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Abstract

We study the � + 1 Sp(2M + 2L(· Sp(2M( cascading gauge theory on a stack of M physical
and L fractional (half) D3-branes at the singularity of an orientifolded conifold. In addition to the
D3-branes and an O7-plane, the background contains eight D7-branes, which give rise to matter in
the fundamental representation of the gauge group. The moduli space of the gauge theory is analyzed
and its structure is related to the brane configurations in the dual type IIB theory and in type IIA/M-
theory. ♦ 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The desire to extend the original AdS/CFT correspondence [1] to examples with less
supersymmetry has prompted the study of branes at conical singularities. An important
example is that of M D3-branes at the singularity of the conifold [2]. The resulting four-
dimensional F + 1 gauge theory has gauge group SU(M( · SU(M( and chiral matter
multiplets in the bifundamental representations of the gauge group. The addition of L
fractional D3-branes changes the gauge group to SU(M +L(· SU(M( [3] (other models
within the same universality class have also recently attracted attention, see, e.g., [4]). This
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non-conformal theory exhibits a duality cascade [5]

(1.1)

SU(M +L(· SU(M(→ SU(M �L(· SU(M(→ ·· · → SU(L + n(· SU(n(.

with 1 6 n 6L , where the simplest case is n + 1 for which one finds an SU(L + 1(·
SU(1(∼+ SU(L + 1( theory at the end of the cascade.
A richer example is that of D3-branes at the singularity of an orientifolded conifold

(where the orientifold arises from an O7-plane together with 8 D7-branes required for
consistency) leading to an F + 1 Sp(2M( · Sp(2M( gauge theory with matter in the
bifundamental and fundamental representations of the gauge group [6]. The addition of
L fractional D3-branes changes the gauge group to Sp(2M + 2L(· Sp(2M( and leads to
a cascade

Sp(2M + 2L(· Sp(2M(→ Sp(2M � 2L(· Sp(2M(
(1.2)→ ·· · → Sp(2L + 2n(· Sp(2n()

At the end of the cascade one arrives at an Sp(2L + 2n(· Sp(2n( gauge theory, where
2n6 2L , the simplest case being 2n + 2.
In this paper we study the Sp(2M + 2L( · Sp(2M( gauge theory on a stack of M

physical D3-branes and L fractional (half) D3-branes placed at the singularity of the
orientifolded conifold mentioned above. This field theory is dual to type IIB string theory
on AdS5 · S 11,C2 where the C2 is an orientifold operation described in more detail later.
In the dual theory the M D3-branes are replaced by an �5 flux on S 11,C2 and the L
fractional branes are replaced by an C3 flux on an Q3,C2 inside S 11,C2. This model,
which is a natural extension of previously studied models [5,7,8], is interesting because
the D7-branes give rise to matter fields in the field theory transforming in the fundamental
representation of the gauge group, which leads to an intricate Higgs branch structure of the
moduli space of the theory.
This paper is organized as follows. In Section 2 we briefly review the relevant

orientifolded conifold theories, while in Section 3 we describe some aspects of the cascade
of the Sp(2M + 2L(·Sp(2M( theory and check that the Klebanov–Strassler supergravity
solution [5] is also a solution in the orientifolded theory. Section 4 is devoted to a
study of the (classical) moduli space of the Sp(2M1(· Sp(2M2( gauge theory with chiral
multiplets in both the fundamental and bifundamental representations of the gauge group.
The analysis of this section sets the stage for the more detailed analysis in Section 5 of
the full quantum moduli space of the Sp(2L + 2(· Sp(2( theory at the end of the duality
cascade. We carry out the analysis in Section 5 in two steps, first describing the classical
moduli space and then the quantum moduli space. We also discuss the interpretation of
the moduli space in terms of the dual string theory. We find that the classical and quantum
solutions join smoothly and that a deformation of the conifold arises in the quantum theory
as expected. In Section 6 we discuss the interpretation of the moduli space in terms of type
IIA and M-theory brane configurations. In Section 7 we summarize our findings.
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2. Orientifolded conifold theories

The F + 1 SU(M( · SU(M( superconformal gauge theory with chiral multiplets in
the 2(�.�(⊕ 2(�.�( bifundamental representations arises as the low energy limit of the
world-volume theory on M D3-branes at a conifold singularity [2,9]. The conifold [10]
can be described as the subspace of �4 defined by the equation y21 + y22 + y23 + y24 + 0.
Via a linear change of basis the conifold can also be written wx + vy. The base of the
conifold, obtained by intersecting the above space with ]y1]2 + ]y2]2+ ]y3]2+ ]y4]2 + 1, is
S 11 + ˜SU(2(· SU(2([,U(1(. A striking example of the AdS/CFT correspondence [1] is
the duality between this field theory, and type IIB string theory on AdS5 · S 11 [2].
Orientifolds of the conifold lead to further examples of the AdS/CFT correspondence.

The following two models arise as the low-energy theories on the D3-branes in a conifold
background with an orientifold C2 symmetry that does not break any supersymmetry, and
are dual to type IIB string theory on AdS5 · S 11,C2 [6,8]:

(2.1)
(i) Sp(2M(· Sp(2M(. with 2(�.�(⊕ 4(�.1(⊕ 4(1.�(.
(ii) Sp(2M(· SO(2M + 2(. with 2(�.�()

The form of the C2 action on the conifold can be determined from the corresponding
IIA brane configurations (see Section 6 for further details).
For model (i), the action of the orientifold on the conifold becomes [6] y↔ v, with w ,

x invariant, or, equivalently, (y1. y2. y3. y4(→ (y1. y2. y3.�y4(. The fixed point set of this
action is the v + y subspace of the conifold, whose three-dimensional intersection with
]y1]2 + ]y2]2 + ]y3]2 + ]y4]2 + 1 was called W3 in Ref. [6]. The model thus contains an
O7-plane, and also for consistency 8 D7-branes. The world volume of the O7-plane and
D7-branes is AdS5 ·W3.
For model (ii), the orientifold action can be shown to be w→�w , x→�x and y↔v,

or, equivalently, (y1. y2. y3. y4( → (�y1.�y2. y3.�y4( using the approach of [6]. This
result was recently obtained in [8] using a slightly different approach. This action has
no fixed points inside S 11, so model (ii) has no orientifold-planes or D7-branes.
For other discussions of various orientifolds of the conifold, see, e.g., [11–14].

