an unambiguous reduction is possible and on the basis of the
properties of the linear equations which we obtain for any link-type graph, we state
the expected general result for such graphs for both types of symmetry. Identities
between knot and link expectation values defined with representations related by
the diagram automorphisms can be proved via a direct cabling argument; the
aforementioned identities for the underlying link-type graphs then follow. The
identities that relate knot and link expectation values in rank-level dual theories
are shown to follow from the conjectured identities between dual graphs.

Our approach only deals with the local, Lie-algebraic structure of Chern—Simons
theory; to avoid conflicts with global constraints [15] we assume that each theory is
defined with a compact, connected, and simply connected gauge group. This is
appropriate since such Lie groups are in one-to-one correspondence with (com-
plex) Lie algebras (and so with the standard set of Dynkin diagrams). For example,
in order to obtain a theory with the local structure of B, or D, with arbitrary
coupling constant K, and in order to include their spinor representations, it must
be defined via the simply connected covering group of SO(N), Spin(N). Since it
will be useful (in sect. 4, essential) to characterize these theories using the tensorial
language of the orthogonal group we will refer to these theories as level K so(N)
theories (by which we mean level 2K Spin(N) theories) *.

In sect. 2 we describe the known non-linear equations for tetrahedra and find
the supplemental equations that remove the sign ambiguity of the non-linear set.
We pay particular attention to the permutation signs appearing in the diagonal
action of the braid matrix on the legs of trivalent vertices and the normalization of

* The (non-simply connected) level K SO(N) theory is defined by the level 2K Spin{~N)/Z, theory,
given appropriate restrictions on K.
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these vertices, in order to deal uniformly with real, pseudoreal, and complex
representations. We adopt a natural system of permutation signs different from
that commonly prescribed in the literature. In sect. 3 we show that replacing the
representations around a closed loop of edges of a tetrahedron with representa-
tions related to these by simple-current symmetries leaves the tetrahedral expecta-
tion value essentially invariant. We will call the tetrahedra (or representations) so
related co-minimally equivalent [3,7). In sect. 4 we find that, given a tetrahedron in
a G(N), theory, with G(N) denoting SU(N), Sp(N), or the double-cover of
SO2n+1)*, and with the representations on its edges specified by Young
tableaux, the tetrahedra in the G(K), theory with edge representations specified
by the transposes (or certain cominimal equivalents of the transposes) of these
Young tableaux have essentially the same expectation value. In sect. 5 these results
are recast as identities for WZW fusion and braid matrices as well as for the
g-6j-symbols appearing in quantum group [16] theory. In sect. 6, we examine more
general graphs and the knots and links based on them. We give a simple,
graph-independent, and completely general derivation of the phases that relate
links (or knots) with co-minimally equivalent representations on corresponding
components. We state (and give evidence for, but do not prove) identities that we
expect to hold between arbitrary Chern-Simons observables related by rank-level
duality.

The appendix following the conclusion describes certain subtleties of baryon
normalization, a proof of a useful identity by means of plethysm, and several other
results on permutation signs needed in the text, including an explicit formula for
these signs in the multiplicity-free case, valid for all compact gauge groups and all
fusion products.

2. Tetrahedral skein relations: A sign problem and its solution

We shall see later that a previously proposed algorithm for calculating arbitrary
Chern-Simons observables [14] suffers from sign ambiguities that render it ineffec-
tive for evaluating general graphs and links. However, the part of this algorithm
that involves solving certain non-linear (associativity or pentagon) equations for
planar tetrahedra is repairable, which is the task of the present section. Along the
way we give a more comprehensive account of the permutation signs that arise in
the diagonal action of the braid matrix than has previously appeared, and take
account of certain subtleties of baryon normalization.

We begin with a level K Chern—Simons theory with compact, connected, and
simply connected gauge group G defined on the 3-manifold M = S*. Since G is

* Similar but more complicated results hold for dual pairs involving so(2n); we will not, however,
present the details here. As a result we only examine rank-level duality for so(2n + 1), with K odd.
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simply connected, G-bundles over M are trivial and the theory is well defined by
the action [15]

K
SCS=ETrf(A/\dA+§A AANA), (2.1)

where A is the G gauge connection, and quantization forces K to be an integer. In
order for the partition function

Z(S%) = f@A e'Ses (22)

to be unambiguously defined it must be regularized by specifying a framing [17] of
S®. We choose this framing [17] so that Z(S?) = S, where S, is the identity—iden-
tity component of the modular transformation matrix of the level K characters of
the affinization of G. The gauge invariant observables ¢, whose expectation values
are given by

2(e; %) = [24 o, (2.3)

correspond to linked — often knotted — Wilson lines and graphs. To obtain an
unambiguous definition of these expectation values we will assume throughout a
vertical framing of the Wilson lines and graphs [1]. We will be concerned exclu-
sively with the normalized expectation values,

Z(e; S?)
(&)= 759 (2.4)

Among the graph observables are those specified by single-component planar
graphs with four trivalent gauge-invariant vertices — the planar tetrahedra. Any
tetrahedron corresponds to a pair of fusion-rule channels, with each channel
defined by a pair of compatible fusion rules. These channels come in natural sets
of three which, following ref. [14], we call the S, T, and U channels. Each of these
channels corresponds to a basis of the Hilbert space on which some braid matrix
acts diagonally. The compatibility of these bases gives a set of equations that
constrain the basis change coefficients, which are, essentially, the expectation
values of planar tetrahedra.

2.1. S, T AND U CHANNEL BASES
Choose a surface S? that divides S? into two halves (call one the interior half;

the other, the exterior), in such a way that it is punctured at exactly four points by
static charges, corresponding to the four representations a, b, p(¢) and p(d) of
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G(N). (For the groups we are considering, the dual representation p(r) of r is just
the representation conjugate to r.) The Hilbert space .# associated with this
surface, considered as the boundary of the interior half of S3, exists and is
f=X,N,’N.; dimensional whenever the pair of fusion rules

d) d)b Z b¢s’ d)c.ql)d: ZNCdS R (25)

has some representation in common (i.e. whenever f =+ 0). Such a pair of fusion
rules will be called compatible. The path integral on the interior half can produce a
variety of states in #Z depending on how the Wilson lines or graphs intertwine in
the interior. We will consider the relation between three different planar bases of
this space, corresponding to the three sets of compatible fusion rule pairs

S-channel T-channel U- channel

d) ¢h ZNabs 59 d) d)p(() Z p(c)d)t’ d) d)p(d) Z ap(d) wr
(b by = Z d¢s> ¢ o(b) ¢d ZN(b)d¢r’ Cbp(b)'d’c: ZNp(b)C b, (2-6)

Each non-zero fusion coefficient N, ,’ corresponds to a set of N, ' gauge
invariant couplings, each of which permits construction of a gauge invariant
trivalent vertex. In order to describe the properly framed graphs that specify the
bases of # constructed with these vertices, we must keep track of the (here
vertical) framing. This is done by a generic projection of the graph onto a plane
and a restriction to certain allowed moves [18] in manipulating the resulting
diagrams — the standard Chern-Simons link and graph moves [1].
Then, with the bases defined by

[t) =

each of these channels corresponds to an f-dimensional basis of the Hilbert space
#. We will denote the basis vectors in the various channels by a single label |s),
|t), or |u) where, for example, |s) = |ab — cd; s, %2,, #¢) denotes the vector
created by the path integral in the presence of the S-channel graph shown above,
with 7%, and % ¢ used to couple the representations associated with the graph
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edges. Upper indices on a coupling indicate outgoing edge arrows at the vertex;
lower indices, incoming edge arrows. (For visual clarity, we will mostly omit explicit
display of these couplings on graph vertices.)

We assume that a basis of couplings can be chosen so that the relevant braid
matrices act diagonally even in the case of multiplicities. The bases defined above
then have the dual bases

o

The permutation signs 1/ = +1 appearing here result from the signs of certain
baryon expectation values (as described in the appendix and subsect. 2.2) and
insure that these states satisfy the orthonormalizations

<S,|S>:as"s/\/q(a)X(/(b)Xq(C)Xq(d) >0’ (27)

where x (r) denotes the g-dimension of the representation r. The delta function
means that the entire intermediate channel, as specified by a representation and a
pair of couplings, must be dual. Thus |s) is orthogonal to |s’) unless the
intermediate representation is the same, and unless the couplings at each vertex
are the same, in the basis chosen above *.

2.2. PERMUTATION SIGNS AND BARYONS

Associated with each planar basis of # is a pair of braid operators that act
diagonally on the basis vectors by interchanging adjacent vertex legs of the basis

* Le. since dual couplings satisfy #**()).7,(i") o 8, with i, i’ =1,..., N,

a

., this means, unless i =1i'.
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vector graphs. For example, the action of the braid operator B,, on the dual
S-channel vectors is specified by

a b b a
Bab = Q?b (28)

where the diagonal matrix elements (which we will loosely call “eigenvalues™) are

Q;zh — T,ézbq(Q(aH QO -QeN/4 with q= elmi/(K+g) (2.9)

Here 1% = +1 is the Chern-Simons permutation sign, g is the dual Coxeter
number of G, and Q(r) = 2(K + g)h(r) with h(r) the conformal weight of the level
K representation of the affinization of G specified by r. For the simple, compact
gauge groups considered in depth here Q(r) is the quadratic Casimir of the
representation r. We will specify all braid eigenvalues with reference to the
specific edge orientations shown in (2.8) so that % always corresponds to
c€a®b and the quadratic Casimir of the lower-index representation always
enters with a minus sign (as in eq. (2.9)). On the other hand, we will adopt an index
convention for n?” that keeps track of edge orientations: the same index conven-
tion as that of the coupling .%**; namely, that upper (lower) indices imply outgoing
(incoming) arrows.

Several of the results in sect. 3 hold for Chern-Simons theories with more
general compact gauge groups, such as those corresponding to various rational
conformal field theories. In these cases, Q(¢)=2(K +g)h(¢) with h(¢) the
conformal weight of the primary field ¢ of the associated conformal field theory.
In addition, egs. (2.28)—(2.34) hold as identities between quantum 6j-symbols
(using the connection with planar tetrahedra given in sect. 5) with the braid
eigenvalues given by eq. (2.9) but with g not necessarily a root of unity.

The permutation signs require careful consideration in order to give a consis-
tent treatment in all cases, including that of groups with pseudoreal representa-
tions. They satisfy the identity

:@ab‘%cub — ncab(%cba’ (210)
where 2. V*® V® - V?® V¢ is the permutation operator. If a =b the sign
n?% is independent of the normalization sign w of the coupling %7 and only
depends on the embedding of the representation ¢ in the tensor product 2 ® a. If
a # b, however, 1%’ is fixed by the choice of the relative sign of the normalization
signs w, of the coupling .#** and w, of the permuted coupling .7/*. We will refer
to the normalization independent signs m¢“ as the intrinsic permutation signs.
Once a consistent system of permutation signs is chosen there still remains a single
undetermined sign o for each triple {a, b; ¢} related by a ® b = ¢. Baryon normal-
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ization fixes the normalization @ of the dual couplings %, in terms of the sign w
chosen for #*, so that for each set {7, #>%, %%, (.} there remains just one
undetermined residual sign o (whether @ =& or not).

Throughout this paper, the sign of any expectation value will be called intrinsic
or vertex-normalization independent, if, given a system of permutation signs and
baryon normalizations, it is independent of the choice of these residual normaliza-
tion signs. Note that the word ““intrinsic” is being used for two slightly different
concepts.

We can make any choice of the relative sign of the normalizations w, and o,
for a particular set of couplings, and so any choice for n%” with a # b, that we
wish. However, in order to obtain a consistent set of topologically meaningful
graphical moves with which to manipulate the planar projections of knot, link, and
graph observables with arbitrary representations, certain constraints on these signs
must be satisfied. In the appendix we find that, given the standard normalization
of baryons, the following three conditions must be satisfied if we are to retain the
standard graphical moves for graphs with arbitrary representations on their edges.

L e =ni crossing,
nhaP ) = nb conjugation,
3. M) = partanbe® for ceca®b fusion. (2.11)

(Here, and throughout, 0 denotes the identity representation.) While we have
singled out these three constraints, the use of eq. (A.9) to reduce vertices with
orientations other than that of eq. (2.8) to this standard form (before acting with
B,,) leads to various other crossing constraints of the form 72 =n#) =
Nparpire = -+ -» 50 that we need only (and will only) refer to the standard form nZ°.

