
Bowdoin College Bowdoin College 

Bowdoin Digital Commons Bowdoin Digital Commons 

Physics Faculty Publications Faculty Scholarship and Creative Work 

1-1-1996 

Evaluation of the free energy of two-dimensional Yang-Mills Evaluation of the free energy of two-dimensional Yang-Mills 

theory theory 

Michael Crescimanno 
Berea College 

Stephen G. Naculich 
Bowdoin College 

Howard J. Schnitzer 
Brandeis University 

Follow this and additional works at: https://digitalcommons.bowdoin.edu/physics-faculty-publications 

Recommended Citation Recommended Citation 
Crescimanno, Michael; Naculich, Stephen G.; and Schnitzer, Howard J., "Evaluation of the free energy of 
two-dimensional Yang-Mills theory" (1996). Physics Faculty Publications. 153. 
https://digitalcommons.bowdoin.edu/physics-faculty-publications/153 

This Article is brought to you for free and open access by the Faculty Scholarship and Creative Work at Bowdoin 
Digital Commons. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator 
of Bowdoin Digital Commons. For more information, please contact mdoyle@bowdoin.edu, a.sauer@bowdoin.edu. 

https://digitalcommons.bowdoin.edu/
https://digitalcommons.bowdoin.edu/physics-faculty-publications
https://digitalcommons.bowdoin.edu/physics-faculty
https://digitalcommons.bowdoin.edu/physics-faculty-publications?utm_source=digitalcommons.bowdoin.edu%2Fphysics-faculty-publications%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bowdoin.edu/physics-faculty-publications/153?utm_source=digitalcommons.bowdoin.edu%2Fphysics-faculty-publications%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mdoyle@bowdoin.edu,%20a.sauer@bowdoin.edu


Evaluation of the free energy of two-dimensional Yang-Mills theory

Michael Crescimanno*
Department of Physics, Berea College, Berea, Kentucky 40404

Stephen G. Naculich†

Department of Physics, Bowdoin College, Brunswick, Maine 04011

Howard J. Schnitzer‡

Department of Physics, Brandeis University, Waltham, Massachusetts 02254
~Received 22 January 1996!

The free energy in the weak-coupling phase of two-dimensional Yang-Mills theory on a sphere for
SO(N) and Sp(N) is evaluated in the 1/N expansion using the techniques of Gross and Matytsin. Many
features of Yang-Mills theory are universal among different gauge groups in the largeN limit, but significant
differences arise in subleading order in 1/N. @S0556-2821~96!00114-2#

PACS number~s!: 11.15.Pg, 11.10.Kk, 12.38.Cy

I. INTRODUCTION

Two-dimensional~2D! Yang-Mills theories have been
used as a laboratory to uncover general nonperturbative fea-
tures of gauge theories@1–10#. It has been shown that the
1/N expansion of these theories may be represented as a
formal string theory, for SU(N) and U(N) gauge groups
@2,3# as well as for SO(N) and Sp(N) @4#. It is useful to
compare these various string theories in order to learn which
structures are generic, and what one might expect in a four-
dimensional string theory of QCD.

Certain features of 2D Yang-Mills theories are universal,
i.e., independent of the gauge group, in the largeN limit @8#.
For example, the normalized vacuum expectation values
~VEV’s! of Wilson loops on arbitrary surfaces do not depend
on the gauge group to leading order in 1/N, a fact most
naturally understood from the string-theoretic interpretation
of these theories@9#. On the other hand, the universality of
gauge theory observables breaks down in subleading orders
of the 1/N expansion. An example of this is the contribution
from cross caps which appear on the world sheet for
SO(N) and Sp(N), but not for SU(N) or U(N) @4#. It is
important to have a clear understanding of the role of the
gauge group in the string interpretation.

To further analyze the differences between these theories,
in this paper we evaluate the free energy of Yang-Mills
theory on the sphere in the small area~weak-coupling! phase,
including exponential corrections to the 1/N expansion. Our
analysis closely parallels that of Gross and Matytsin@10# for
U(N), focusing specifically on the gauge groups SO(N) and
Sp(N). One of the more interesting results of our analysis is
the difference in the double-scaling limit for different gauge
groups@see Eq.~34!ff #.

II. THE PARTITION FUNCTION

The partition function of two-dimensional Yang-Mills
theory on the sphere is

Z05(
R

~dimR!2e2 ~l Ā/2N! C2~R!, ~1!

where the sum is over all irreducible representationsR of the
gauge group, dimR andC2(R) are the dimension and qua-
dratic Casimir invariant ofR, Ā is the area of the sphere, and
l5e2N, wheree is the gauge coupling. The quadratic Ca-
simir invariant is given by

C2~R!5 fNF r2U~r !1
T~R!