3. Cascading theories

Generalizations of the orientifolded models considered in the previous section may
be obtained by including fractional D3-branes at the conifold singularity, breaking the
superconformal invariance. The addition of the fractional branes increases the rank of
first factor in the product gauge groups. The resulting field theories have gauge groups
Sp(2M + 2L(· Sp(2M( and Sp(2M + 2L(· SO(2M + 2(, respectively.
The lack of conformal invariance causes the gauge couplings to run. The first factor of

the Sp(2M+2L(·Sp(2M( theory has effectively 2Md + 4M+4 fields in the fundamental
representation: four from the fundamentals, and 4M from the bifundamentals. The beta
function is therefore negative, and the coupling becomes strong in the infrared. Seiberg
duality [15] can be used to transform this to another weakly-coupled gauge theory. Seiberg
duality relates a strongly-coupled Sp(2Mb( theory with 2Md chiral superfields in the
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fundamental representation to a weakly-coupled Sp(2Md � 2Mb� 4( theory with the same
number of fundamental superfields [16]. In our case, Seiberg duality implies

(3.1)Sp(2M + 2L(· Sp(2M(→ Sp(2M � 2L(· Sp(2M()
In the new theory, the gauge coupling of the second group factor now becomes strong in
the infrared, leading to a second duality transformation. This process continues, leading to
a duality cascade

Sp(2M + 2L(· Sp(2M(→ Sp(2M � 2L(· Sp(2M(
(3.2)→ Sp(2M � 2L(· Sp(2M � 4L(→ ·· ·

just as in the case of the SU(M +L( · SU(M( theory [5]. At the end of the cascade
one arrives at a Sp(2L + 2n( · Sp(2n( theory, where 2n 6 2L . A similar cascading
phenomenon was shown for the Sp(2M + 2L(· SO(2M + 2( case in Refs. [7,8].
The dual supergravity solution describing the cascade of the SU(M +L( · SU(M(

model was found in [5] (following earlier work in [3]); see also [17]. At the end of the
cascade the conifold is replaced by its deformed version. The solution in [5] is also a
solution of the orientifolded theory dual to the Sp·Sp gauge theory (for the theory dual
to the Sp·SO gauge theory, this was shown in Ref. [8]). This follows because C3 and F3
change sign under the interchange of y and v, whereas the metric and C5 are invariant.
Combining this with the action of Ω(�1(CK , this shows that all fields are invariant under
the orientifold projection.
Based on the properties of the supergravity solution one expects to find the deformed

conifold at the end of the flow. To understand the geometry at the end of the flow, we can
probe the background with a single D3-brane as in Ref. [5], i.e., we will assume that n + 1
(note that the probe brane has a mirror). To probe the theory, therefore, we must analyze
the moduli space of the Sp(2L+2(·Sp(2( gauge theory. This analysis will be carried out
in Section 5. First, however, we consider the more general case of the Sp(2M1(· Sp(2M2(
gauge theory moduli space.

4. The Sp�2)1(� Sp�2)2( gauge theory moduli space

In this section, we analyze the (classical) moduli space of the F + 1 Sp(2M1( ·
Sp(2M2( gauge theory with four chiral matter multiplets in the fundamental representation
of each factor of the gauge group, and two in the bifundamental representation. To
obtain the F + 1 superpotential for this theory, we start with the F + 2 version of the
theory, turn on (opposite sign) masses for the adjoint chiral superfields, which breaks the
supersymmetry toF + 1, and integrate out the massive fields. This procedure is analogous
to the way one obtains the F + 1 SU(M1(· SU(M2( theory from its F + 2 cousin [2].
The F + 2 Sp(2M1( · Sp(2M2( theory can be obtained by orientifolding the F + 2

SU(2M1(· SU(2M2( theory. However, for both calculational and notational purposes it is
convenient to view the superpotential for the F + 2 Sp(2M1(· Sp(2M2( theory as arising
from that of anotherF + 2 SU(2M1(·SU(2M2( gauge theory,with matter hypermultiplets
in both the bifundamental and the fundamental representations, by imposing a projection
on all the fields.
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We therefore consider the SU(2M1( · SU(2M2( theory with two F + 2 vector
multiplets in the adjoint representations of SU(2M1( and SU(2M2(, respectively, two
F + 2 hypermultiplets in the bifundamental representations, and also an additional four
F + 2 hypermultiplets in the fundamental representation of each gauge group. Our
notation is such that a lower/upper index Z + 1. ) ) ) .2M1 denotes a component in the
fundamental/antifundamental representation of SU(2M1(, and a lower/upper index =Z +
1. ) ) ) .2M2 denotes a component in the fundamental/antifundamental representation of
SU(2M2(. In F + 1 language the two F + 2 vector multiplets consist of two vector
multiplets corresponding to the two gauge groups, and two chiral multiplets φ1Za and φ2 =Z

=a .
The two F + 2 bifundamental hypermultiplets consist of two F + 1 chiral multiplets
>gZ