An immediate consequence of the fusion constraint in (2.11) is that the charge
conjugation signs must satisfy (with r(q) denoting the number of boxes of the
tableau a)

nar@ = (170':"’(‘3))’(“) all classical groups,
ngb:a)p((w;a)) — n(d)/p(t//)ngp(a) SO( N) , (2'12)

for all tensor representations a and spin representations {i; a} with tensor part a.
The fundamental spinor is denoted by ¢, and O denotes the fundamental tensor
representation. A further useful consequence of the fusion constraint in (2.11) for
a compatible fusion rule channel (as in eq. (2.6)) is that naf@nbe®) = peplOIpdp(d)

The common (manifestly crossing-symmetric) proposal that n%® be uniformly
chosen positive in the cases with a #b, p(c) # a, and p(c) # b (simultaneously),
cannot be adopted here, since it runs afoul of the fusion constraint in (2.11) as
follows. Consider SU(N ) with N = (2 X odd number), i.e. the unitary groups with
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pseudoreal representations. Then, with a denoting the pseudoreal representation
specified by a single column of N/2 boxes, we necessarily have, from the first
equation in (2.12), that

Ny PP =ngt = —1, (2.13)

even though 7™ is not an intrinsic sign, since O # p(0) unless N =2. The
first identity in (2.12) then fixes the charge conjugation signs of all representations
whose tableaux have an odd number of boxes (only a fraction of which are
connected by crossing to an intrinsic sign) to be negative. Therefore, the first
identity in (2.12) leads to a series of counter-examples to the “positive if not
connected by crossing to an intrinsic sign” prescription.

The other well-known system of permutation signs, the standard SU(2) group
theory signs

= (=1 (2.14)

cannot be directly used in SU(2) Chern-Simons theory since they do not, in fact,
obey the crossing constraint listed in (2.11).

A crossing-symmetric system of signs that also obeys the fusion constraint can,
however, be directly obtained in terms of a certain, natural system of group theory
signs. The group theory signs are defined by

Pt = gabgba, (2.15)

where &% is the transpose of the matrix of Clebsch-Gordan coefficients

5 V. ®V, > V. Again, if a =b these signs are intrinsic but if a # b we may
choose them at will. There is, however, a natural choice for these latter signs. In
ref. [19] this natural sign system is obtained for all compact, simple Lie groups and
all tensor products. The centerpiece for this system is a general formula for €% (in
terms of the highest-weight vectors of the representations a, b, and ¢ alone) in the
case where ¢ occurs in the tensor product a ® b with no multiplicity

€ = (—1)*erP =92 (o multiplicity). (2.16)

Here A is the level vector for the group G (defined by the condition that (A | @) =1
for all simple roots a of G) *. (Since A =« for SU(2), eq. 2.14 turns out to be a
particular case of eq. 2.16.) The problems that arise in the case of multiplicities are
discussed in the appendix. This is a natural system of signs in the sense that €%
originates in the structure of the embedding of ¢ in the tensor product a ® b for
a # b in exactly the same way that the sign €%* originates in the embedding of ¢ in

* If « is long, we set (a|a) =2, in which case the level vector differs from the sum of positive roots
only if G is non-simply laced.



S.G. Naculich et al. / Simple-current symmetries 455

a @ a (as shown in ref. [19] and illustrated in the appendix), and corresponds to the
choice of normalization w, = w, = @ {with @ a residual, undetermined sign).
This natural system of group theory signs satisfies the identities

b e .
1 el =enffy e crossing,

2. et = eab conjugation,

3. P =€l Db forcea®b fusion. (2.17)

The first identity shows that these signs do not satisfy the crossing constraint on
the Chern-Simons signs in eq. (2.11) when €3*'® is negative.

While this natural system of permutation signs is not crossing symmetric, the
modified system given by

0% = €®etr@ = (= 1) M2 (no multiplicity), (2.18)

does provide a consistent crossing-symmetric sign system for Chern—-Simons theory
that satisfies all the constraints of (2.11).

Since the fusion identity in eq. (2.17) implies that ;=1 if a=»5b (i.e. if
c €a®a), the intrinsic Chern-Simons permutation signs equal the intrinsic
group-theory signs, as is well known. Since this fusion identity also implies that
e’ =1, eq. (2.18) also equates the Chern—Simons charge conjugation signs n5°“)

with the (natural) group theory signs "',
2.3. THE NATURAL CHARGE CONJUGATION SIGNS

Since the natural charge conjugation signs n37“> appear pervasively, and since
they often necessarily differ from the common expectation that only pseudoreal
representations require a negative charge conjugation sign, we exhibit their values
in detail. These signs are given — in all cases since the identity always appears with
multiplicity one - by eq. (2.18), which reduces to

g = (=) (2.19)

in this case since (A|a)=(Alp(a)). In most cases these signs are actually com-
pletely determined by the fusion constraint (or in any case fixed by being either
intrinsic or related by the fusion constraint to an intrinsic sign) so that there is
actually little freedom of choice in Chern—Simons theory for these signs.

Since O =p(0O) for so(N) and Sp(N), we must have 7§ =1 for so(N)
(which also follows necessarily from the fusion constraint) and 7, *™> = —1 for
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Sp(N) (which does not). Then eq. (2.12) requires, in agreement with eq. (2.19),
that

so(N)

,r,ap(a) = -
(-1 Sp(N), (2.20)

for all tensor representations a *. For so(8z + 4 + 1) (so8n + 4)) with n =0, 1, ...
the fundamental spinor(s) is(are) pseudoreal. Since ¥’ = —1 in these cases,
eqs. (2.12) and (2.20) then imply that the charge conjugation sign is necessarily
negative for all spin-tensor representations {¢; a} of these groups. However, for
so(8n + 6) the fundamental spinors are complex and we choose (though this is not
required by eq. (2.11)) the charge conjugation sign to be —1 in accordance with eq.
(2.19).

For G,, F;, E, and E;, the Chern—Simons constraints in eq. (2.11) alone fix all
charge conjugation signs to be positive. For E this represents a constraint beyond
pure group theory, since the fundamental representation is complex. For E, the
charge conjugation sign of the fundamental is necessarily negative since this
representation is pseudoreal. While this fixes all other charge conjugation signs via
eqgs. (2.11), these are all self-conjugate and so intrinsic.

For SU(N) the natural sign for the fundamental is 7 #®) = (—1)"~1 In fact,
if N =(odd number) the fusion constraint forces ns'*?) = 1, since the number of
boxes modulo two is not conserved by the tensor ring. As noted previously, if
N = (2 X odd number) then we must set 17#¢?) = —1 due to the fusion constraint
in (2.11). On the other hand, for N = (2 X even number) the natural sign for the
fundamental (which is negative) is not intrinsic and not required by the fusion
constraint. We will adopt — for all values of N — the natural system for the charge
conjugation signs, so that

5" = (=D SUN), (221)

for all representations a.

In table 1 we summarize these results. In all cases the representations a with
1§ @ =1 form a closed (sub)ring. The fusion constraint alone actually forces the
positive value on this (sub)ring. In most other cases the fusion constraint connects
the charge conjugation sign of the remaining representations to an intrinsic sign.
The (remaining free) choice of the signs for the fundamental representation of
SU(4n) and the fundamental spinors of so(4n + 2) then leaves all signs fixed. Note

*

Only for the (complex) tensor representations of so(4n +2) with seif-associate Young tableaux is eq.
(2.20) a constraint beyond that required by pure group theory.
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TaBLE 1
Group nget@

SUn), Sp(N) (—1r@
SUQn+1) 1
G,, Fy, Eq, Eg 1
E, { real 1

pseudoreal —1
SO(N,) 1
SO(N ) < tensors

spinors -1

9,10} + 8n and
3,4,5,6)+8n withn=0,1,...

that the appearance of minus signs is (necessarily) not restricted to the pseudoreal
case.

2.4. NON-LINEAR SKEIN RELATIONS FOR PLANAR TETRAHEDRA

Since the vectors |s), |t), lu) (defined in subsect. 2.1) form different bases of
the same space, we can expand any given basis vector in terms of the other bases.

IS>ZZE\*1|[>7

15y = ¥ (o)) G, 1w,

u

1) =Y (o) 0t H,, |u). (2.22)

u

The entries in the fX f matrices F, G, and H are just the expectation values of
planar tetrahedra
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U d

GSM=
a
u d

Note that the edge orientations on the baryons imply (via eq. (A.14)) the possible
presence of minus signs in the baryon expectation values.

Explicit calculation of the inverse transformations along with the orthogonality
and completeness of the three bases shows that the matrices of tetrahedra satisfy
[14]

(2.23)

FFT=1, FF'=1,
GGT=1, GG'=1,
HHT =1, HH'=I. (2.24)

From these equations one concludes that F, G and H are real matrices. Written
out, the remaining independent equations for these real matrices are

ZFSIFSI' = 6”” ZGsuGs'u = 555', ZHtthu' = 8uu" (225)
s u

1

These constitute 3f(f+ 1)/2 equations for 3f? real unknowns and so do not by
themselves contain enough information to solve for the tetrahedra. The associativ-
ity of the basis change operations (2.22) gives the further set of equations [14]

F, = X (00" 0l % )Gy Hy,s (2.26)

where .7, = q9/? is the vertical-framing factor incurred in undoing a self-cross-



S.G. Naculich et al. / Simple-current symmetries 459

ing of a Wilson line carrying the representation ¢. This equation and its complex
conjugate provide 2f? further constraints, so that we have in general more
constraints than unknowns. These conditions ostensibly overdetermine the tetrahe-
dra, given that no unforeseen degeneracies in the braid eigenvalues occur [14].

However, egs. (2.25) and (2.26) have certain discrete symmetries, a fact which is
both necessary and problematic. For if we have generic tetrahedra (a, b, ¢ and d
all different), then changing the residual normalization w of the coupling .7 ° at
the common vertex connecting a, b and s in F,, and G, for example, will change
the sign of a row of F,, and of G,,, but the non-linear equations will remain
unchanged. Since these equations hold for arbitrary tetrahedra, they must allow
for and not determine this sign ambiguity, since this is entirely a matter of the
arbitrary choice of sign of the vertex normalization. However, certain tetrahedra
have intrinsic signs which are then not determined by these equations even though
their signs are independent of vertex normalization. Primary among these latter
tetrahedra are the link-type tetrahedra, which have d =a and ¢ =b:

K ba
a
bt

= (2.27)
a

Here the vertices occur in dual pairs whose relative normalization is fixed once the
permutation signs and baryon normalization are fixed. Therefore a change of
residual vertex normalization cancels and does not affect the overall sign of such
link-type tetrahedra. Since this sign is intrinsic and since the non-linear equations
cannot determine it we need a further prescription that will enable the calculation
of these intrinsic signs.

2.5. LINEAR SKEIN RELATIONS FOR PLANAR TETRAHEDRA

The problem of determining the signs of link-type tetrahedra that remain
unfixed by the (non-linear) orthogonality and associativity equations is solved by
appeal to the following inhomogeneous linear equations. While they are special
cases of the general construction valid for all link-type graphs described in sect. 6,
they also follow directly from the definitions of the tetrahedra in eq. (2.22). By
acting with B,, and B,,' on the expansion of |s) in terms of |¢), and vice versa,
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we obtain, from the braid closure of the resulting diagrams, the 4 f equations for
the f? quantities F,,

@ @) =Trr)” of 1Y
t
b@a (Q;Ip(b))i] — ZF“(Q?b)¢] a b (228)
N

From the results of subsect. 2.2 and the appendix we find that

oy, | Xa(S)
e

———Xq(f) (2.29)

b a

Then the equations in (2.28) can be written in the form

(08°) xa(5) = L (b Fot® ) o () (e8) ™,

t
(@) feo(1) = L (b ®oeF 007 ) o (5) (0*) ™ (2:30)

(or, using the fact that the F,, are real, in the form of the complex conjugates of
these equations). For the following, the quantity

ngp(b)Q;zle;[th?jp(b) (2.31)

will then be of prime interest. The non-linear equations (2.25) and (2.26) deter-
mine the absolute value of F,,; the linear equations (2.28) fix the remaining sign
ambiguity. The signs of the link-type tetrahedra F,, clearly depend on the choice of
a system of permutation signs and baryon normalizations. However, from eq. (2.30)
it is seen that the quantity in eq. (2.31) only depends on the squares of braid
eigenvalues and on the g-dimensions. It not only does not depend on the residual
vertex normalization signs; it also does not depend on any choice of a particular
system of permutation signs.

If we think of the freedom to choose the vertex normalization (and so the
permutation signs) as a local, discrete gauge symmetry (in which guise it does
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appear in integrable lattice models) then the product of tetrahedra and eigenval-
ues in eq. (2.31) is a natural gauge invariant quantity.

In sect. 5 we shall see that the expressions in (2.31) are essentially the
non-planar tetrahedra that equal the matrix elements of a class of WZW braid
matrices.

For f= 1, 2, 3 and 4 the equations in (2.28) alone determine F,,, and an explicit
general solution for all link-type tetrahedra is possible in these cases without
appeal to the non-linear equations.

For f=1 one finds that
F = by | 22 gttt (2:32)
X:

Since x, = x, when f=1, this simplifies to
F, =g Pt (f=1). (2.33)

In addition, the non-linear, orthogonality condition (2.25) yields F, = = +1 for all
tetrahedra if f= 1. Therefore, we must have p“%%® = (p%p%(®)~! = 11, which
constrains the values of the quadratic Casimirs appearing in an f=1 fusion rule.

