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Evaluation of the free energy of two-dimensional Yang-Mills theory

Michael Crescimanrio
Department of Physics, Berea College, Berea, Kentucky 40404

Stephen G. Naculich
Department of Physics, Bowdoin College, Brunswick, Maine 04011

Howard J. Schnitzér
Department of Physics, Brandeis University, Waltham, Massachusetts 02254
(Received 22 January 1996

The free energy in the weak-coupling phase of two-dimensional Yang-Mills theory on a sphere for
SO(N) and Sp{) is evaluated in the N expansion using the techniques of Gross and Matytsin. Many
features of Yang-Mills theory are universal among different gauge groups in theNaliget, but significant
differences arise in subleading order ilN1[S0556-282(96)00114-2

PACS numbses): 11.15.Pg, 11.10.Kk, 12.38.Cy

I. INTRODUCTION Il. THE PARTITION FUNCTION

The partition function of two-dimensional Yang-Mills

Two-dimensional (2D) Yang-Mills theories have been theory on the sphere is
used as a laboratory to uncover general nonperturbative fea-
tures of gauge theorigd -10. I_t has been shown that the Zo=" (dimR)2e (NAJ2N) CaR). 1)
1/N expansion of these theories may be represented as a R
formal string theory, for SU{) and U(N) gauge groups
[2,3] as well as for SOY) and SpWN) [4]. It is useful to  where the sum is over all irreducible representati@re the
compare these various string theories in order to learn whicBauge group, dilR and C,(R) are the dimension and qua-
structures are generic, and what one might expect in a foudratic Casimir invariant oR, A is the area of the sphere, and
dimensional string theory of QCD. A=e2N, wheree is the gauge coupling. The quadratic Ca-

Certain features of 2D Yang-Mills theories are universal,Simir invariant is given by
i.e., independent of the gauge group, in the laxgémit [8].

For example, the normalized vacuum expectation values CZ(R)=fN[r—U(r)+E} @)
(VEV's) of Wilson loops on arbitrary surfaces do not depend N

on the gauge group to leading order ifNl1/a fact most ]

naturally understood from the string-theoretic interpretatior}"”th

of these theorie§9]. On the other hand, the universality of

gauge theory observables breaks down in subleading orders f:[l’ u(r :[
of the 1N expansion. An example of this is the contribution 1/2,

from cross caps which appear on the world sheet for
SO(N) and SpQ), but not for SUN) or U(N) [4]. It is and
important to have a clear understanding of the role of the
gauge group in the string interpretation.

To further analyze the differences between these theories,
in this paper we evaluate the free energy of Yang-Mills
theory on the sphere in the small afeseak-coupling phase, where n;(k;) are the row(column lengths of the Young
including exponential corrections to theNLéxpansion. Our diagram associated witR, andn is the rank of the gauge
analysis closely parallels that of Gross and Matyf4id] for ~ group.[Our convention is rank Sp{® =n.] Defining
U(N), focusing specifically on the gauge groups Skp@nd

rIN for SQ(N),

—r/N for Sp(N), ®

n kq ng
T(R)=> ni(ni+1-2i)=>, n?=> k2,  (4)
i=1 i=1 ji=1

Sp(N). One of the more interesting results of our analysis is Zi=MNi+n—i, m=n—i for SQ2n),
the difference in the double-scaling limit for different gauge
groups[see Eq(34ff]. Zi=ni+n—i+ 3%, m=n—-i+3% for SO2n+1), (5