=a (g + 1.2( in the (�.�( of SU(2M1( · SU(2M2( and two F + 1 chiral multiplets
Ag =Za (g + 1.2( in the (�.�( representation. In addition, the four F + 2 multiplets in the
fundamental representation consist of four F + 1 chiral multiplets PH1Z (H + 1. ) ) ) .4( in
the (�.1( and four F + 1 chiral multiplets PZ1H in the (�.1(, as well as PH2 =Z and P =Z2H in
the (1.�( and (1.�(, respectively.
TheF + 2 superpotential for this theory is
N�+2 +

|
2
]
Tr

)
φ1(>1A1 +>2A2(+ φ2(A1>1 +A2>2(

[ + P1Hφ1PH1
(4.1)� P2Hφ2PH2

{
)

We may reduce the gauge group to Sp(2M1(· Sp(2M2( by imposing the projections

(4.2)φ1Z
a + IZbI acφ1cb. φ2 =Z

=a + I =Z =bI =a =cφ2 =c =b.

on the adjoint hypermultiplets (and the vector multiplets). Here I Za and I =Z =a are the
symplectic units of Sp(2M1( and Sp(2M2(, respectively, which are used to raise and lower
indices. Projections on the other hypermultiplet fields

(4.3)

A1 =Za +�I =Z =bI ac>2c =b. A2 =Za + I =Z =bI ac>1c =b.
PZ1H +�fHI I ZaPI1a. P =Z2H +�fHI I =Z

=aPI2 =a.

result in the F + 2 Sp(2M1( · Sp(2M2( gauge theory with two F + 1 chiral multiplets
in the bifundamental (�.�( and four F + 1 chiral multiplets in each of the fundamental
representations (�.1( and (1.�( (as well as chiral multiplets in the adjoint representation
of the gauge group). In subsequent calculations we use the explicit basis choices fHI +
σw ⊗ �2·2, and I Za + gσx ⊗ �M1·M1 (and similarly for I =Z

=a). In more readable matrix
notation, the projections (4.2) and (4.3) become

(4.4)

φ1 + I1φT1 I1. φ2 + I2φT2 I2.
A1 +�I2>T2I1. A2 + I2>T1I1.
PT1H +�fHI I1PI1 . PT2H +�fHI I2PI2 .

where I Za + I1 and IZa + I�11 + �I1 (and similarly for I =Z =a + I2). We could use the
constraints (4.4) to eliminate half the fields in (4.1) but it will be clearer to continue to
write the superpotential as (4.1), with the constraints understood.
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Now we include a bare mass µ for the adjoint hypermultiplets in the superpotential

(4.5)Nmass + µTr
�
φ21 � φ22

(
.

breaking the F + 2 supersymmetry to F + 1. Taking µ to be large, we may integrate out
the adjoint fields from the superpotential, giving the quartic superpotential for the F + 1
Sp(2M1(· Sp(2M2( gauge theory:

(4.6)

N�+1 +�
1
µ

)
Tr(>1A1>2A2 �A1>1A2>2(

+ 1
2

P1HPI1 P1IPH1 �
1
2

P2HPI2 P2IPH2

+ P1H (>1A1 +>2A2(PH1 � P2H (A1>1 +A2>2(PH2
[
)

When integrating out φ1 and φ2, we must implement the constraint (4.2), but this will be
automatic as long as the matter hypermultiplets obey the constraints (4.3).
Since we will later be interested in the regime where the first gauge group is strongly

coupled, we define a set of fields that are singlets under Sp(2M1(:

(4.7)

(Mgi ( =Z
=a + Ai =Zb>gb =a. LH

I + PZ1HP
I
1 Z.

t =ZgH + Pa1H>ga
=Z. uHg =Z + Ag =ZaPH1a (g. i + 1.2(

in terms of which the superpotential (4.6) becomes

N�+1 +�
1
µ

)
Tr(M12M21 �M11M22(+

1
2
LH

ILI
H � 1

2
P2HPI2 P2IPH2

(4.8)+ tgH uHg � P2H (M11 +M22(PH2
[
.

where the trace is over Sp(2M2( indices. For later convenience we also define the fields

(4.9)σ =Z
=a +PH2 =Z P =a

2H

even though the PH2 =Z are themselves singlets under Sp(2M1(.
The constraints (4.3) imply that the Sp(2M1( gauge-invariant fields obey

(4.10)M11 + I2MT22I2. M12 +�I2MT12I2. M21 +�I2MT21I2.
(4.11)tTgH + δgi fHI I2u

I
i .

(4.12)LH
I +�fHJfIKLKJ.

(4.13)σ + I2σTI2.
where δ12 + 1. The 4· 4 matrixLHI parametrized by

(4.14)L +

]



�V 0 �X N

0 V �P �W
W �N Y 0
P X 0 �Y





automatically satisfies the constraint (4.12).
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The classical F-term equations are obtained by varying the superpotential (4.6) with
respect to the independent variables >g and Pg (recall that Ag and Pg are not independent
variables, cf. (4.3)). However, it is easy to see that one obtains the same equations by
treating >g , Ag , Pg , and Pg as independent when performing the variation. Varying with
respect to >1 and >2 gives

M21A2 �M22A1 + uH1 P1H � σA1 + 0.
(4.15)M12A1 �M11A2 + uH2 P1H � σA2 + 0)

Multiplying these equations on the right by >g , we obtain

M21M12 �M22M11 + uH1t1H � σM11 + 0.
M21M22 �M22M21 + uH1t2H � σM21 + 0.
M12M11 �M11M12 + uH2t1H � σM12 + 0.