For f= 2, with an arbitrary ordering of the two terms in each of the fusion rules
b, b=, +¢, and ¢, ¢ ;= b, + ., we find that

-2
Xs 1= (0"} “(01®
ﬂm—nM“ﬂX w%wwl (o) ( ) (f=2). (2.34)
6

_( ap(h)) (Qap(m) —2

In these solvable cases we see explicitly that F,, is a rational function of braid
eigenvalues with an overall sign that depends in a complicated way on the
permutation signs, baryon normalization, and the form of this function. In con-
trast, the quantity in (2.31) is a rational function of the squares of the braid
eigenvalues and does not depend on the system of permutation signs or the baryon
normalization. While its value depends on the values of the Casimirs and the
structure of this function, this information is just that encoded in the structure of
eq. (2.30). The same will be true for any f by appeal to the whole system of
non-linear and linear equations (except that an explicit solution of these equations
will not be generally available). This means that the symmetries of this combined
set of equations will be exact symmetries of the combination 7g**)o$’F, , 07" for
all consistent choices of permutation signs and baryon normalization.

Although a special case, the link-type tetrahedra are important because they are
the only tetrahedra that directly support knot and link invariants. They will also be
important in sect. 6 where their special properties lead to proofs of certain
identities for more complex graphs.
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Since the combined skein relations in egs. (2.25), (2.26) and (2.30) are maximally
effective for the exact determination of all tetrahedra, we can now explore the
symmetries between tetrahedra by examining the transformation properties of the
fusion coefficients, quadratic Casimirs, and permutation signs appearing as coeffi-
cients of eqgs. (2.26) and (2.30).

3. Simple currents, co-minimal equivalence, and planar tetrahedra

The fusion ring of a level K WZW model based on any simple, compact Lie
group G arises as a quotient of the classical tensor ring of G by a certain ideal.
Such a fusion ring has automorphisms of the form

m+n

Nomarory O =Nyt with o?(r)=r forallr, (3.1)

for some positive integer p if and only if the center Z of G is nontrivial — with
exactly one exception (the E; level-2 fusion ring) [4,20). Such automorphisms
correspond to the presence of a discrete (integer) charge [10] v that is conserved
mod p by the fusion product

N, #0=y(c) =v(a) +y(b) mod p. (3.2)

Curiously, these charges have — as we shall see — a completely classical origin: the
classical tensor ring has exactly this mod p conservation law, so that the fusion
ring (as a quotient) necessarily inherits the same additive conservation law. Since
all known rational fusion rings (those with a finite number of elements) are
obtained from these WZW fusion rings by forming further products and quotients
and since these automorphisms have profound implications [10] for coset field
identifications [2,21], simple-current fixed-point resolution, and the construction of
modular invariant partition functions [22], it is of interest to study their exact
consequences in the associated Chern-Simons theories.

Given rather general properties of any fusion ring, eq. (3.1) implies the follow-
ing constraint on the conformal dimensions [10] for an automorphism o of order
p:

h(a(a)) =h(a) +h(c(0)) —k(a)/p, (3.3)
for some integer k{a) (unknown at this level of generality). If we define
v(a) =k(a) mod p (3.4)

then eq. (3.2) is satisfied. It will be useful to define the fractional charge
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g(a) = y(a) /p which is conserved mod one *. Since g{p(a)) = —g(a) we have the
braid eigenvalue identities (from eq. (2.9))

b imq(b)ab
07 = (%), ey,
o(a)p(b) —img(b),ap(h)
Ou (1) = (%), e T, (3.5)

where the undetermined sign depends on s (or ). In addition, it follows from
general constraints and eq. (3.1) that the g-dimensions (given that they are real,
linear functions on the fusion ring) must satisfy [10]

x,(o(a)) =x,(a). (3.6)

Precise results for the transformation properties of the tetrahedral quantity in
eq. (2.31), as well as those of linked unknots, will only require the three con-
straints, egs. (3.1), (3.5) and (3.6), and will not depend on any choice of a system of
permutation signs. Therefore, these results will hold in any Chern-Simons theory
with simple current symmetries.

In order to obtain analogous results for (linked) knots, or to calculate the braid
eigenvalues and permutation sign in eq. (2.31), we will need to know the integers
k(a) exactly. In addition we will need some understanding of how the permutation
signs transform under the fusion rule automorphisms. We provide this level of
precision only for Chern—Simons theories with compact, simply-connected gauge
groups. In the cases SU(N), Sp(N), so(2n + 1), so(4n + 2), E, and E, the center is
cyclic and isomorphic to the group gencrated by a single automorphism o (of
order p = dim{center}) of the extended Dynkin diagram of G which permutes the
affine vertex with a vertex of the ordinary Dynkin diagram. For so(4rn) the center is
isomorphic to the group generated by two independent automorphisms o, and o,
each of order two. The elements of the fusion ring are divided into equivalence
classes — we call them [3,7] co-minimal equivalence classes — by the map between
representations associated with the action of the aforementioned diagram auto-
morphism groups.

For the classical groups o has a natural interpretation in terms of Young
tableaux:

SU(N),
o acts on a reduced tableau @ by adding a row of length K to the top of a.
(A tableau is reduced if it has no columns of length N.)

* This charge g(a) is the same fraction (|g(a)| < 1) defined in ref. [10] via the leading pole in the
conformal block of ¢, appearing in an operator product expansion, although there the integer
ambiguity is compounded with the question of which field in the conformal block occurs as the
leading pole.
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Sp(N )i
o(a) denotes the complement of the tableau a in an N X K rectangle.
so2n + 1)k
o maps a tableau with first row length /, to a tableau with first row length
K — [, (but otherwise identical).
so(4n)y
o, has the same definition as the (tableau) map o for so(Zn + 1),.
o, denotes the complement of a tableau in an ;N X 3K rectangle (with
N=4n)if |, < 3K and if Iy , > 0; in general, I(oy(a) + 1y, ,_(a) = 3K.
If K is odd, o, interchanges spinors and tensors.
so{dn + 2),
o =0,0°0, is the composition of the two operations just defined for so(4n)
(except that now N = 4n + 2 in the definition of a,); its order is four.

For the spin-tensors of so(2xn + 1) or so(2n) we add a column of » half-boxes to
the Young tableaux in order to implement the operations just described. (Consult
the initial paragraphs of the appendix for the translation between Young tablcau
row lengths, the labels /;, and Dynkin indices.)

Using the Dynkin numbering for the E, diagram, the Dynkin indices of o(a),
af, are such that af = a,; the Z, generator o for E, is unambiguous.

The representations related by the action of the groups generated by these
maps are usefully termed “co-minimally equivalent” since the quadratic Casimirs
(so also the conformal dimensions), fusion coefficients, and g-dimensions have (by
explicit verification) the transformation properties:

h(a) + Nz_; £ r(;) for SU(N)

h(a) + ;NK — 3r(a) for Sp(N)

h(a) + 3K —1,(a) for so(2n + 1) and
h(o(a)) = so(4n) if o =0,

h(a) + 1sNK — 3r(a) for so(4n +2) and

so(4n) if c=0,
h(a) + 52K — $(2(xla) +31,) for E,
h(a) + 13K — 3(3(xla) +21,) for E,,

men

Ny megyorreny )=N,°,

o™a)or

x,(o(a)) =x,(a). (3.7)
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Here
rank{G}

r(a)y= Y [(a),
i=1
and the [/, are given in terms of the Dynkin indices in the appendix. For all
representations a of SU(N) or Sp(N), r(a) equals the number of boxes in the
associated Young tableaux. For any (tensor or spinor) representation of so(2n) the
quantity r(a) and the number of boxes r*(a) of the diagram of a are related by

r(a) =r(a) =2vlly »(a)l. (3.8)

Here v equals zero (one) if a, >a,_,(a,<a,_,). The diagram of a spin-tensor
{if; a} is formed by adjoining a column of » half-boxes to the Young tableau for a,
so that r*({¢f; a}) =r*(a) + n/2. While for tensors of so(N) the label [/, is an
integer (the first Young tableau row length), for spin-tensors {i; a} it is not:
1 ({p; a}) =1 (a) + 3. With Dynkin numbering for the E; and E, Dynkin indices,
we have set

I,=2a,+a,+a, and [,=a,+2a,+3a;+a,+as.

In addition, the product of the (congruence) vector [23] « with the highest
weight of a is explicitly given by («x|a)=a,+2a, +a,+2as for E., and by
(kla)=a,+ag+a, for E,.

3.1. THE ORIGIN OF SIMPLE-CURRENT CHARGES

The formulae for A(o(a)) provide explicit expressions for the simple current
charges. Inspection of these expressions shows that, in all cases of WZW simple
currents (apart from Eg4 level 2), the simple-current charges y coincide [10] exactly
with the congruence classes of the group G. The congruence class of a representa-
tion a of G is given by {«k]a) mod p (where p is the order of the relevant
automorphism generator discussed above and « is the associated congruence
vector). The importance of these classes stems from the fact that, forall c€a ® b,

(«lc)y=(xla) +(x|b) mod p. (3.9)

This is the conservation law of the tensor ring that is inherited by the fusion ring.
In the case of the classical groups these congruence classes have simple Young
tableau interpretations, which clearly indicates their origin in the GL(N) tensor
ring.
SU(N)
v(a) =r(a) mod N distinguishes the well-known N-ality classes.
Sp(N)
v(a) = r(a) mod 2 distinguishes real (r(a) even) from pseudoreal (r(a) odd)
representations.
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so(2n+ 1)
y(a) = 21 (a) mod 2 indicates whether a is a tensor (/,(a) integer) or spinor
(I (a) half-integer) representation.

so(4n)
v(a) =21,(a) mod 2 again distinguishes tensor and spinor representations.
v,(a) = r(a) mod 2 indicates whether the number of boxes associated with a
tensor representation is even or odd. For spinor representations it indicates
whether the number of diagram boxes plus v is even or odd. (The relation to
the standard definition of « is that r(a) mod 2 = 1[(x | a) mod 4] with (x| a)
=2r(a))

so(4n + 2)
v(a) = 2r(a) mod 4 differentiates tensors (y =0, 2) with an even (y=0) or
odd (y =2) number of boxes from spinors (y =1, 3) with the number of
boxes plus v even or odd.

E,
v(a) = 2(k|a) mod 3 coincides with the standard triality classes {0, 1, 2},
except that the labels 1 and 2 are interchanged.

E;
v(a) = 3(k | @) mod 2 coincides with the duality which distinguishes real and
pseudo-real representations (except that the labels 0 and 1 are exchanged).

If we define new congruence vectors for E, (k' =2«), E, (' =3«) and o, of
so(4n) (k) = 3k,) then in all cases

y(a)=(xla) mod p. (3.10)

For the classical groups we see that all the tensorial charges originate (ultimately)
in the exact conservation of the number of Young tableau boxes (i.e. in the fact
that c €a ® b - r(a) + r(b) = r(c)) exhibited by the GL(N) or U(N) tensor rings.
In each case the classical tensor ring of G conserves the charge mod a number that
reflects how G is defined as a subgroup of GL(N) or U(N). For example, the
various mod 2 quantities result from the existence of an invariant tensor that
implements contractions of tensor indices two at a time. For the orthogonal groups
the charge » distinguishes the two irreducible representations of so(/N) that
branch from self-associate representations of O(N). The distinction between
tensors and spinors is the only additional concept (which can be seen as exact
conservation of half boxes).

3.2. PERMUTATION SIGNS AND CO-MINIMAL EQUIVALENCE
The remaining ambiguity in eq. (3.5) arises from the permutation signs. For any

given sign %% eq. (2.18) rapidly yields its value if ¢ appears in the tensor product
a ® b with multiplicity one. Difficulties can arise if one tries to obtain general
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formulae from this equation alone because it is difficult to implement the condi-
tion of no multiplicities. In the case of SU(N), for example, with

_ r(a) +r(b)—r(c)

AP 3.11
¢ N ( )
we find (from eq. (2.18)) that

72 = explim(K(N + 1) + r(b) + NA®)|ne*, (3.12)

if ¢ appears with multiplicity one in the decomposition of a ® b, and the same for
o(c) in o(a)® b. The iteration of eq. (3.12) (or direct calculation) in the case
b =o(a) and ¢ = o(s) then leads to

o(a)o{a)

Noxsy = exp[iﬂ-(r(a) +r(o(a)) + NA*“ + NAf;g;;”)]nfa (SU(N)g), (3.13)
which holds exactly if both s is multiplicity free in @ ® a and o *(s) is multiplicity
free in o(a)®o(a). If N is odd, then eq. (3.13) depends on the intermediate
channel

ag(a)o(a)
o¥(s)

=exp[im(K+Iy_,(5))]n (N odd; multiplicity free). (3.14)

However, exactly this dependence also arises from the transformation of the
conformal dimensions (3.7) in the braid eigenvalue so that (in agreement with eq.