N G ~2!

with

f5H 1,1/2, U~r !5H r /N for SO~N!,

2r /N for Sp~N!,
~3!

and

T~R!5(
i51

n

ni~ni1122i !5(
i51

k1

ni
22(

j51

n1

kj
2 , ~4!

where ni(ki) are the row~column! lengths of the Young
diagram associated withR, andn is the rank of the gauge
group.@Our convention is rank Sp(2n) 5n.# Defining

l i5ni1n2 i , mi5n2 i for SO~2n!,

l i5ni1n2 i1 1
2 , mi5n2 i1 1

2 for SO~2n11!, ~5!

l i5ni1n2 i11, mi5n2 i11 for Sp~2n!,

the dimension and quadratic Casimir invariant ofR may be
expressed as@11#
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and

C2~R!55 (
i51

n

l i
22
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24
N~N21!~N22! for SO~N!,

1

2 (
i51

n

l i
22

1

48
N~N11!~N12! for Sp~N!.

~7!

These expressions are also valid for spinor representations of
Spin(N), which are associated with Young diagrams with
niPZ11/2.

The partition function ~1! depends on the area only
through the dimensionless combinationA5l f Ā and is given
up to an overall constant by

Z0~A,N!

}5
eb~A,N!X~1 !~a! for SO~2n!,

eb~A,N!Y~2 !~a! for SO~2n11!,

eb~A,N!Y~1 !~a! for Sp~2n!,

eb~A,N!@X~1 !~a!1X~2 !~a!# for Spin~2n!,

eb~A,N!@Y~1 !~a!1Y~2 !~a!# for Spin~2n11!,

~8!

with

a5
A

2N
,

b~A,N!5H A

48
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A

48
~N11!~N12!, for Sp~N!,

~9!

and
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where thel i are integers inX
(1) andY(1) and half integers

in X(2) andY(2), and

D~ l 1
2 , . . . ,l n
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22l j
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2 . . . l n
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is the van der Monde determinant in the variablesl i
2 . Note

that both tensor and spinor representations contribute to the
partition function for Spin(N), while only tensor representa-
tions contribute for SO(N). As in the U(N) case@10#, the
expressions~10! are symmetric with respect to the inter-
changel j↔l k , and vanish whenl j5l k , so the summa-
tions can be extended to2`,l j,` for all l j , yielding

X~6 !~a!5
1

2nn! (
2`,l 1 , . . . ,l n,`

D2~ l 1
2 , . . . ,l n

2!e2a( j51
n
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2nn! (
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l i
2D e2a( j51
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l j
2
, ~12!

where, again, thel i are integers inX(1) andY(1) and half
integers inX(2) andY(2).

To further evaluate Eq.~12!, we introduce several sets of
polynomials in x2, qj

(6)(xua)5x2 j1•••, and r j
(6)(xua)

5x2 j1•••. They are defined to be mutually orthogonal with
respect to the discrete measures

(
x
e2ax2qi

~6 !~xua!qj
~6 !~xua!5d i j f j

~6 !~a!,

(
x
e2ax2x2r i

~6 !~xua!r j
~6 !~xua!5d i j gj

~6 !~a!, ~13!

where the sums onx are over integers forq(1) andr (1) and
half integers forq(2) and r (2). Defining
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qj
~6 !~xua!5p2 j

~6 !~xua!, f j
~6 !~a!5h2 j

~6 !~a!,

xr j
~6 !~xua!5p2 j11

~6 ! ~xua!, gj
~6 !~a!5h2 j11

~6 ! ~a!, ~14!

the orthogonality relations~13! reduce to

(
x
e2ax2pi

~6 !~xua!pj
~6 !~xua!5d i j hj

~6 !~a!, xPH Z,Z1 1
2

.

~15!

The pj
(6)(xua)5xj1••• are the polynomials introduced by

Gross and Matytsin@10# in their study of U(N). They
showed that thehj

(6)(a) are given by

hj
~6 !~a!5h0

~6 !~a!)
i51

j

Ri
~6 !~a!, h0

~6 !~a!5(
x
e2ax2,

xPH Z,Z1 1
2 ,

~16!

where theRj
(6)(a) are defined through the recursion rela-

tions

xpj
~6 !~xua!5pj11

~6 ! ~xua!1Rj
~6 !~a!pj21

~6 ! ~xua!,

R0
~6 !~a!50, ~17!

and satisfy the differential relations@10#

d

da
lnRj

~6 !~a!5Rj21
~6 ! ~a!2Rj11

~6 ! ~a!,

d

da
h0

~6 !~a!52R1
~6 !~a!. ~18!

Rewriting the van der Monde determinants in Eq.~12! in
terms of the polynomialsqn

(6)(xua) andr n
(6)(xua) and using

the orthogonality relations, we find that the partition function
is given up to a constant by

~19!

The free energy for the orthogonal and symplectic groups is, therefore,

F~A,N!5 lnZ05b~A,N!1FN~A!1const ~20!

with

FN~A!55 nlnh0
~1 !~a!1 (

j51

n21

~n2 j !@ lnR2 j21
~1 ! ~a!1 lnR2 j

~1 !~a!# for SO~2n!,

nln@h0
~6 !~a!R1

~6 !~a!#1 (
j51

n21

~n2 j !@ lnR2 j
~6 !~a!1 lnR2 j11

~6 ! ~a!# for HSp~2n!