(4.16)M12M21 �M11M22 + uH2t2H � σM22 + 0)
The F-term equations obtained by varying (4.6) with respect to A1 and A2,

>2M12 �>1M22 +PH1t1H �>1σ + 0.
(4.17)>1M21 �>2M11 +PH1t2H �>2σ + 0.

are equivalent to (4.15), using the constraints (4.3). Varying the superpotential with respect
to P1 and P1 yields

t1HA1 + t2HA2 +LHI P1I + 0.
(4.18)>1u

H
1 +>2uH2 +PI1LI H + 0.

where the second equation follows from the first using (4.3). Finally,

(M11 +M22 + σ (PH2 + 0.
(4.19)P2H (M11 +M22 + σ (+ 0.

follow by varying with respect to P2 and P2 (the second equation follows from the first
using (4.3)).
When both >gZ =ZPH2 =Z P =a

2H andP
H
1Z

Pa1H>ga
=a vanish, the F-term equations (4.16), and the

corresponding equations that follow from (4.17), imply that the set of 2M2· 2M2 matrices
Mgi mutually commute, and hence they can be diagonalized. The eigenvalues can therefore
be interpreted as the positions of the D3-branes. By virtue of (4.16),

(4.20)M21M12 �M22M11 + 0.
so these D3-branes live on a conifold.
For the unorientifolded SU(M + L( · SU(M( model and for the Sp(2M + 2L( ·

SO(2M + 2( orientifolded theory, Eq. (4.20) describes the entire classical moduli space.
However, for the Sp(2M1( · Sp(2M2( theory the moduli space has additional structure.
One way to ensure that >gZ =ZPH2 =Z P =a

2H and P
H
1Z

Pa1H>ga
=a both vanish is to set P1 and P2 to

zero, but there are also other solutions. As an example, let us assume that uagH + Pa1H>ga
=a
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and choose a basis such that PH2 =Z is only non-zero for the first four entries ( =Z + 1.2.3.4,
say). Let us also assume that the Mgi ’s are block diagonal with one (4· 4(-dimensional
block and one ((2M2 � 4( · (2M2 � 4((-dimensional block (it is not clear whether all
solutions have this block-diagonal form). In this case the F-term equations split into two
parts. For the ((2M2� 4(· (2M2� 4((-dimensional block it follows as above that the Mgi ’s
commute; hence the eigenvalues in this sector satisfy the conifold equation (4.20). For the
(4· 4(-dimensional block it follows from (4.19) that if σ + 0 then M11 +M22 + 0 has to
hold (assuming that the PH2’s span the 4· 4 space). As we will see in more detail in the
next section, M11 +M22 + 0 corresponds in the dual type IIB geometry to the point where
the O7-plane and the 8 D7-branes are localized. The implications of this solution is that
when the PH2’s are non-zero, four of the D3-branes are stuck to the D7-branes. When σ

is not zero the generic solution to Eq. (4.19) is given by σ + �M11 �M22. Inserting this
relation into (4.16) leads to the equations

(4.21)
M21M12 +M211 + 0. M12M21 +M222 + 0.
M21M22 +M11M21 + 0. M12M11 +M22M12 + 0)

It can be shown that there exist (4 · 4(-dimensional matrices satisfying these equations
which are not mutually commuting. The interpretation of this non-commutative solution on
the string theory side is unclear. Since the non-zeroPH2’s only affect a (4· 4(-dimensional
subspace, they are essentially a 1,M effect. Perhaps the general framework discussed in
[18] can be used to shed some light on this sector of the moduli space.
So far we have only analyzed the classical moduli space. In general there are quantum

corrections to the classical moduli space and some solutions may not have counterparts
in the full quantum moduli space. The quantum modification of the superpotential for the
Sp(2M1(·Sp(2M2( theory is not known. However, for the theory at the end of the cascade,
it is possible, with certain assumptions, to determine the quantum superpotential. In the
next section we will study the full quantum moduli space for the theory at the end of the
cascade.

5. The Sp�2)1(� Sp�2( moduli space

At the end of the cascade, we have an Sp(2M1(· Sp(2( gauge theory. For this case, the
2· 2 matrices Mgi satisfying (4.10) can be explicitly parametrized as

(5.1)

M11 +
}
v n

p y

(
. M12 +

}
�w 0
0 �w

(
.

M21 +
}
x 0
0 x

(
. M22 +

}
�y n

p �v

(
)

These satisfy

(5.2)M11M22 �M12M21 +
}
wx �vy+ np 0

0 wx �vy+ np

(
.

and mutually commute

(5.3)˜Mgi .Mjk[ + 0)
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From this result it follows that for the theory at the end of the cascade there are no non-
commutative solutions of the type discussed at the end of Section 4.
We now analyze the moduli space of this theory, first considering the classical moduli

space, then turning to the quantum modifications due to the dynamically-generated
superpotential.

5.1. Classical moduli space

We do not consider the most general case, but rather analyze regions of the moduli space
where, roughly speaking, the scalar vev of one or the other (or both) of the fundamental
fieldsP1 and P2 vanishes.

Case I. uHg + 0 andPH2 + 0
First we consider solutions of the F-term equations for which both uHg + AgPH1 + 0 and

PH2 + 0 (thus σ + 0). The constraints (4.11) and (4.3) then imply tgH + 0 and P2H + 0.
The F-term equations (4.16) reduce to

(5.4)M11M22 �M12M21 + 0)
We may use an Sp(2( gauge transformation to diagonalize Eqs. (5.1), corresponding to
setting n + p + 0. The eigenvalues of Mgi then correspond to the position of the D3-brane
probe and its orientifold mirror. Eq. (5.4) implies

(5.5)wx �vy+ 0.
so the probe brane (and its mirror) move on a conifold. Moreover, the orientifold action on
the conifold described in Section 2, y↔v, w→ w , x→ x , exchanges the positions of the
probe and its mirror, so our choice of parametrization (5.1) is consistent with the variables
used for the geometry in Section 2.
The simplest way to satisfy AgPH1 + 0 is to set PH1 + 0, in which case LHI vanishes.