(3.5)

o(a)o(a + 1
0yt " =explim——(r(o(a)) +r(a)) |0t (Nodd)  (3.15)

holds if both multiplicity free conditions hold. For N even ,eq. (3.13) reduces to

U(a)a(a)_ iTK__aa
Moy = s

( N even; multiplicity free), (3.16)

and there is no intermediate channel dependence to cancel that coming from the
conformal dimensions. Then, given the multiplicity free conditions,

a(ayr{a)

Oz =explim(ly_(a) +1y_(s))]

N+1
N (r(o(a)) +r(a))le?® (N even) (3.17)

Xexp|im

seems to contain some intermediate channel dependence. Despite this appearance,
this dependence is spurious. In order to demonstrate this, and to get at the cases
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with multiplicity, consider the following. From the (independently proved) result in
(6.30) for a trefoil-type knot with an odd number of twists ¢ (with ¢t = + 3 being the
case of the trefoil proper),

(I ( a) | @ : (ng(()()g(())) | (Qgég))a)Zt ¢ (\a
Y v

(3.18)

we obtain

x| o@oa)! c@ON a2 s/ aa
Z}V("(ﬂ)ﬂ'(ﬂ) A )(Qaz(s) ) Xq(O'Z(S)) = (QUZ(O) ) (Qag(a))) ) ZNaa (Qs )th(S),
s s
(3.19)

upon insertion of an S-channel spectral decomposition on each side of eq. (3.18).
Since &2(0) always appears in o (0) ® ¢(0) with multiplicity one we can use eq.
(3.13) to find that

a(Dyo(0) K
Mooy =(—1)7, (3.20)

so that (using eq. (3.7))

N+1
00 501a\2 . .
0r20) (Qafg))) =exp[im(N + 1)ly_(a)] exp|im N (r(a(a)) +r(a))].

(3.21)

Using this result, eq. (3.19) becomes

T xo(5) (&™) N, ne = exp[ —im(r(a) + r(o(a)) + A% + A%

a(s)

+(N+ 1)1N_1(a))]n"(”)”‘“)} 0. (3.22)
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(Note that, unlike eq. (3.13), there is no factor of N multiplying either A.)
Consider first the terms with single-multiplicity representations s. If N is odd
these vanish identically (due to eq. (3.13)), while if N is even the expression in
curly brackets reduces to

né{1 —exp[imly_ ()]} (3.23)
Now consider the terms where s occurs with multiplicity in the tensor product. It is
. . 2¢ . .
important to realize that, although N, ..~ ' =N,,” implies that (cf. eq. (A.19))

N u-z(s) =N+ 0-2(5) +N_

o(a)o(a) a(a)o(a) (r(a)U'(H)UZ(S) =N+ NG =N,

the map ¢ has not been defined for symmetric versus anti-symmetric copies in an
intermediate channel. We would like to define it so that the cases of multiplicities
and no multiplicities agree. If eq. (3.22) is written with the multiplicities of
symmetric and anti-symmetric terms explicitly displayed, it becomes an equation
for the differences AN,,* = N\F — N;*

ab

o(s)

Y x(s)(e ™) AN,> — exp| —im(r(a) +r(o(a)) + 4% + Az

+(N+ 1)1N_1(a))]ANU(H)(,(“)"Z‘S)} =0. (3.24)

If N is odd we can allow the sum to just run over the terms with tensor multiplicity
greater than one, while if N is even we must include the single-multiplicity terms.
Since this equation must hold for all integers ¢, it will hold only if both the
expression in curly brackets in (3.23) vanishes (for N even) and if

N+ 0'2(5) _ N7

o(ayo(a) o(a)o(a)

a—z(s) _ +s5 _ -5
- i(I\Iua ]Vaa

(where the + sign is just that in eq. (3.24)). Then the map o can be extended so
that

o(a)o(a) . . N+1 aa
oL = explim (N + )iy (@)] exp|im—— (r((a)) +r(a)) [o

N +1
K

r(a
= exp[in- exp[2m’ (N) }Qf” (SU(N), all N) (3.25)
holds, even in the case of fusion multiplicities. While this agrees transparently with
the direct calculation in the case of N odd (3.15), for N even it implies the
Proposition. s multiplicity free in a®a and o2(s) multiplicity free in
o(a) ® o(a) imply that /,,_ (s) and /,, (0?(s)) are even.
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The interesting contrapositive,
With s €a ® a and 0%(s) € o(a) ® o(a) in SUQn), if 1,,_ (s) or I,,_(02(s)) is
odd, then either s occurs with multiplicity in a ® a, or ¢2(s) occurs with
multiplicity in o(a) ® o(a),
is a useful (though incomplete) diagnostic for the presence of SU(N) tensor ring
multiplicities. For the remaining groups we obtain the relatively uncomplicated
formulas
K for Sp(N)
Eg, so(2n + 1), and o, of so(4n)

a(a)o(a) _ _aa

e
1
. X n
Moo s (—1)"* o, of so(4n)
(-~ E, and so(4n + 2). (3.26)
in the multiplicity-free case. The orthogonal group results hold for a either a
tensor or spinor. Examination of these values shows that

(@) (a EREY O]
(@)er( )=nga(_l)(;<|(r(0))>< g 1)~ SU(2n +1)

a(s)

otherwise (3.27)
is correct in all cases. Explicitly,
1 SU(N)
2 E, so(2n + 1), so(4n) if o =0,
|o(0)) =K X ) E;
(kl o (0)) = 2n—1 so(4n+2)
n so(4n) if 0 =0,
N Sp(N). (3.28)

The trefoil-type-knot-based argument then yields, with p the order of the auto-
morphism o,

H@I@ _ griaca) . P
eisy € expl|im

+1 N
e («1a(0)) [0 (3.29)

for all groups and all representations. It also implies that if s and o2(s) are
multiplicity free in so(4n + 2) Kronecker squares, then /,(s) and /,(o*(s)) are even,
and if multiplicity free in Kronecker squares of E,, then a,(s)+ay(s) and
a,(o2(5)) + as(a*(s)) are even.

Only egs. (3.1)—(3.6) will be needed for the arguments in the rest of this section.
This means that the following arguments hold for all Chern-Simons theories that
display simple-current symmetries. Eq. (3.29) will, however, be relevant for the
results of sect. 6 that involve knot expectation values.
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3.3. CO-MINIMAL EQUIVALENCE OF TETRAHEDRA

We will henceforth display compatible sets of S, T, and U fusion rule channels
without the fusion coefficients written explicitly by assuming that the sums only run
over the representations with non-zero coefficients (but with multiplicity). For
example, the fusion rules in eq. (2.6) can be written compactly (with a slight abuse
of notation) as

S-channel T-channel U-channel

a-b=Ys, a-p(c)=xt, ap(d)=)Yu,
N t U

c-d=Ys, p(b)y-d=Yt, p(b)c=)u. (3.30)
S t 173

The associated matrices of expectation values of tetrahedra are real and satisfy
non-linear equations that only depend on the coefficients appearing in eq. (2.26)
(and on those in eq. (2.30) for link-type tetrahedra). We now consider the
co-minimally equivalent set of fusion rules

S-channel T-channel U-channel

a(a)-b=Yo(s), o(a)-p(c)=Yo(t), o(a) p(o(d))=Lu,

t
cro(d)y=Y o(s), p(b)-o(d)=Yo(1), p(b)-c= Y u. (3.31)
5 t u
The sums here run over the same representations that appear in eq. (3.30). The
pairs of fusion rules displayed here exist due to eq. (3.1) (or the second equality in
(3.7)) and due to the fact that

p(o(a)) =o '(p(a)). (3.32)

Each channel provides a basis that spans a new Hilbert space Z, of the same
dimensionality f as /. The tetrahedral expectation values satisfy egs. (2.25) and
(2.26), but with the coefficients in (2.26) now given by

co(d)o —
05 0P ol T (3.33)
Insertion of the identities in eq. (3.5) shows that the complex part of the relative
phases cancels so that

050 e ol T = ol o T (3.34)

1

This means that the coefficients in the equations that determine the two sets of
tetrahedra are equal up to sign, so that corresponding tetrahedra appearing in the
two cases are equal up to sign. Pictorially, by going to the co-minimally-equivalent
set of fusion rules we have changed the representations around a particular closed
oriented loop uniformly by r — o(r). The same result holds in general for all other
loops and for iterations around each loop. In all cases the channels that appear
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produce exactly the same set of constraining equations up to sign. The general
result is that

n+m I(C c
a

(3.35)

This is all that one can say about the general case of non-link-type tetrahedra,
since the sign of each tetrahedron is a matter of residual vertex normalization. For
link-type tetrahedra note that the coefficients in the equations in eq. 2.30 are
squares and so do not depend on any of the undetermined signs in eq. 3.5.
Therefore, using eq. 3.35, as well as eq. 3.5 in eq. 2.30, we obtain the exact result

b

Q:;}g)) g(f))ﬂ(b) ‘ _Q”b - ’
a

While the permutation sign 127"’ cancels trivially in this particular case, the
general result

(3.36)

a™(b)

" bYp(o (b)) o(@)a (k) a’(a)p(a (b))
ng e e sy O gnomisy



S.G. Naculich et al. / Simple-current symmetries 473

b

__ . bp(b).ab b
__»,IOP();ZQ?;)()

(3.37)

contains contributions from these signs. The product of these charge conjugation
signs is given by

mep mep bo(b) _ m(p— 1| a(0)
ng @@ BNy be) — (1) ) (3.38)

The complex parts of all the phases in eqgs. (3.36) and (3.37) cancel leaving only
a calculable sign. This relative sign results both from the transformation property
of the permutation signs and from that of the conformal dimensions involved.
While one might hope that the permutation signs could be chosen in such a way
that the signs of tetrahedra are uniform within cominimal equivalence classes,
simple counter-examples exist in which it is impossible to arrange this, even using
all possible freedoms of normalizations.

4. Rank-level duality of planar tetrahedra

The aim of this section is to show that each tetrahedron in an SU(N),, Sp(N ),
or so(2n +1),,,, theory has at least one partner in SU(K),, Sp(K)y, or
so(2k + 1), ., respectively, with the same expectation value up to sign. In the
case of so(2n + 1),,,, this only applies to tetrahedra with tensor representations
on all edges. The results of sect. 3 then show that each tetrahedron is also dual to
entire co-minimal equivalence classes of tetrahedra that all have the same expecta-
tion value (up to sign).

The map between integrable representations of G{N), and its rank-level dual
G(K), given by tableau transposition

a€G(N)x—~>adaeG(K)y (4.1)

connects representations with closely related quadratic Casimirs, fusion coeffi-
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cients, and g-dimensions, as follows. In order to treat SU(N), Sp(N), and
so(2n + 1) in parallel, we extend eq. (3.11) by defining

(r(a) +r(b) —r(c))/N SU(N)
A = {r(a) +r(b) —r(c) so(2n + 1)
0 Sp(N). (4.2)

For all three groups the non-zero fusion coefficients of G(N ), are related to those
of G(K), by [7,8]

N, = NdEUAa(%C-)- (4-3)

(Note that the naive relation N,,° = N,;* does not hold in general for the fusion
coefficients.) For any tensor representation [3,13,24] a

r(a) r(a)
2 (1 "~ NK
r(a)
2

) for SU(N) g
h(a)ong + (@), =

for so( N), and Sp(N) . (4.4)

In addition [7), if s€a ®b,
h($)cw, + h(UAgh( 5))G(K)N

r(a) +r(b) r(a) +r(b)

2 ST
=4 r(a)+r(b)
—

) +0°(s) for SU(N)g

— I (s) for so(2n + 1)x 44
and Sp( V), (4.5)

where I'??(s) denotes the number of contractions (of tensor indices) needed to
obtain s in the tensor product ¢ ® b and

K
Q(s)= X c(s). (4.6)

i=K—A% 41

where the ¢,(s) are the column lengths of the reduced tableau s. Both quantities
are integers. In addition, the g-dimensions satisfy [3,12]

{Xq(a)}G(N)K= {Xq(d)}G(K)N' (4.7)
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Without considering the exact values of the permutation signs, these equations
yield the braid eigenvalue relations

0°%0% sy = (£), e, (4.8)

where the sign (+), depends on the intermediate channel s in a complicated way.
Here, and henceforth,

r(a)r(b)/NK SU(N)g
P(a, b) =
0 so( N) and Sp(N ). (4.9)
The dual identities for the special tetrahedral quantity in eq. (2.31) will only
require these identities.
For the case of (linked) knots it will also be important to understand how the
permutation signs n¢¢ and 724, are related. We find that
e i eimr@ ei-n-.()‘“‘(s) for SU(N)K
Ms Ma2ts) = iTr(a) Liml%%s)
e € for Sp(N) g and so( N ). (4.10)

In the appendix we obtain a proof of (4.10) for Sp(N), so(2n + 1),,, , and for
SU(N ) in the special case 29“(s) = 0 (which often occurs for 49 # 0), if s does
not appear with reduced multiplicity. While eq. (6.37) implies eq. (4.10) without
any such restrictions via an argument using the ¢ twisted trefoil-type knot analo-
gous to that of sect. 3, we do not have an independent proof of eq. (6.37) unless
t = 11, the case of the twisted unknot [3],

— ei-rrr(a)e‘rri<1>(a,a)< a >
( % >G<~>K ooy (4:11)

Insertion of an S-channel spectral decomposition on both sides yields (by using
eqs. (4.3)-(4.7)

LN, x,(s) e im0 e — emimtr@s @ onpid | —o, (4.12)
5

which constitute two real equations for the difference between 12? in SU(N),, and
&%, in SUCK)y (replace 2 with I' for the other groups). If we use eq. (4.10)
for the terms that appear with no reduced multiplicity (or with £2%(s) =0 for
SU(N)), then we obtain two equations for the cases with reduced multiplicity (or
for those with £29“(s) =+ 0). This yields a proof of a restricted but infinite set of
cases where eq. (4.10) holds for all s and with £2°“(s) # 0 in the case of SU(N).
(That the map in eq. (4.1) is undefined between symmetric and anti-symmetric
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copies of the same tableau in an intermediate channel gives one the freedom to
define it so that eq. (4.10) will continue to hold in the case of multiplicity.)