/Zi=ni+n—i+1, m=n—-i+1 for Sg2n),
" Electronic address: crescima@physics.berea.edu
T Electronic address: naculich@polar.bowdoin.edu the dimension and quadratic Casimir invariantfofnay be
*Electronic address: schnitzer@binah.cc.brandeis.edu. expressed agl1]
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ﬁ —(/iz_/j) for SQ(2n)
dimR i< (mf—m?) ’ ®
MR=Y n  2_ 2, n
11 M dl for SQ(2n+1) and Sp2n)
i<j (m _mj) =1 Mm;
and
. 1
> /2= N(N-1)(N-2) for SQN),
=1 24
CAR=1 L @)
5 ;1 /2 28 N(N+1(N+2)  for SpN).
|
These expressions are also valid for spinor representations of n
Spin(N), which are associated with Young diagrams with NG | )
ni (S Z+ 1/2 1<
The partition function(1) depends on_the area only 1 1
through the dimensionless combinatiés= A fA and is given P 2
up to an overall constant by _ /1 /
= _ (11)
Zo(AN . o
0( ) (/i)n 1 (/ﬁ)n 1
ePANX ) (@) for SO(2n),
eBANY()(o)  for SO(2n+1) is the van der Monde determinant in the variabfés Note
BANNEE) ' that both tensor and spinor representations contribute to the
aq MUY () for Sp(2n), partition function for Spinkl), while only tensor representa-
eBANIX(F) (@) +X)(a)] for Spin(2n), tions contribute for SAY). As in the UN) case[10], the
_ . expressiong10) are symmetric with respect to the inter-
BAN)y(+) (=) ) )
e [Y () +Y " (@)]  for Spin2n+1), change/j< 7, and vanish when’;=/, so the summa-
(8) tions can be extended te</;< for all /;, yielding
with n
X*)(a)= 5 S ANA L e
R 2'N! ey T <0
a—= m,
(%) — 20 g2 /2
R Y& (a) 2“n!7m</1,2,,,/n<wA (72,.../%
—(N—=1)(N—-2) for SQ(N) and SpiriN), n
48 , 0 o
BAN=1 o X .Ul /% e -1, (12
E(N+1)(N+2), for SEN),
(99  where, again, the’; are integers irX*) and Y(*) and half
integers inX(™) and Y(7).
and To further evaluate Eq12), we introduce several sets of
polynomials in x?, q{*)(x|a)=x¥+---, and r{*)(x|a)
2 ) :
() N 2 2 2\ —as"_ /2 =x“+.... They are defined to be mutually orthogonal with
X (a)_/l> _2‘;/”;0 ANAL . Anen respect to the discrete measures
— 2 + + +
YE(@= S A2 P 2 e g (xa)g) T (x|a)= ;) (a),
/> 220 A X
n 2
2 n 2 — + + +
X H1 /iz)eazj—l'/j, (10) ; e X (x|a)r{ T (x|a)= 80 (2), (13
iz

where the/; are integers iX(*) andY(*) and half integers
in X() andY("), and

where the sums or are over integers fog(™) andr(*) and
half integers forg‘™) andr(~). Defining
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q}i)(xla)zp(zji)(xm), fj(i)(a)zhgjﬂ(a), where theRJ(t)(a) are defined through the recursion rela-
tions

xr* (@) =p5a(xla),  gf"(@)=h5jli(a), (19

. . XpJ X|a) p]+1(X|a)+R( )(a)pj 1(X|
the orthogonality relation§l3) reduce to

. RG™(a)=0, (17
—ax? (%) (+) — s h(®) '
; e i (Xa)p; T (x|e)=5;hi (), xe z+ 4 and satisfy the differential relatior40]
(15
The p{*)(x|a)=xI+ - - - are the polynomials introduced by d—InR“ (@)=R*}(a)~R{}(a),

Gross and Matytsinf10] in their study of UN). They

showed that thé{*)(a) are given by d .
Gane (@)= -Ri (). (18)

j
hj= (@) =ht(e) [T R (@), h§(a)=3 e,

Rewriting the van der Monde determinants in Ef2) in
terms of the polynomialg ™) (x| @) andr{*)(x|a) and using

Z, the orthogonality relations, we find that the partition function
Xe 1 (16) . .
Z+ 3, is given up to a constant by
n—1
eBHO h(z;')(a) for SO(2n),
je
+ Sp(2n)
B (£)
e I_I 5l (a)  for ‘SO(2n+1),
Zy(A,N)x - n~1 (19
H nsP(ay+ 1 h§;>(a)] for Spin(2n),
Jj=0 j=0
n—1 n—1
ef I_I hgj+l(a)+1'[ h2]+1(a)} for Spin(2n+1).
The free energy for the orthogonal and symplectic groups is, therefore,
F(A,N)=InZy=B(A,N)+Fy(A)+const (20
with
n-1
ninh +>(a)+2 (n=)IINRS 1 (a)+INRS ()] for SQ(2n),
Fn(A)= (21)
) nin[h{™ (a)R{)(a) +nZl n—j)[INRY (@) +InR )] for Spzn)
[hy ' (a)Ry ()] j:1( DL (a 21+1(a] so2n+1),
to be compared with the result for Nj [10]:
N—1
. , . U(N odd
_ (*) _ (=)
Fn(A)=NInh§™ (@) + 2}1 (N=)InR™(a) for {U(N even. (22)