LH
I may, however, be non-zero if not all the PH1 vanish. Multiplying the first F-term

equation in (4.18) on the right byPJ1 , we obtain

(5.6)LH
ILI

J + 0 ⇒ detL + 0.
which implies

(5.7)WX �VY + 0. V + Y. N +P+ 0.
in terms of the parametrization (4.14).

Case II. uHg + 0
Next we consider the case where uHg + AgPH1 + 0, but some of the PH2 are non-

vanishing. The constraints (4.10) and (4.13) implyM11+M22+σ + I2(M11+M22+σ (TI2.
ConsequentlyM11+M22+ σ is proportional to a linear combination of the Pauli matrices,
and therefore is invertible if it does not vanish. If it is invertible, then Eq. (4.19) implies
PH2 + 0, contrary to assumption. Therefore, it vanishes:

(5.8)σ +�M11 �M22)
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Setting ug + 0 in Eq. (4.16), and using Eqs. (5.3) and (5.8), we see that

M11M22 �M12M21 + 0.
M11 +M22 + 0.

(5.9)σ + 0.
which implies

(5.10)wx �vy+ 0. v + y. n + p + 0.
so the probe brane moves on the v + y subspace of the conifold (5.5). The restriction to
this subspace occurs only because some of thePH2 have non-zero vevs. By comparing with
the results in Section 2 we see that the D3-brane probe (5.10) is stuck to the D7-branes
which are located at the orientifold fixed point, y + v, so the minimal length of D3–D7
strings vanishes. This is consistent with the fact that the induced masses of the PH2 fields,
which are given by the eigenvalues of σ , are zero in this case, since σ vanishes identically.
The fields PH1 may also have non-zero vevs, as long as they satisfy AgP

H
1 + 0 and

LH
ILI

J + 0. The latter condition implies thatLHI satisfies Eq. (5.7).

Case III.PH2 + 0
Finally, we consider the case in whichPH2 + 0 (therefore P2H + 0), but some of thePH1

are non-zero. Setting σ + 0 in Eqs. (4.16), and using (5.3), we see that

(5.11)uHi =Zt
=a
gH ∝ δgi δ =Z

=a)

We assume that the constant of proportionality does not vanish, otherwise this reduces to
case I. Viewing uHi =Z as vectors whose components are labelled by H we choose a basis in
which

(5.12)

uH1=1 +

]



u1=1
0
0
0



 . uH2=2 +

]



0
u2=2
0
0



 . uH2=1 +

]



0
0
u2=1
0



 . uH1=2 +

]



0
0
0
u1=2



 )

The constraints (4.11) then imply

(5.13)

t
=1
1H +

]



u2=2
0
0
0



 . t
=2
2H +

]



0
u1=1
0
0



 . t
=1
2H +

]



0
0

�u1=2
0



 . t
=2
1H +

]



0
0
0

�u2=1



 .

and the relations (5.11) imply

(5.14)u2=1u1=2 +�u1=1u2=2)
The F-term equations (4.16) then give

(5.15)(M11M22 �M12M21( =Z =a + u1=1u2=2δ =Z
=a)
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Multiplying the first equation of (4.18) on the right by >iZ
=a and on the left by uHg =Z we get

(5.16)u1=1u2=2(Mig( =Z
=a + uHg =ZLH I t

=a
iI + 0)

Using (5.1), (5.12), and (5.13), this can be used to show thatL has the form (4.14) with

W + u1=1
u2=1
w. X + u2=1

u1=1
x. V +v. Y + y.

(5.17)N +�u1=2
u1=1
n. P+�u1=1

u1=2
p)

Next, we multiply Eqs. (4.15) and (4.17) by P1 and P1, Eq. (4.18) by >g and Ag , and
compare the results to show

(5.18)M11 +M22 + 0)
Eq. (5.18) arises only when the PH1 vevs are not all zero. Eqs. (5.15) and (5.18) imply

(5.19)wx �vy+ u1=1u2=2. v + y. n + p + 0)
The matrixLHI is completely determined in terms of the uHg and Mgi as

(5.20)L +

]



�y 0 �u2=1x,u1=1 0
0 y 0 �u1=1w,u2=1

u1=1w,u2=1 0 y 0
0 u2=1x,u1=1 0 �y





and obeys detL + (u1=1u2=2(
2.

The geometrical interpretation of Eq. (5.19) is not entirely clear. The induced masses
of the PH1 fields, which are given by the eigenvalues of L , are non-vanishing when
u1=1u2=2 ∞+ 0. This would appear to imply that the length of the D3–D7 strings in this case is
non-vanishing.
It would be interesting to find the generalization of the solution in [5] describing this

sector of the moduli space.

5.2. Quantum moduli space

At the end of the flow, the first gauge group of the Sp(2M1( · Sp(2( theory becomes
strongly coupled, and a quantum superpotential is dynamically generated. We effectively
have an F + 1 Sp(2M1( gauge theory with 2Md + 8 hypermultiplets pLZ , which we
parametrize as

(5.21)pLZ +
�
>1Z

=1 >1Z
=2 >2Z

=1 >2Z
=2 P11Z P21Z P31Z P41Z

(
)

The gauge indices of the Sp(2M2( factor act as flavor indices. When the F + 2
superpotential for such a theory has the form

|
2pLZ φZapLa , where L + 1. ) ) ) .2Md , the

Affleck–Dine–Seiberg superpotential [19] is given by [16,20] (when M1 + 1/Md )