While the product of permutation signs does depend on certain details of the
intermediate channel, the product of braid eigenvalues does not:

GG ) )
Q?aQL;A“s‘Zg) _ e17'1'r(a) e-rrt(b(a,a). (413)

That the product does not depend on the intermediate channel is the result of a
remarkable cancellation between the permutation signs and a contribution from
the conformal dimensions.

4.1. TETRAHEDRAL DUALITY

Given the set of compatible fusion rule channels specified in eq. (3.30) in the
level K G(N) theory, we now consider a dual set of fusion rules in the level N
G(K) theory,

S-channel T-channel U-channel
i-b=Yo%(s), a-p(¢)=Yo%(i),  ap(o’(d))=Lo(a),
N t u
¢a¥(d) = Lo'(5), p(b)-o®(d)=To*s(i),  p(b) -i= Lo(a).
k) t u
(4.14)
The letters a,...,t, u denote G(N), representations and the “tilde” symbol again

denotes the map from G(N), integrable representations to G(K), integrable
representations given by tableau transposition. In addition, for Sp(N), and
SOQ2n + 1), ,, pla) =a for all representations a. The integer A%° is defined in
eq. (4.2) and the quantity

8 =A% — A (4.15)

measures the failure of exact conservation of the number of boxes across an
intermediate (here the S-) channel. We have also adopted a generalization of the
index convention implicit in A%?: an upper (lower) index indicates that r comes in
with a plus (minus) sign. For example,

(r(a) —r(b) —r(c))/N for SU(N)
A3.={r(a)—r(b) —r(c) for SO(2n + 1) 24+ (4.16)
0 for Sp(N) k.

In all cases in which they appear these will be integers; in the example just given
this quantity would only appear for ¢ €a ® p(b).
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This dual set of fusion rules consistently defines three f-dimensional bases of a
G(K)y Hilbert space, with each channel corresponding to a pair of compatibie
fusion rules. This follows from the dual and cominimal properties of the fusion
coefficients in eqs. (4.3) and (3.7), respectively, as well as eq. (3.32). For SU(N),
the identity

p(a@) =¥ 1(p(a)) (4.17)

is also needed. This last identity is readily demonstrated by implementing the
operations on each side of the equation diagrammatically (i.e. via a series of Young
tableaux). The existence of this dual set of fusion channels establishes a well-de-
fined map from tetrahedra in one theory to those of the other.

Corresponding to these two sets of fusion rules is the following simple relation
between the S- and T-channel products of braid matrix eigenvalues:

ab @b wid(a,b)
0°%0, s, = +e ,

ap(cy,ar@)
O iy

=+

e ), (4.18)

(The analogous U-channel identities are obtained as cases of the T-channel
identity by setting ¢ — d, etc.)

Using these equations and eq. (3.5) we find that the products of eigenvalues that
appear as coefficients in the two sets of non-linear constraint equations corre-
sponding to the two sets of fusion rules in (3.30) and (4.14) are the same up to sign
for general tetrahedra

-1
co¥(d) ap(e) p(b) ) (4.19)

digfp(c)gup(b)ﬁz—l = i,75(Q(TJ”‘{?(E)QU_,,?,(I.)Q‘r_\h“(a)
Given this result it immediately follows from the nonlinear set of equations (egs.
(2.25) and (2.26)) that the tetrahedra of one theory and the dual tetrahedra of the
dual theory satisfy exactly the same set of equations up to sign. The result for
general tetrahedra is that

c

(4.20)
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For link-type tetrahedra (for which & = 0 always) the exact result

b
bp(b Qaanp(b)
a
b(b) ap(b) -
? (Q 4:(3)9 Ab/(,)

(4.21)

follows from the supplemented skein relations (eqs. (2.26) and (2.30)), showing that
the same product of tetrahedra and braid eigenvalues is an exact invariant under

both types of discrete symmetries. The product of charge conjugation signs is given
by

(_1)(N+K)r(b) for SU(N)K

1 for Sp(N)k and so(2n + 1), .. (4.22)

bp(b)

bp(by _
4 p(b) —

Mo

5. Two applications: WZW models and quantum groups
We give two simple applications of the above results.

5.1. WZW BRAID MATRICES

The WZW braid matrices are matrices of non-planar tetrahedra [1]. With the
edge orientations in the definition of the WZW braid matrix in terms of Chern-
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Simons graphs chosen to make the connection with the bases defined in subsect.
2.1 transparent, consider the braid matrices specified by

b b b b

7
a __)_Li?— a= ZBM[b p(b) Jngp(b) a _,_A_)‘ a

s a p(a) t

(5.1)

which braid ¢, and ¢, in the WZW correlation functions {¢,b,d b, The
relation to Chern—Simons tetrahedra is simply that

tl
b b
b -1
Bst p( ) :n([;p(b)(/\/q(a))(q(b)) a ‘\(l
a p(a) /
s
b

—-1 — ab.a ‘
= (x,(@)x (b)) Ingr®pstolr® ’

a

(5.2)

This shows that the WZW braid matrices singled out by eq. (5.1) are expressible in

terms of link-type tetrahedra. Since the planar tetrahedra appearing in eq. (5.2)
are exactly those of F,, (with d =4 and ¢ =b)

b p(b) —1
B =7, bp(b)yabgarhF ), 5.3
st':a p(a) b (770 Qs 9, st) ( )
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Using this correspondence and eq. (4.21) we find that

b p(b)
a p(a)

ZBS’

t

b p(b “2n o
B A:(s)o-Ahl(t)[ _ ( )“ =e? () + D) b( ) Z s't vt
a p(a)

— e'rrir(b)eﬂ-i(b(b,b)a - (5 4)
s's .

where ®(b, b) is defined in eq. (4.9). This complements the results in refs. [3,24]
on WZW braid- and fusion-matrix dualities. There, however, WZW braid matrices
that braid the pair of ¢, fields in (¢ ,b,d,¢,> were considered. These latter braid
matrices are proportional to a special class of non-link-type tetrahedra.

Similarly, the relation between the (link-type) WZW braid matrices that differ
by co-minimal equivalence is found from eq. (3.36) to be

b ) 1, [b e
B"“"“”L(a) p(a(a))]‘B“[a p(a>]' )

5.2. QUANTUM GROUP 6j-SYMBOLS AND WZW FUSION MATRICES

Given appropriate normalizations, the expectation values of planar tetrahedra
equal [1] the values of quantum 6j-symbols (of %, (G(N))) evaluated at the roots of
unity g =expmi/(K+g)). (In addition, the WZW fusion matrices are also
directly matrices of planar tetrahedra.) Therefore sect. 3 and 4 immediately yield
identities for these quantities. Given the standard relation [25,26]

the correspondence is

u

PRENS
®-®

The results of sect. 3 yield the transformation properties of quantum 6;j-symbols
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under co-minimal equivalence. For example,

o(a) b o(s) ~ 4 a b s . (5.8)
o(c)y d o(u)], c d uf,
Similarly, the results of sect. 4 show that there is a rank-level duality between

the quantum 6j-symbols of % (G(N)) and %, (G(K)) for g the common root of
unity g = expQai /(K + ).

e b o(s) (5.9)

d o i7) q'

{Q
<
[
[

o
W
<
o

The + signs appearing in these two equations depend on the phase conventions of
the 6j-symbols (which are inherited from the residual vertex normalization conven-
tions of the planar tetrahedra via eq. (5.7)). Exact identities can also be con-
structed in the special case corresponding to link-type tetrahedra.

6. Discrete symmetries for all Chern—-Simons observables

Arbitrary planar graphs can be reduced to sums of products of planar tetrahe-
dra [14]. The overall sign of a non-link-type graph depends on the arbitrary
normalizations of the graph vertices, and the tetrahedra that appear in its reduc-
tion can all have expectation values with normalization dependent signs. However,
if we fix the normalization of all vertices of the original graph, then, since the new
vertices that appear in the reduction process come in pairs, the pattern of relative
signs between terms in the sum i1s not normalization dependent. It is not clear
what determines these relative signs or how to calculate them. The situation does
not change for link-type graphs. Such a graph has an unknown, intrinsic overall
sign (since each vertex appears an even number of times in the graph, so that a
change of normalization does not change the sign of the graph), and, in addition,
the relative signs between terms in a tetrahedral decomposition are not known.
Without a way of calculating these signs the algorithm in ref. [14] is ineffective for
general graphs.

To make this problem concrete consider the graph

b
82 ! 83
a
G(a,b,{s,-})= Ya 4b Yb 4Aa

81 84

a
.

b

—

(6.1)
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which has the reduction into generic tetrahedra

G(a, b, (3)) = n8" P (x (@) xo(0)) " (50X, (52) xa(5) Xg(58))

S92 b
Kss K3b
Z 1
KoL) K ()
gt bt
. Xq(1)
ikl
K Ko
8 b
b 54
X K1) K33 (k)
r) ba
’Cni K'B
b S3

(6.2)

The vertices not in common between each term in the sum (i.e., those that do not
appear in the original graph) come in dual pairs so that a change of residual vertex
normalization does not change the relative sign of the terms. Since this is a
link-type graph the vertices of the original graph also appear in dual pairs so that
its overall sign is also clearly normalization independent. While the non-linear
identities (2.25), (2.26) do establish relations between the signs of certain tetrahe-
dra, the tetrahedra that appear here are not in the same set of basis change
coefficients and so are not related in this way.

Using the fusion rule identity in (3.7) one can show that to an arbitrary graph in
a level K G(N) theory there corresponds a class of topologically identical graphs
obtained by uniformly replacing the representations along oriented, closed loops
by cominimal equivalents. Similarly, using eq. (4.3), one can also show that in the
level N G(K) theory there are dual graphs with co-minimal equivalents of
transposes of the G(N), representations along the edges. In this latter case,
however, the fusion rule identities only establish that to each vertex of one graph
there is a dual vertex and one might ask whether these can be pieced together
consistently. This is always possible since the integers & (defined in eq. (4.15)),
which measure the absence of exact box conservation across intermediate chan-
nels, sum to zero around closed loops. Then using the same pattern of reduction to
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tetrahedra for both graphs and the symmetry results for these tetrahedra, we see
that co-minimally equivalent graphs are identical functions of cominimally equiva-
lent tetrahedra, and that dual graphs are identical functions of dual tetrahedra.
However, we only know that the absolute values of these (real) tetrahedra are the
same. Therefore the above sign ambiguity only allows one to conjecture that the
results of sects. 3 and 4 generalize to arbitrary graphs.

The first part of this section is devoted to examining some exceptional cases of
graphs which can be calculated by the above algorithm, providing further evidence
for the above conjecture. We then find linear equations for any link-type graph.
These play the same role for general graphs that the analogous linear equations
did for tetrahedra. In the last part of this section a graph-independent argument
yields the exact transformation property of knots and links under co-minimal
equivalence. An immediate consequence is a demonstration of the transformation
property of link-type graphs under co-minimal equivalence. We obtain (but do not
prove) the analogous transformation identities for graphs, knots, and links under
rank-level duality.