SO~2n11!,

~21!

to be compared with the result for U(N) @10#:

FN~A!5Nlnh0
~6 !~a!1 (

j51

N21

~N2 j !lnRj
~6 !~a! for HU~N odd!

U~N even!. ~22!

Using Eq.~18!, we obtain from Eqs.~21! and ~22! the specific heat capacities
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d2F~A!

dA2
55

1

4N2 @RN
~6 !RN21

~6 ! # for HSO~N even!
SO~N odd!,

1

4N2 @RN
~1 !RN11

~1 ! # for Sp~N!,

1

4N2 @RN
~6 !~RN11

~6 ! 1RN21
~6 ! !# for HU~N odd!
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~23!

To obtain more explicit expressions for the free energies, one
may expandRj

(6)(a), keeping the leading exponential cor-
rection:

Rj
~6 !~a!5

j

2a
7
2p2

a2 e2p2/aGj~a!1•••. ~24!

Gross and Matytsin@10# use the recursion relations~18! to
show that

Gj~a!5 R dt

2p i S 11
1

t D
n

e22p2t/a ~25!

with the contour circlingt50 and passing to the right of
t521. This can then be used to evaluate the free energy
~22! for U(N) below the phase transition1

FN52
N2

2
lnA62e2

2p2N
A GN~a!1••• for HU~N odd!

U~N even!.
~26!

In the largeN limit, the Gj (a) have the form@10#

Gj~a!'~21! j11A j

32pnc
2S 12

j

nc
D 21/4

3expH 2
2p2N

A
@g~ j /nc!21#J ,

g~x!5A12x2
x

2
lnS 11A12x

12A12x
D , ~27!

nc5
p2

2a
.

Using Eqs.~24! and~25!, we calculate the free energy for
the orthogonal and symplectic groups~21! below the phase
transition

FN5H S 2
N2

4
1
N

4 D lnA1e2 ~2p2N/A!@6G2n~a!2I 2n~a!#1••• for HSO~N52n!

SO~N52n11!,

S 2
N2

4
2
N

4 D lnA1e2 ~2p2N/A!@G2n~a!1I 2n~a!#1••• for Sp~N52n!,

~28!

where

I 2n~a!52
2p2

a (
j51

n
G2 j21~a!

2 j21
5 R dt

2p i S 11
1

t D
2n e22p2t/a

2t11
. ~29!

In the largeN limit, this yields

FN55 S 2
N2

4
1
N

4 D lnA6S 12
1

A12A/p2D e2 ~2p2N/A!GN~a!1••• for H SO~N even!
SO~N odd!,

S 2
N2

4
2
N

4 D lnA1S 11
1

A12A/p2D e2 ~2p2N/A!GN~a!1••• for Sp~N!,

~30!

1We correct a sign error in Ref.@10# for evenN.
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but these expressions break down if the areaA nears the
critical areap2. For the Spin(N) groups, theO(e22p2N/A)
correction vanishes due to cancellation between the tensor
and spinor representations, so that the leading correction is
O(e24p2N/A) in that case.

Approaching the phase transition from below in the
double-scaling limit, defined by

A→p2 and N→` with N2~p22A!3[gstr
225const,

~31!

Gross and Matytsin@10# show thatRj
(6)(a) behaves as

Rj
~6 !5

nc
2

p2 7~2 ! jnc
5/3f 1~x!1O~nc

4/3!, x5nc
2/3S 12

j

nc
D ,

nc→`, ~32!

where f 1(x) obeys the Painleve´ II equation

f 1924x f12
1
2 p2f 1

350. ~33!

Using this, we may show that in the double-scaling limit the
specific heat capacity~23! satisfies

d2FN

dA2
5

nc
4

4p4N2 F12
2x

nc
2/32

p4

2nc
2/3 f 1

2~x!6
p2

nc
2/3 f 18~x!

1•••G
x5xN

for HSO~N!

Sp~N!, ~34!

which has an additional term proportional tof 18(x) compared
with @10#

d2FN

dA2
5

nc
4

2p4N2 F12
2x

nc
2/32

p4

2nc
2/3 f 1

2~x!1•••G
x5xN

for U~N!. ~35!

Equation ~34! gives the one instanton contribution to the
specific heat for SO(N) and Sp(N) in the double-scaling
limit. The computation of the specific heat for Spin(N) is
more complicated due to the contributions to the partition
function equation~19! from both tensor and spinor represen-
tations.

III. CONCLUSIONS

Many features of two-dimensional Yang-Mills theory are
universal in the largeN limit @8,9#, but differ in subleading
order in 1/N. In this paper, we have explicitly evaluated the
free energy on the sphere in the weak-coupling phase, and
shown how it compares among the different gauge groups.
The double-scaling limit does not appear to be universal.
Any proposed world-sheet action for two-dimensional Yang-
Mills string theory must accommodate both the universal
behavior as well as the differences among the gauge groups.

Research supported in part by the DOE under grant DE-
FG02-92ER40706.
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