(5.22)NADS + (M1 + 1�Md (
}
�
3(M1+1(�Md
�+1
Pf T

( 1
M1+1�Md

.
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where T is the antisymmetric 2Md · 2Md meson matrix TLM + pLZ I ZapMa . The F + 2
superpotential (4.1) for the Sp(2M1( · Sp(2( theory is not flavor diagonal in the basis
(5.21), but can be written as

|
2pLZ fLMφZapMa where

(5.23)fLM +

]



0 0 0 �1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
�1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0





.

where the lower 4 · 4 block is just the matrix fHI introduced in Eqs. (4.3). However,
fLM can be diagonalized by a change of basis without altering the Pfaffian. Hence, the
superpotential of the F + 1 Sp(2M1(· Sp(2( theory can be written as

(5.24)N +N�+1 + (M1 � 3(
}
�
3M1�1
�+1
PfT

( 1
M1�3

.

withN�+1 given by Eq. (4.8) and with T given by

(5.25)

TLM + pLZ I ZapMa +

]



0 w �p v 0 �u2=2 0 0
�w 0 �y n 0 0 u2=1 0
p y 0 x 0 0 0 u1=2
�v �n �x 0 �u1=1 0 0 0
0 0 0 u1=1 0 V �P �W
u2=2 0 0 0 �V 0 �X N

0 �u2=1 0 0 P X 0 �Y
0 0 �u1=2 0 W �N Y 0





.

where we have chosen the basis (5.12) and (5.13) for uHg =Z and t
=Z
gH , and used the

parametrizations (5.1) and (4.14). Using the same parametrization, the superpotential
(5.24) becomes

N +� 1
µ

)
2(�wx +vy� np(+ 2(u1=1u2=2 � u1=2u2=1(+V 2 +Y2 � 2WX + 2NP

+ (y�v(�σ=1
=1 � σ=2

=2(� 2nσ=2
=1 � 2pσ=1

=2 � 1
2

P2HPI2 P2IPH2

[

(5.26)+ (M1 � 3(
}
�
3M1�1
�+1
PfT

( 1
M1�3

.

with

Pf(T (+
|
detT + (wx �vy+ np((WX �VY + NP(� u1=1u1=2u2=1u2=2

+
�
wXu1=1u1=2 � xWu2=1u2=2 �vVu1=2u2=1 + yYu1=1u2=2

(5.27)+ pNu1=1u2=1 � nPu1=2u2=2
(
)
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The F-term equations are derived from the superpotential (5.26) by varying with respect
to the gauge invariant fieldsMgi ,LHI , uHg , andP

H
2. These equations differ from the classical

F-term Eqs. (4.15), (4.17), and (4.18), even in the limit��+1 → 0, because the latter were
obtained by varying (4.6) with respect to >g , Ag and PH1. The F-term equations (4.19),
obtained by varying with respect to PH2, are the same in the classical and quantum cases,
because the AdS superpotential does not depend on P2. Even though their derivations are
different we will find that the quantum and classical solutions join smoothly.

Case I. uHg + 0 andPH2 + 0
As a simplification we can set uHg + 0 and σ + 0 directly in (5.26), (5.27) since these

expressions are quadratic in uHg and P
H
2 and hence will not contribute to the variation.

Comparing the F-term equations derived by varying (5.26) with respect to w , x , v, y, n,
and p , and with respect to W, X , V , Y, N , and P, we obtain

wx �vy+ np +WX �VY + NP.
V + Y.

(5.28)N +P+ 0.
implying Pf(T (+ (wx �vy+ np(2. The F-term equations become

(5.29)� 2
µ
��

3M1�1
M1�3
�+1 (Pf T (

2�M1
M1�3 (wx �vy� np(+ 0.

which implies

(5.30)(M11M22 �M12M21( =Z =a + δδ
=a
=Z. where δ +

}
µ

2

(M1�3
M1�1

�

3M1�1
M1�1
�+1 )

Setting n + p + 0 using an Sp(2( gauge transformation, we find that the probe branes
move on a deformed conifold

(5.31)wx �vy+ δ)

From (5.28), the matrixLHI has the form

(5.32)LH
I +

]



�Y 0 �X 0
0 Y 0 �W
W 0 Y 0
0 X 0 �Y



 .

where the matrix elements ofL are arbitrary, but by (5.28) and (5.31) must satisfy

(5.33)detL +
�
WX �Y2

(2 + δ2)

Unlike in the classical case, L + 0 is not a solution. (If LHI were to vanish, then NAdS
would blow up.) The lower 4· 4 block of the antisymmetric matrix T has the form

(5.34)T HI +PH1ZI ZaPI1a + fHJLJI +

]



0 Y 0 �W
�Y 0 �X 0
0 X 0 �Y
W 0 Y 0



 )



54 S.G. Naculich et al. / Nuclear Physics B 638 (2002) 41–61

A flavor transformation allows us to block-diagonalize this matrix, so that the above
relations reduce to

(5.35)

T HI +

]



0 Y 0 0
�Y 0 0 0
0 0 0 �Y
0 0 Y 0



 . with Y + δ1,2 +
}

µ

2

( M1�3
2M1�2

�

3M1�1
2M1�2
�+1

which is exactly the meson matrix in Eq. (3.12) of de Boer et al. [20] for the F + 1
Sp(2M1( theory with 2Md + 4 fundamental fields (see also Ref. [21]). In Section 6, we
will explain this in terms of the M-theory configuration corresponding to this branch of
moduli space. Note that (5.35) is simply a rewriting of (5.33) since the determinant is
invariant under the flavor rotation.
In the limit ��+1 → 0, the solution (5.31) and (5.28) reduces to the classical solution

(5.5) and (5.7).