6.1. CALCULABLE LINK-TYPE GRAPHS

The graph in eq. (6.1) has the alternate reduction entirely in terms of link-type
tetrahedra

G(a, b, {s;}) = (Xq(a)xq(b))zQ?fQ?f(Qs”fQ?f)‘1

-1 a * a
X L x (1) (ngr 0l F, 000P) (b0, 01 ®)
t

*
X (6”05 F, 007 ") (P P05l F, 007 ) (6.3)

where F;, is exactly that displayed in eq. (2.23) with ¢ =5 and d = a. The braid
eigenvalues all come from insertions of factors of unity in the form of products of
braid eigenvalues, such as p??*)(p??®))* In this case the strategy outlined above is
successful, and eq. (3.36) leads to

—1 -1
(05Nos(ey ) osoninG(a(a), b, {o(s;))) = (o5los?)  oStes?Ga, b, {s}).
(6.4)
Similarly, eq. (4.21) yields
-1
(05f02) 0%0tG(a, b, {s))

-1

_ab ab ab ab - 7 Aeh, -
_904‘%'1’(,51)9(;4?2’(54)(Q«ré“?’z’<s‘z)904%§’<§3>) G(a’ b, {o (s,)}) (6.5)



484 S.G. Naculich et al. / Simple-current symmetries

The entire complex part of the (combined) phase from both sides of each of these
equations cancels, yielding the result that the related graphs have the same
expectation values up to a (calculable) sign. Although other examples of graphs
with such reductions can be found, it does not seem possible in general to reduce
general link-type graphs into sums of products of link-type tetrahedra.

A general link-type graph can have several types of intermediate channel edges
which differ from those occurring in eq. (6.1). In all, there are four types of such
channels. Depending on the orientations of the edges adjacent to an intermediate
channel edge, one can have an S- or 7T-channel. In addition, depending on whether
the pair of representations adjacent to one vertex are permuted at the opposite
vertex, one can have a twist (with permutation) or parallel (without permutation)
edge. The four intermediate channel edges in eq. (6.1) are S-channel twist edges.
Link-type tetrahedra exhibit both S-channel and T-channel twist edges, but paral-
lel edges are not possible. A simple example with parallel edges is the graph

b
a a
t
G(aab’{sl?‘gZ’t}):‘r $1 ‘(-52
b b
@ (6.6)
The reduction of this graph to tetrahedra
77(t)m(a)
G(a, b, {s), 5,5, t}) =
xa(@) x, (B x, (1)
b a
Xy Kg,(i) K8 (3)
Kah Ky
a b (6.7)

can be written in the form
—1
ngp(a)leb(Qsaf) G(a, b, {s, 55, t})
3/2 -1/2
= (xo(D)x,(b)) "X, ()

*
X 2 (n6r P08 F, ()08 ) (mEr P OsL (Do) (6.8)
i
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where the sum is over the N, types of the coupling 7y, (or its dual) appearing
at the indicated vertices. This example isolates a further problem, if the fusion
multiplicity is greater than two. If the multiplicity is exactly two, then the two
couplings (generally) correspond to symmetric and anti-symmetric combinations
and the corresponding braid eigenvalues differ by a sign so that no degeneracy
need occur. If, however, N, p(b)’ > 3 for some ¢, a degeneracy will necessarily occur,
in the sense that the braid eigenvalues occur with multiplicity. To apply the results
of sects. 3 and 4 to this case (as well, in fact, to the previous case) we are implicitly
assuming that an orthogonal basis of the degenerate couplings can be chosen so
that the tetrahedra that only differ by such couplings are exactly equal. In the case
of low multiplicity or where this is possible, we find that

1
@ @prN(0st) Glo(a), b, {o(s)), 0(s,), o (1)})

-1
= g (08) G(a, b, (s, 55, 1}). (6.9)

In addition,

-1
ngp(a)Q;’lh(szb) G(a, b, {Sl, S2> t})

~1

Go(a ab ab - ab, . ab , Ad o~
= ”’lop( )(Qgﬁ‘}’l’(g])) QU_\?Y’;(_GZ)G(Q, b, {O'A’sf(sl)7 UA'S;(SZ)a O-Am(t)}) (610)

This example shows that no braid eigenvalue pre-factor appears for the parallel
T-channel. (The same result holds for a parallel S-channel.)

6.2. LINEAR SKEIN RELATIONS FOR LINK-TYPE GRAPHS

Let us suppose that we have (presumably non-linear) equations that constrain
the expectation values of a set of general graphs of a given topology. Then they
should involve exactly the same sign ambiguity as the non-linear equations for
tetrahedra. Therefore, for the graphs of this topology with edge representations
and orientations chosen so that the graphs can support knots or links, their overall
signs will be intrinsic but undetermined by these equations. The number of
undetermined signs in the array of graphs G(s, s,,...; t;3,...), indexed by the
intermediate channels, is X, f;. Here the sum is over the edges labeled as interme-
diate channels (in the case of graphs that support two-component links, this is just
(# crossings) X f). We now show how to construct (at least) this number of
inhomogeneous linear equations. For each intermediate channel edge there will be
two representations ¢ and b at each vertex. From one vertex, trace out a Wilson
line for a so that it follows the graph edges and eventually comes back to the other
vertex of the intermediate channel edge. Then do the same for the representation
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b, but in such a way that whenever a strand of a must be crossed, the b Wilson line
goes uniformly over (or under) the g Wilson line. If there remain other external
edges (bearing representations a,,) not traversed by this procedure trace out
unlinked unknots until all edges have been traversed. The indicated (two-vertex)
graph is just a fancy way of specifying a baryon (multiplied by a braid eigenvalue
and, perhaps, a product of unknot expectation values) *. On the other hand at
every crossing we can insert an S- or T-channel spectral decomposition and obtain
the baryon as a sum of graphs from the array G(s|, s,,...; t5,...) (all of the same
topology and with the same representations on the external legs).
For example, using the graph in eq. (6.1), we can draw

b

D
Fo-

39 ra

N

7 N,

(6.11)

This graph leads to the equations

(0%) Yxg(52) (xg(@)xg(B))’

2 -1
= Z \/Xq(sl)Xq(SS)Xq(S4) (Q:lb) [(lebggf) Q?zbgsa:)G(a7 b9 {sl’ 327 53’ 34})]

51,853,854

(6.12)

They have been written in a way that isolates (in square brackets) a special product
of braid eigenvalues with the graph; it is exactly the special quantity in egs. (6.4)
and (6.5). These equations, with the unknowns considered to be the special
products, are exact invariants of both co-minimal equivalence and rank-level
duality, since the coefficients are squares of eigenvalues. This equation is a precise
analog of the linear equations (2.30) found for link-type tetrahedra. In addition,
other patterns of crossings lead to further equations. For example, the mirror
image of the graph in (6.11) yields the complex conjugate of eq. 6.12.

* Actually, one can let the a strand cross the b strand in any way that leaves the graph topologically
equivalent to a baryon; in which case further equations result.
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Similarly, using the graph in eq. 6.6, we find that the non-planar graph
b

>

£ NS

a (6.13)

81 A

leads to the equation

(51 (xg(@)xy ()

= ¥ (0x,52) [mirest () 'Gas b (s, 52, 1)) (6.19)

£,55

This equation has been written in a way that isolates the exact invariant of the
discrete symmetries that appears in egs. (6.9) and (6.10).

For arbitrary graphs the result is a set of equations, only slightly different for
each of the four types of intermediate channels appearing in the graph. For each
pair of representations a and b which join at (at least) one vertex in the graph, a
subset of the following equations holds. Letting ¥ denote the number of interme-
diate edges of G, and Z the sum of the crossing signs of the (two-vertex) graph
constructed above, the S-channel twist, T-channel twist, and parallel equations are

(T (@) e

= (u@x () ¢ L (,]H,qu(r,-)xq(’j)xq(sk) (Q,,)W”)(st)’w‘“)

{r ossi (k=)

XG(a, b,....{r 1, s, }),
(TTxaCam (€)1
—(a(@x®) T T oxm)t0 ()" e,) ™

{r J )5y NI ELE

XG(a, by (i 1)y 510 -}
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(TTxaam) ol

= (u(@x() 7 T (Hk\/)ah)xq(fj)xq(sk)(Qt,)W(“(st)_W”‘))

it s,) NFLI
XG(a, b,....{r; t;, 55, ... }). (6.15)

where, in each case, the index i labels parallel channels (either S- or T-type), the
index j labels twist T-channels, and the index k labels twist S-channels. The
representations a,, correspond to paths on the graph that yield unknots. In the
third equation the crossing signs w(j) = 41 for T-channel crossings and w(k) = +1
for S-channel crossings satisfy the constraint that %"= ¥ w(j) + L,w(k) = 0. (The
above construction implies that #'= + 1 in the first and second equations.) The
omitted superscripts on the braid eigenvalues come from one of the pairs {a,,, a},
{a,,, b}, {a,, amz}, {a, b} according to the edges adjacent to the intermediate
channel in question. The sign ¢ is given by

(= (I;In(‘%”‘“)m’i”(b))( l;né‘,’"‘“’), (6.16)

where the products are over all S- and T-channel intermediate edges, respectively,
and a and b are the adjacent edge representations of the given intermediate
channel.

These equations provide as many constraints (with the complex conjugates twice
as many) as undetermined signs for the family of graphs indexed by the representa-
tions appearing on the intermediate edges. Since we have, with the index i running
over all intermediate edges, [1,f;, graphs (for example, f#osing graphs, for
graphs supporting two-component links), these linear relations are insufficient in
general to determine the graph expectation values.

They have, nevertheless, the same structure as the analogous equations for
tetrahedra in eq. (2.30) and can be written in a similar manner to isolate a quantity
that just depends on the squares of eigenvalues and on products of g-dimensions.
If f=2, they give a complete set of equations for the graphs in (6.1) and (6.6) and
permit verification of the identities in egs. (6.4), (6.5), (6.9) and (6.10) without
appeal to any results about tetrahedra. This direct, linear approach to these
identities does not require, in the case of fusion multiplicities, the existence of a
special choice of basis for which tetrahedra of degenerate channels are equal. (Of
course this problem recurs for the graphs themselves.)
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In conclusion, it scems reasonably certain that

(kTI(QZEfji’) O grteer)™ );"G( (@), b fo(r), o () o (50)s .. })

oJ

- (H(ngb)W'(k’(gz;,p(b))”""’)gG(a, b ity s, o)) (6.17)

ik

for any choice of the signs w(j) and w(k) as long as ¥ w(j) + L,w(k) =0, since
these quantities satisfy some form of the relevant equations in (6.15) which are
exactly invariant under co-minimal equivalence. The signs ¢ and {7 (§_ below) are
defined by eq. (6.16), interpreted with reference to appropriate graphs.

Similarly, one expects

(H (Q?A.b)_W(k)(ij"(b))W(j)){G(a, by 1y 560+ )

_ 1_[ ibh w{k) dp(l;) —w(j)
- i Q,,—J“.\h(fk) Q(r-‘”h/(f,)

/s

xEG(a, b, (o (7), o (i), o¥(5,), ... }) (6.18)

to hold under the same condition on w(;j) and w(k).

We have shown that egs. (6.17) and (6.18) actually do hold for various particular
graphs. In addition, the linear constraints that exist for any link-type graph also
support the expectation that these equations will hold for all link-type graphs.

6.3. SYMMETRIES FOR LINKS AND KNOTS

Using eq. (3.5) we find that the characteristic polynomial of the square of the
braid matrix B, ,,

H (B(:JZ'(H)]) (ngf))h) ) = O (619)

R

transforms to

n((e—mq(h)Ba(a)b)z (Qf") ) 0, (6.20)

5

which is exactly the characteristic equation for the square of the braid matrix B,

U(Bf,, — (e*)’) = 0. (6.21)
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This implies that a link #(o(a), b,...) with o(a) on an unknotted component and
the same link with a replacing of(a), Z(a, b,...), multiplied by a phase
exp(+imqg(b)) for each (¥ signed) crossing for each component that the a
component crosses, satisfy identical skein relations. Similarly, using eq. (4.8) the
characteristic polynomial of the square of the G(N)g braid matrix B,, can be
written (with @(a, b) defined in eq. (4.9)

- -2
TT((e7*“"B,,)" ~ (05| )=0, (6.22)
;
which is exactly the characteristic equation for the square of the braid matrix Bz}’
in the G(K), theory. This implies that a linking of unknots #(a, b, ...) in a
G(N), theory will satisfy the same skein relation as the mirror image link in the
G(K), theory multiplied by a phase e *™®“® for each (+ signed) crossing of
components a and b (and this holds for each pair of components). Similar
statements result from comparison of the characteristic polynomial of the knot-type
braid matrix B

a(a)o(a)
a(a)o{a)
1—.[ (Brr(a)o'(a) - Q(rz(s) ) =0 (623)
Ky

with that of B,, (by using eq. (3.29) which relates the braid eigenvalues). A
comparison of the characteristic polynomial for B,, in a G(N), theory with that
for B;; in a G(K) theory requires the use of eq. 4.13 (which we have proved in
many but not all cases). Since not all knots or links can be untied with the skein
relations corresponding to characteristic polynomials (such as (6.21) or (6.23)),
these results alone would only permit the comparison of a restricted class of knots
and links.

In the case of the Dynkin diagram symmetries a cabling argument yields a proof
of the exact connection between any link and its cominimal equivalents (eq. (6.30)
below). To obtain the analogous rank-level link relation (eq. (6.37)) we will need to
examine the case of general knots and links by means of the reduction to planar
graphs followed by an appeal to eq. (6.18). This will provide a complete proof of
eq. (6.37) only for special classes of links (i.e. those built on certain special graphs
such as those studied in subsects. 6.1 and 6.2).