Using Eq.(18), we obtain from Eqgs(21) and (22) the specific heat capacities
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1 SQ(N even
(H)R(*)
W[RN RNfl] for [SQN Odd),
d’F(A) 1
—Ga =) W[Rﬁﬁle for SEN), (23
1 R(Z) U(N odd)
\ 4N2[RN (R Ry for U(N even.
|
To obtain more explicit expressions for the free energies, one N2 27N U(N odd)
may expandR{*)(a), keeping the leading exponential cor- Fn=— 5 INAx2e" "A"Gy(a)+ .-~ for :U(N even.
rection: (26)
In the largeN limit, the G;(a) have the forn{10]
+ ] 2m? _.2 : i\ —1/4
RE(a)=z—F—e "G (a)+---. (24 1 ] ( j )
i 2 2 ] (a)~(—=1) )t/ —|1—- —
“« Gil)~(=1) 327n2 Ne
27N
Gross and Matytsifil0] use the recursion relatiorn(48) to xexp — ——Lv(i/ne)— 1]y,
show that
X [1+41
y(X)=+v1 x——In =i (27
dt 1\" 2 1=
) = _ _ —27°tla
Gj(a) éZﬂ'i <1+ t) e (25 _77_2
nC_Za

with the contour circlingt=0 and passing to the right of Using Eqs.(24) and(25), we calculate the free energy for
t=—1. This can then be used to evaluate the free energshe orthogonal and symplectic grouf#l) below the phase

(22) for U(N) below the phase transitibn transition
N> N 2 SO(N=2n)
- 4 - (2m°NIA) -
( 717 InA+e [=Gon(a)—Iz(a)]+ for (SO(N=2n+1),
I RATECIN (28)
2
(—T—Z)InAvLe‘ CTNAIG, (@) +1on(a)]+ -+ for SAN=2n),
where
2
GZJ 1(0() § dt 1 2ne—2w tla
o)== ,21 ] B e @9
In the largeN limit, this yields
N> N 1 2 SQO(N even
4 _ - (2m°N/A)
772 InA= = e Gn(a)+ for {SO(N odd),
S VRN 1 (30
(———— INA+| 1+ ———|e” @™NAG (a)+--- for SPN),
4 4 V1-Al7?

we correct a sign error in Reff10] for evenN.
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but these expressions break down if the afemears the which has an additional term proportionalfty(x) compared
. . 2 .

critical areaw?. For the Spinl) groups, theO(e 27"NA)  with [10]

correction vanishes due to cancellation between the tensor

and spinor representations, so that the leading correction {gp n ox 7t .
O(e~*™N/AY in that case. GAZ 2.2 | 1 T pm T gz 0+
Approaching the phase transition from below in the ¢ ¢ X=Xy
double-scaling limit, defined by for U(N). (35)
A—m? and N—o with N?(72—A)3=g_?=const,
(31 Equation (34) gives the one instanton contribution to the
) (+) specific heat for SA{) and Sp{) in the double-scaling
Gross and Matytsiin10] show thatRj™’(«) behaves as limit. The computation of the specific heat for Sp( is
2 . more complicated due to the contributions to the partition
R(i)z_(;1(_)jn5/3f1(x)+o(n4/3)’ x=n23 1— J_>, function equatior(19) from both tensor and spinor represen-
S ¢ ¢ ¢ Ne tations.
nC_>OO| (32)

Ill. CONCLUSIONS

wheref;(x) obeys the Painlev equation _ , ,
Many features of two-dimensional Yang-Mills theory are

f1—axf,— L w2t3=0, (33) universal in the largéN limit [8,9], but differ in subleading
order in 1N. In this paper, we have explicitly evaluated the
Using this, we may show that in the double-scaling limit thefree energy on the sphere in the weak-coupling phase, and

specific heat capacit{23) satisfies shown how it compares among the different gauge groups.
The double-scaling limit does not appear to be universal.

d2Fy na 2x 7t | Any proposed world-sheet action for two-dimensional Yang-

AAZ T 42°N2 1_@?_ﬂ3f1(x)i@§f1(x) Mills string theory must accommodate both the universal
behavior as well as the differences among the gauge groups.

SQ(N)
+ for {Sp(N), (34) Research supported in part by the DOE under grant DE-
X=Xy FG02-92ER40706.
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