Case II. uHg + 0
The F-term equation obtained by varying the full superpotential (5.26) with respect to

P2 is equivalent to the classical F-term equation (4.19). By the previous arguments given
for the classical case II above, this yields

(5.36)σ +�M11 �M22)
The F-term equations derived by varying (5.26), (5.27) with respect to Mgi andLHI , after
setting uHg + 0, yield (5.28), (5.29) as in case I. In addition, they imply

(5.37)σ
=a
=Z ∝ δ

=a
=Z )

This, together with the constraint (4.13), implies that σ vanishes. Hence we have

M11M22 �M12M21 + δ�.

M11 +M22 + 0.
(5.38)σ + 0)

The second equation in (5.38) implies v + y and n + p + 0, so the probe brane moves on
the v+ y subspace of the deformed conifold (5.31). As in case I, the fieldL is of the form
(5.32) satisfying (5.33).
When ��+1 → 0, the quantum case II solution (5.38) reduces to the classical case II

solution (5.9).

Case III.PH2 + 0
Setting σ + 0 in Eq. (5.26), and varying with respect to Mgi ,LHI , and ug =Z we find

wx �vy+ u1=1u2=2 + δ.

v + y.
n + p + 0.

(5.39)u1=2u2=1 +�u1=1u2=2)
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Thus

M11M22 �M12M21 + (u1=1u2=2 + δ(�.

(5.40)M11 +M22 + 0)
The F-term equations also show that the matrix elements of LHI are related to those of
Mgi by

W +
}
u1=1
u2=1

(
w. X +

}
u2=1
u1=1

(
x.

(5.41)V +v. Y + y. N +P+ 0.
which yields (5.20) but with w , x , y, and v satisfying (5.39). The above solution reduces
to the classical case III solution when ��+1 → 0.

5.3. Summary

The various branches of the Sp(2M1(· Sp(2( moduli space relevant to the end of the
cascade, and their type IIB brane interpretations have appeared throughout this section.
Here we collect these results.
The 2·2 matricesMgi (5.1) mutually commute and their eigenvalues can be interpreted

as the position of the D3-brane probe (and its mirror).
We first summarize the structure of the classical moduli space. In case I we found

detMgi + 0 (5.4), or equivalently wx � vy + 0 in the parametrization (5.1), so the D3-
brane probe moves on the orientifolded conifold. For case II we again found wx � yv + 0
and in additionM11+M22 + 0 (5.9), or v� y+ 0. The latter condition implies that the D3-
brane is stuck to O7-plane/D7-brane stack. In case III we also found v � y + 0 together
with wx � vy + u1=1u2=2 (5.19). The geometrical interpretation of these equations is less
clear, but some suggestions were presented in the text.
For the quantum moduli space we found a similar structure with the quantum and

classical solutions joining smoothly. In case I we found detMgi + δ (5.30), or wx�vy+ δ,
so the D3-brane probe moves on the deformed orientifolded conifold. For case II we again
found wx � yv + δ and in addition M11 +M22 + 0 (5.38), or v � y+ 0, so the D3-brane
is stuck to O7-plane/D7-brane stack. In case III we also found v � y + 0 together with
wx � vy + u1=1u2=2 + δ (5.39). As in the classical case, the geometrical interpretation of
these equations is unclear.
Some insight into the various branches of the quantum moduli space can be gleaned

from the M-theory lift of the type IIA brane configuration corresponding to the Sp(2M1(·
Sp(2M2( gauge theory, to which we turn next.

6. Type IIA and M-theory interpretations

In the previous sections we have seen that the moduli space of the Sp(2M1(· Sp(2M2(
gauge theory and its modification by the AdS superpotential has a richer structure
compared to that of its unorientifolded cousin, the SU(M1(· SU(M2( gauge theory.
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It is fruitful to study the structure of the moduli space of the Sp(2M1(·Sp(2M2( theory
from the viewpoint of the associated type IIA string theory configuration and its lift to
M-theory, where some of the results obtained in the previous sections can be understood.
We will start by briefly reviewing the type IIA setup to make the presentation more self
contained.

6.1. Type IIA configurations

The SU(M( · SU(M( superconformal gauge theory with chiral multiplets in the
2(�.�( ⊕ 2(�.�( representations arises in type IIA string theory as the world-volume
field theory on D4-branes suspended between two NS5-branes in an elliptic model (i.e.,
periodic in the w6 direction) [22]. There are M D4-branes going along half the w6 circle,
and M D4-branes going along the other half; the two stacks of D4-branes give rise to
the two factors of the gauge group. If the NS5-branes are parallel, the SU(M( · SU(M(

gauge theory has F + 2 supersymmetry; the F + 2 vector multiplet includes a chiral
multiplet in the adjoint representation of the gauge group. If the NS5-branes are rotated 90
degrees with respect to one another, the SU(M( · SU(M( gauge theory has only F + 1
supersymmetry [11,12]. Rotating the NS5-branes [23] corresponds field-theoretically to
including (opposite sign) masses (4.5) for the adjoint chiral multiplets, which breaks the
supersymmetry to F + 1, and integrating them out.
The introduction of a pair of orientifold 6-planes into this configuration results in

various F + 2 [24] and F + 1 [6,11,13] world-volume theories on the D4-branes,
particular examples of which are the models