Consider an arbitrary link #({a,}) with representations a, on the link compo-
nents and the cominimally equivalent link #(o(a)), {a;, j # i}). The exact relation
between these links is obtained as follows. Given any link ., with a specified
component %7, let {£, ¢, € ¢, &,} be the set of links with representations s on
that component, and let .7, -, be the link with an untwisted, two-cable of the
component % in place of the original component. Then

(F, L) =Y. (L, (6.24)

s
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always holds. This fact and the fusion rule for cominimal representations, ¢, * ¢,
= ¢, Dermits replacement of the Wilson line with o(a,) with the two-cable of
Wilson lines with a; and ¢(0) on the two (everywhere locally parallel) lines, in
order to obtain

(3(0(a,), {a;, f¢i})> = (Ho 2 ({ai} ) (6.25)

Then the one-term skein relation based on the characteristic polynomial (of the
same fusion rule)

2 .
_ a0y -1 _ 2migiryp—1
Btr(())r - (Qa(r) ) Bu((])r =€ B(r(())r ’ (626)

for r=a, b,..., can be used to lift up the o(0) component, Z,) detaching it
from the rest of the link, at the cost of one factor of the braid eigenvalue in eq.
6.26 (or its inverse) for every negative (positive) under-crossing by %, of any
other component, to obtain

<:/(o-(a,-), {a;, j+ i})>

=exp(—i7TZj¢,.q(aj)w(i, j)) exp(—2mig(a,yw(i, i) ), {ZL({a}).
(6.27)

where w(i, j) is the sum of the crossing signs [18] between the components i and j.
Then each crossing in the knot %, can be replaced (at the cost of further braid
eigenvalue factors) with an un-crossing by means of the skein relation correspond-
ing to the characteristic polynomial

a(yo (D)

B(r(())tr(l]) =0, 1. (6.28)

Since the expectation value of a ¢(0) unknot equals unity (eq. (3.6)),

a(Ma(0) —wli,i) 3 p+l L
AR =exp(—1w' (k| (0))w(i,i)|. (6.29)

Therefore,

<°(f(0'(ai)’ {al-, -i¢i})>

J#Ei p

1
_ exp(—m[( Y (i, d)aa)) |+ 2w(i, Da(a) + w(i, i)” . (K|a(0))”

x(({a}) (6.30)
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The explicit values of (k| ¢(0)) are listed in eq. (3.28), and p is the order of o. We
can now use (6.30) to obtain further constraints on a set of graphs of a given type.
There will turn out to be enough (linear) equations to completely determine the
expectation value of any link-type graph in terms of the links they support. While
we do not know these expectation values independently (so that we cannot use
these equations to calculate the graphs) we do know their transformation proper-
ties (eq. (6.30)) and so can obtain the transformation property of graphs given in
eq. (6.17).

First one can insert a spectral decomposition for each crossing in an arbitrary
link &7, , to get a representation of the link as a sum over planar graphs. At

N

each crossing one can choose to insert an S-channel spectral decomposition so that

(m‘;”(“’m’i"“”)%

7= — D TT %, (5) 0| Gay, by As,s -..}) (631
(x,(@)x,(0))” {A~,)(,- Xl 5) @ ) ( ) (6:31)

with & = L |w(i)| denoting the number of crossings of the link (alternately, the
number of intermediate-channel edges in each graph). Here the indicated graphs
only have S-channel twist-type intermediate edges. (While all faces of G with just
two edges can be immediately excised, this raises the powers of the braid eigenval-
ues appearing in (6.31) and potentially introduces a variety of the four channel
types, which complicates the argument somewhat.) For example, the family of links

Q5o
pxY

Z(a, b;{n})= a

<

4

(where each n; equals the sum of the crossing signs of the neighboring braiding)

(6.32)
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has the decomposition

S
4 Xq(si) a —n; |
<_‘Z"(a,b; {ni})>= Z (iZI\lm (stb) ) Ya J\b (b JFG
S1 j 8

(6.33)

If a # b, then each n, must be odd so that the sum of the crossing signs between
two different components, X;n;, is even. The general cabling result yields, in this
case, the equations

Z(a(a), b; {n;}) =exp(—iwq(b)(;n,))$(cz, b; {n,}) (6.34)

which can be thought of as a set of f* linear homogeneous equations (para-
meterized by the crossing signs n,) for the f* quantities G(o(a), b; {o(s)}) —
G(a, b; {s;}), multiplied by certain braid eigenvalues. While the #, run over all odd
integers, the braid polynomial skein relations relate links with different numbers of
crossing signs. Given that no unforeseen degeneracies occur this set of equations
can be solved only by requiring that eq. (6.17) holds.

Assuming the graph identity in eq. (6.18) yields, via eq. (6.33),

Z(a, b; {n} ey, = exp(—wi@(a, b) Zni)y(d’ b; { ””i})G(K)N (6.35)
as the expected general result for the link in eq. (6.32) (assuming that a # b so that

L.n; is even).
Similarly, the class of links

Y o

(

Z(a, b;{n})=m 12

na

nlr

(6.36)
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has a decomposition as a sum of graphs of the type in eq. (6.6) via one T-channel
and two S-channel insertions so that eq. (6.30) for these links (which is identical to
eq. (6.34)) leads to the graph identity in eq. (6.14). Again, assumption of eq. (6.18)
for the underlying graph again leads to eq. (6.35).

In general, the rank-level-duality identity for graphs (eq. 6.18) implies the link
identity

Z({a})oo, = CXD(WI'ZW(’" i)r(ai))

!

XeXD(*"T"ZW(i’ J)®(a,, aj))’?({di})G(K)Na

ij

®(a,, a;) = {r(ai)r(a")/NK UM (6.37)
0 Sp(N) g and so(2n + 1)y 4,

where . is the mirror image link of .. On the basis of the concrete results, and
the structure of the known constraint equations, we expect that eq. (6.37) holds for
all knots and links.

7. Conclusion

In order to study the exact symmetries of arbitrary Chern—Simons observables
we need a systematic reduction of all such observables to known quantities. A
previously proposed algorithm involving the reduction of such observables to
tetrahedra is ineffective due to the presence of undetermined signs that appear in
these reductions. We have found an extension of this algorithm that permits the
examination of the symmetries of tetrahedra and certain other Chern-Simons
observables. Using this, we have derived the exact form of co-minimal equivalence
and rank-level duality for tetrahedra. (This result does not depend on any choice
of a system of permutation signs.) For arbitrary link-type graphs (including tetrahe-
dra) we find a set of linear equations; these equations suggest the general form of
co-minimal equivalence and rank-level duality for arbitrary link-type graphs. In the
case of cominimal equivalence this is confirmed by an argument based on an
independent result for links. For rank-level duality we only show that the expected
graph result implies the expected link identities (and vice versa). In both cases we
exhibit several non-trivial examples consistent with these identities.

For knots these identities require precise control over the permutation signs
and conformal dimensions appearing in the braid eigenvalues. Study of these
quantities led to an exact formula for the permutation signs in the multiplicity free
case (ref. [19]) and the examination of the simple current charges led to the
identification of the simple classical origin of these charges (sect. 3).
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The most pressing problem raised by this work is to find an effective way of
calculating arbitrary (or even just link-type) graphs in a systematic way. The
reduction of a knot, link, or graph to a sum of products of tetrahedra (planar or
non-planar) is akin to evaluating a lattice partition function, but with an important
difference: the Boltzmann weights of a (unitary) lattice partition function are
positive definite, but the tetrahedra are not.

Appendix A. Plethysm, permutation signs, and baryons
A.1. YOUNG TABLEAUX AND DYNKIN INDICES
The representations of SU(N), Sp(N), and so( N ) that appear on the compo-
nents and edges of Wilson links and graphs are referred to primarily via Young

tableaux. For SU(N), Sp(N), and so(2n + 1), the tableau row lengths are given in
terms of the Dynkin indices of the highest weight by

rank{G}
Y g for G=SU(N) and Sp(N)
=1
! n—1
sa,+ ) a; forso(2n+1). (A1)

j=i

For so(2x) the natural labels

n—2
Ya, +a,_ )+ Y a forl<isn—1
l— 2 n n—1 J

i j=i

Ha,—a,_ ) fori=n (A2)

correspond to tableau row lengths for i = 1,...,n — 1. The final tableau row length
is given by [/, |. If [, # 0, then the representation is characterized by its tableau
and the number v € {0, 1} defined by (—1)" =sgn(a, —a,_,). The tableau for a
spin-tensor {¢; a} with tensor part a is formed by adjoining a column of » half
boxes to the ordinary tableau for a.

For SU(N) and so(N) we refer to reduced tableaux. A tableau is reduced if
Iy =0 for SU(N) and if ¢, <N — ¢, for so(N) (the ¢; are column lengths). While
the tableaux defined in the paragraph above are all reduced, unreduced tableaux
appear in the standard procedures for computing tensor products using Young
tableaux. In addition, for so(N), the associate tableau a(a) of a tableau a only
differs from a in that ¢ (a(a)) =N —c{a). If ala)=a (requiring N =2n), the
representation a is self-associate. Since [, is non-vanishing for these representa-
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tions, specification of self-associate representations requires the sign v in addition
to a tableau. All spinors of SO(2n) are self-associate.

Implicit in this paper is the assumption that the tableaux appearing in a level K
G(N) theory label integrable representations of G(N ). This means that /, <K
for SU(N) and Sp(N) and /, + 1, < K for so(N).

A.2. BARYON NORMALIZATION AND PERMUTATION SIGN CONSTRAINTS

The crossing constraint 7" = {9 in eq. (2.11) follows from comparison of the
standard untwisting
a b b ~a b a

ab

Bab =0,

Il

(A3)

with the alternate untwisting

b ~a b a b a
-1
B = 7(0") (A.4)
C ( C C

where %, =q9%/? is the framing factor incurred in undoing the (positive
crossing-sign) self-crossing.
We adopt the standard normalization of baryons

Kapicyp

o Ap(c) b = xo(Dxa(B)x,(p(c)) (AS5)

’Cap(c)b

This normalization and the crossing constraint implies a definite relation
between any coupling and its dual and leads to the conjugation constraint ﬂfb =
n;j(‘f))"(’” in eq. (2.11). Given a consistent choice of a system of permutation signs
there is one sign w left for the set of four couplings Z%, %"*, Z,, Ffa
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In the remainder of this subsection we discuss the origin of the fusion constraint

in eq. (2.11). Examination of the U-channel spectral decomposition of the identity
shows that

e 5/
0 (A.6)

TN

e
=A(a, b)
R

where A(a, b)= +1. Then

N

=A(a, b)nir® 0 (A7)

2D

N
"N
If a =b then the sign A(a, a) is intrinsic in the sense that it does not depend on
the residual normalization of any couplings, but if a # b then A(a, b) depends on
the residual normalization of the couplings ¢, and #.°. It is natural (though
perhaps not necessary) to set the normalization of %f(’ﬁ‘)‘”, which couples the

ingoing states |0) ® |p(a), i) to the outgoing states |p(a), i), equal to the
normalization of %", This implies that

= : (A8)

which, from eqgs. (A.6) and (A.7), leads to the equality A(p(a), b) = A(a, b).
Similarly, we find that, necessarily,

At =R, Y p(t) (A9)
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with R, =R, = £ 1. The couplings that appear on the left- and right-hand side of
eq. (A.9) are related by the action of the charge conjugation operator #”():
t - p(t). For example, .7/ =&?"(%9)" (where T, is the partial transpose
that effectively raises the indices labeling the states of ¢). That the right-hand side
of eq. (A.9) can be constructed from the left by an odd number of applications of
this operator makes it reasonable that a non-trivial sign could appear in eq. (A.9).
In this light it is also reasonable that while R, depends on ¢ it does not depend on
the other representations in eq. (A.9). Using these results we will now show that
A(a, a) =1 and that R, =n[",

Using eq. (A.7) we find that

a

| =A(£l, a)n(z;p(a) a A

a

>
o
]

(A.10)

Since RZ=1 eq. (A.9) leads to

‘ - % =A(p(a), a) o(a) 40 a

These two decompositions, eq. (A.8), and eq. (A.5) imply that

a 40 fa =nix,(a) (A.12)
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which from eq. (A.7) vields A(a, a)=1. If p(a)=a, then eq. (A.12) holds
necessarily, i.e. with any choice of residual couplings. The important point here is
simply that (almost necessarily) not all baryons can be normalized to be positive.
Since this is the case we have adopted eq. (A.8) in order to put all representations
on the same footing. Similar manipulations starting from tetrahedra with only onc
edge carrying the identity, such as

a
, (A.13)
a
show that for any a, b, and ¢, with c€a ®b
a Ye b o=ny©Aha  Ap(c) Ab =nix,()x(b)Xq(C)
(A.14)

This result and eq. (A.9) immediately imply that R_=n{**". These baryon signs
are responsible for the permutation signs in the dual basis equations in subsect.
2.1. By reversing all the arrows in a baryon, eq. (A.14) implies the fusion constraint
naPOnbe) = peel© that appears in eq. (2.11).

In this way we obtain the three constraints on the signs in eq. (2.11) from the
standard baryon normalization and the apparently innocuous choice of vertical
framing.

A.3. THE NATURAL PERMUTATION SIGNS

In the traditional quantum group construction of link and graph invariants [27]
finite-dimensional Z7-matrices act diagonally on matrices of g-Clebsch—Gordan
coefficients, with the diagonal elements given by eq. (2.9), except that the non-
crossing symmetric €%’ appears in place of the crossing-symmetric n“”. This
difference reflects the fact that the diagram calculus inspired by quantum groups

[27] differs from that appropriate to Chern—Simons theory by singling out a
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particular direction (a “time” direction). In this sense the Chern—simons graphical
calculus is a lagrangian version of the (“hamiltonian”) quantum group graphical
calculus. Due to the close correspondence between these two approaches we
expect a simple relation between %" and €%, which, in fact, is the case (eq.
(2.18)). The quantum group permutation signs can be deduced from (if a #b
defined via) the matrices of g-Clebsch—Gordan coefficients (%,5,(¢))f; that appear

in the tensor product decompositions

le, kY=Y (%5(q)) a, i) ® b, i), (A.15)

if
by means of the identity
PED(q) =eE g, (A.16)

(Iteration of eq. (A.16) shows immediately that €°® =¢%") The classical limit
(g > 1) shows that €?” is simply the (ordinary) group theory permutation sign.
While the intrinsic signs €° can just as well be calculated from the classical
Clebsch—Gordan coefficients by setting g = 1 in eq. (A.16), in the case of €*” with
a # b the powers of g keep track of a natural ordering of states. For example, the

fact that in SU(3) one has e @™ = —1 may be deduced by applying eq. (A.16) to
the embedding of the highest-weight state of EFD in Meld

2
121) =y % (472120 ® |01) — g~ '/2|01) ® 120)), (A.17)

where the states are labeled by Dynkin indices and w = + 1 remains unfixed after
imposing {21|21) =1. The permutation sign is intrinsic in the sense that it
originates in the relative sign between the leading term and its permutation in such
decompositions and is independent of w. The same procedure, when applied to
the embeddings of the highest-weight state of E’j in the tensor product (11 ® 0
and in its permutation O ® (T, respectively,

|
11) =w,ﬁ(v"[2]qq'/4lzo> ® [ —11) —g~ /2|01 ® |10}
V q

1 A
[11) = w, oL (q1/2|10> ® |01) — V/[z]qqﬂM |—11) ® |20>) (A.18)
V q

yields e 0 = — w,. We have defined the normalization sign to be the sign of
192

the highest power of g. Given this it seems natural to take a uniform sign of the
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square root when imposing (11/11) =1 so that w, = w,. The permutation sign
then indicates the relative sign between the leading state (as ordered by powers of
g) and its permutation (with the inverse power of g).

In all cases, once a system of permutation signs is chosen, we have exactly one
sign choice w remaining for each ¢ €a ® b. This corresponds to the residual
normalization remaining for Chern—Simons vertices.

These natural — or structural — permutation signs can be obtained without
having to compute the couplings %, (q). The explicit formula eq. (2.16) for the
multiplicity-free case is derived in ref. [19] and allows rapid evaluation of €*” in
these cases. While this is useful for many purposes, a spurious dependence on row
lengths sometimes appears which would actually disappear if one knew how to
impose the condition of no multiplicities in general.

Since the fusion ring is a quotient of the tensor ring by a certain ideal, the terms
¢, remaining in the fusion of ¢, and ¢, inherit the permutation sign from the
tensor ring. This is unambiguous if ¢ appears in the tensor product a ® b with
multiplicity one, or if the fusion multiplicity equals the tensor multiplicity. There
remains a problem if the fusion ring multiplicity is less than the tensor ring
multiplicity (but not zero), which we call the problem of reduced fusion multiplici-
ties. In such cases, the known algorithms [29] for computing the fusion product do
not indicate whether symmetric or anti-symmetric terms are removed from the
product; they only vield the sum of symmetric and anti-symmetric multiplicities

N = Ngy" + Ng'. (A.19)

We have found two ways to obtain information about N,z¢ (via Chern—Simons
theory itself). First, by expanding a singly-twisted unknot (or its mirror image)
with a spectral decomposition of the crossing, two equations for the difference

+¢ — N_,° are obtained. While this (allied with the single-multiplicity formula
(2.18)) is effective in many situations, it seems possible that more than two
separate cases of reduced multiplicities could appear in a fusion product. Second,
the result in eq. (6.30), which embodies the exact symmetry under co-minimal
equivalence, often correlates reduced multiplicities in one fusion product with
non-reduced multiplicities in co-minimal fusion products.

A.4. CO-MINIMAL EQUIVALENCE AND PERMUTATION SIGNS

The application of this Chern-Simons argument (in eq. (3.18)-(3.29)) uses this
latter approach (i.e. that via eq. (6.30)) to demonstrate the braid eigenvalue
relations directly in almost all cases, including that of reduced multiplicities. In
addition, the identities in eqgs. (3.12) and (3.13) for SU(N), and eq. (3.26) for the
remaining groups, follow in the case of no multiplicity directly from the level
formula. One reason that this is possible is that the leading sign in the case of
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multiplicities (i.e. that spurious sign given by the level formula to all copies of a
representation in the case of multiplicity) satisfies the single multiplicity equations
without further constraint so that no spurious row length dependencies appear in
these single multiplicity formulae.

In contrast, in the similar situation for rank-level duality, the analogous level
formula relation contains a complicated dependence on row lengths. This depen-
dence would disappear if one knew in general how to impose the condition of no
multiplicity. It is at this point that the complementary approach via plethysm
comes to the rescue since it is not restricted to the multiplicity-free case.

A.5. THE RANK-LEVEL DUALITY OF PERMUTATION SIGNS FROM PLETHYSM

The Littlewood—-Richardson product of tableau characters is denoted by
char(a) - char(b) = ) char(c).

If the character of any tableau whose first column length exceeds a given integer N
(N =2) is set to zero identically, then this product is just the tensor product of
(purely covariant tableaux of) GL(N). If, in addition, the character of any tableau
whose first column length equals N is identified with the character of the tableau
obtained by removing this first column of length N, then this product is just the
tensor product of SU(N ). The product of characters needed for Sp(N) and SO(N)
is defined in terms of the Littlewood-Richardson product by

char(a) X char(b) = Y char((a/d) - (b/d)). (A.20)
d

Here (a/d) denotes the sum of all tableaux a, such that a,-d contains a. Define
I'(a,) =r(d) (i.e. the number of boxes in the tableau d). The tensor product of
Sp(N) and SO(N) (tensor) representations is obtained from eq. (A.20) by impos-
ing certain character identities (that are more involved than in the SU(N) case
[28]). Then, for c €a ® b, the quantity I'(¢) gives the number of contractions of
tensor indices needed to obtain ¢ in the tensor product a ® b.

The permutation signs for SU(N), Sp(N), and SO(2r + 1) may all be obtained
from GL(N), via

ab . ab
€. SUN) T € GL(N)»

ab — ninl(c) 2abu
€ Sp(N) € €, GL(N)’
ab _ aghy (A 21)
€. so(2n+ 1) €. GL(N)? :

where a, €(a/d), bye(b/d)and c€a, b,.
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Under rank-level duality a representation ¢ in the decomposition of a ® a is
often paired by transposition (4.1) with ¢ €4 ® d ( the case 4?" =0 in eq. (4.3)).
For all these cases we can use a standard result of the calculus of plethysm to show
that [3]

ada

€tieldd = /(D GL(N) (A.22)
Here we give the proof of this result. We will denote the operation of plethysm
between two tableaux by a star:

axp (A.23)

denotes the plethysm of the tableau a by the tableau w. We will be interested in
the case u = 137 (which corresponds to the symmetric product of a) and u = B (the
anti-symmetric product). A classic theorem of plethysm states that:

Theorem. (p. 54 of ref. [30])

Given that a* u = Ls,

if r(a) is even then @ u = ¥.§, while

if r(a)is odd then a* 4 = X§.

Proof of eq. (A.22): Consider the product €““e??. First assume that s is in the
symmetric part of @ ® a so that u = . Then, if r(a) is even the above theorem
states that § is also in the symmetric part of d ® a. Therefore e“€f® =1 =¢e'™"®,
since r{a) is even. If r(a) is odd then the above theorem states that § is in the
anti-symmetric part of 4 ® 4, so that €€ = —1=¢" @, Similarly, assuming
that s is in the anti-symmetric part, so that u =E], means that § is also in the
anti-symmetric part if r(a) is even, but is in the symmetric part if r(a) is odd and

in either case e*“e?% = e'™@ Therefore, eq. (A.22) holds for all a. O

For Sp(N) the fusion rule identity N, = N;;, eq. (A.21), and the GL(N)

ab s
result (A.22) yield the rank-level permutation sign transformation in the intrinsic
case a =b, except in the case of reduced multiplicities. With I'(s) denoting the
number of contractions in the tensor product,

(G?a)SD(N)K(egd)Sp(K)N = (€5“““Varin em”s)(f.?"d")ouk) O (A24)

where s€a,-a, and §€a,-a,. Using the fact that I'(s) = I'($) and eq. (A.22) we
find that

(E;M)Sp(N)K(egé)Sp(K)N — ein—r(ad) — ei-n—(r(a)—r(d))_ (AZS)
But r(d)=I(s), and we find that

(€)Y spm (€8T spexr, = €TOTIED (A.26)
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holds in all cases (given that s and § do not appear with reduced multiplicities).
Note that eq. (A.22) implies that if the tensor and fusion multiplicities are equal
then

+ —c _ i +é ~¢
Naac _ Naa( — em’r(a)(Nﬁac _ N— _(),

so that N} ¢ =N, as r(a) is even or odd. Then we can extend the definition of
the transposition map so that eq. (A.26) holds both in the single and full
multiplicity cases.

The identical result follows for the SOQ2n + 1), ., fusion rule by similar
reasoning as follows. From the fusion rule identity N,,© = N,;*"© we know that
€ is paired with €{? if A2 =0 mod 2 and with €27 if A% =1 mod 2. In the first

case
(efa)so(Z'H- l)2k+|(€.?ﬁ)so(2k+ 1,41 = (Egdad)GL(N)(Egd&d)GL(K) (A27)

and exactly the same arguments show that

(Gga)so(Zn + Dop e |(6.?a)so(2k+ D2y 41 = eirr(r(a)fl'(s)) (AZS)

holds (apart from the case of reduced multiplicities). If A% =2r(a)—r(s) =
1 mod 2, then r(s) is odd. This can only occur if the reduction rule has been used
in producing r(s) via eq. (A.20). Since € = eg(,, and ;Cv_j= o(§), where a(s) is
the associate tableau of the representation s, we have

L aya, .
aa aa — agay — aimr{ay)
(es )50(2n+l)zk+1(e(r(5_))so(2k+1)2”+] (fa(s) )GL(N)(G . ) < , (A29)
als) / GL(K)

where a(s)€a,®a, and a(s)€d,®a,. Then r(a,)=r(a)—I'(s), so that

aa

aa _ Aim(r(a)=T(s)
(€ socan+ ')2A+‘(6"Ju‘“<5))so(2k+ Vst © (A.30)

holds in all cases (except those involving reduced multiplicities).

If A% =0 then eq. (A.22) is exactly the SU(N) result for this case. If A% #0
but 2“(s)= 0, which means that the unreduced tableau s" has I} < K, then the
tableau for o4%(5) is just that for s" so that

. aa .
(ff”)SU<N>K(63‘5‘%“(§))SU<K)N = (G.ff)ouzv)(f - ) =™ (for 2%(s) =0)
s/ GL(K)

(A.31)
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holds in all (non-reduced multiplicity) cases. A consideration of various specific
cases suggests that, in fact,

a — W fT(H(@)+029(s5))
sy = € (A32)

for SU(N ).

Since 1% = €27 all these results hold directly for the Chern—Simons (single and
full multiplicity) permutation signs as well.

While all these tensor ring permutation sign results are inherited by the fusion
ring in the indicated situations, to obtain results for the reduced multiplicity case
for all groups and the £2“(s)+# 0 cases for SU(N) we must appeal to the
Chern-Simons knot-based arguments. For cominimal equivalence the cabling
argument yields a complete confirmation that the single multiplicity case extends
to all cases with multiplicity (whether reduced or not). For rank-level duality we
can only use the figure-eight and its complex conjugate to get two equations for the
reduced multiplicity signs. While this only implies that the single multiplicity case
necessarily extends to fusion products with at most two reduced multiplicity terms,
this represents an infinite class of non-trivial examples, on which to base the
general result.
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