(6.1)
(i) Sp(2M(· Sp(2M(. with 2(�.�(⊕ 4(�.1(⊕ 4(1.�(.
(ii) Sp(2M(· SO(2M + 2(. with 2(�.�(

whose IIB realizations were already discussed in Section 2. The O6-planes span the
0123789 directions and are separated in the (compact) 6 direction; the two NS5-branes are
placed between the O6-planes and are related to each other by the orientifold symmetry. If
the NS5-branes are parallel, spanning the 0123 and u + w4 + gw5 directions, the world-
volume field theories have F + 2 supersymmetry and include chiral multiplets in the
adjoint representation of the gauge group. The NS5-branes may be rotated (in opposite
directions) toward the t+ w8 + gw9 plane (so that one of them spans the u cosα + t sinα

plane and the other spans the u cosα � t sinα plane) while still respecting the orientifold
symmetry (which takes w6 →�w6 and u→�u). When α + µ,4, the NS5-branes become
orthogonal, and the world-volume field theory on the D4-branes is given by (6.1). In model
(i), both orientifold planes are O6� planes; the configuration also contains 8 D6-branes for
cancellation of 6-brane charge. In model (ii), there is one O6+ and one O6� plane and no
D6-branes.
The form of the C2 orientifold action on the conifold in the type IIB configuration

may be determined [6] from the rotated IIA brane configuration described above [11,12].
The D3-branes move in the background wx + (t cosα + u sinα((t cosα � u sinα(. When
α + µ,4, this is just a conifold wx + vy, where v + 1|

2
(t+ u( and y+ 1|

2
(t� u(. The

orientifold action implies t→ t, u→�u so that v↔ y, as discussed in Section 2.
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Generalizations of the orientifolded models described above may be obtained by
suspending 2L additional D4-branes between the NS5-branes that only go along one of
the two halves of the w6 circle. The extra D4-branes break the superconformal invariance
and are the type IIA analog of the fractional D3-branes in the type IIB theory. For recent
discussions of cascading theories from the type IIA viewpoint, see [4,25].

6.2. M-theory configurations

Next, we turn to theM-theory lifts of these type IIA brane configurations. First, consider
the configuration corresponding to the superconformal Sp(2M( · Sp(2M( gauge theory
with two orthogonal NS5-branes (one spanning the y plane and the other the v plane)
and 2M D4-branes wrapping all the way around the w6 circle. Because the D4-branes do
not end on the NS5-branes, but pass through, they can move transversely away (in the
directions y, v, and w7) from the NS5-branes. The motions of each of the M D4-branes
(which are correlated with the motion of the M mirror branes) together with the Wilson
loop expectation value around w6, gives rise to a six-dimensional moduli space, which
is classically a conifold. Since the 2 NS5-branes and the D4-branes can be physically
separated, each lifts to a separate M5-brane [12].
Next consider the case 2M1 / 2M2, in which superconformal symmetry is broken. 2M2

of the branes still wrap all the way around the w6 circle, and can move transversely away
from the other branes; the classical moduli space of these branes is, as before, the conifold.
These branes lift to a “toroidal” M5-brane which is wrapped in the w6 and w10 directions.
There are 2M1 � 2M2 additional D4-branes that wrap only half-way around the circle.

These D4-branes end on the two NS5-branes (which have v + w7 + 0 and y + w7 + 0,
respectively) and are therefore pinned in the y, v, and w7 directions. The two NS5-branes
and the D4-branes connecting them lift to a single M5-brane [26]. This M5-brane should
be similar to the “MQCD” brane that occurs in the (non-elliptic) type IIA model with
O6-planes [27,28] which gives rise to the F + 1 Sp(2Mb( model; in the limit where the
w6-periodicity becomes large, they should become identical.
We briefly describe the form of the MQCD brane in theF + 1 Sp(2Mb(model obtained

in a model with O6-planes, following Refs. [27,29]. Begin with a F + 2 Sp(2Mb( model
with 2Md / 0 massless fundamentals which arises from a IIA configuration with parallel
NS5-branes extended in the u direction. This configuration lifts to an M5-brane whose
embedding is given by the Seiberg–Witten curve [30]

(6.2)q+ + q� + B
�
u2

(
+ u2Mb + · · · .

(6.3)q+q� +�4Mb+4�2Md�+2 u2Md�4)

(A possible u�2 term on the right-hand side of the first equation vanishes because of the
masslessness of the fundamental fields.) To obtain the curve for theF + 1 theory, we must
relatively rotate the NS5-branes, as described above. This is possible only if the curve
(6.2) degenerates to genus zero, in which case the coefficients of B(u2( are fixed. Rotating
the NS5-branes through an angle α + arctan(µ̄( (where µ̄ is proportional to the adjoint
mass µ) in the u � t hyperplane, we obtain a curve whose projection onto the u plane is
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still given by (6.2), but with asymptotic behavior

(6.4)

w6 →�∞. t→ µ̄u. u→ ∞. q+ → u2Mb .

w6 → +∞. t→�µ̄u. u→ ∞. q� → u2Mb )

The resulting genus zero curve may be parametrized in terms of either v+ + t+ µ̄u or
v� + t� µ̄u. Letting

(6.5)u + N (v+(. q+ +P(v+(.

the orientifold symmetry q+ ↔ q�, t→ t, u→�u implies
(6.6)�u + N (v�(. q� +P(v�()

The asymptotic conditions (6.4) then imply

(6.7)N (v+(+
1
2µ̄

}
v+ �

v20
v+

(
.

(6.8)v+v� +v20
for some v0. Eq. (6.3) yields

(6.9)P(v+(+
1

(2µ̄(2Mb
v
2Mb+4�2Md
+

�
v2+ �v20

(Md�2.

where

(6.10)v0 + 2µ̄��+2
up to a complex phase. Following the argument of Ref. [29], the parameter v0 is
proportional to the eigenvalue of the mesonmatrix constructed from the fundamental fields.

6.3. Moduli space

We will now establish the connection between the configuration of two disconnected
M5-branes described above and the moduli space of the Sp(2M1( · Sp(2( gauge theory
as described in Section 5. The motion of the toroidal M5-brane, which is the lift of 2 D4-
branes that wrap w6, is described by the 2·2 matricesMgi . TheMQCD brane configuration
is described byLHI , or equivalently T HI .

Case I
In case I, Mgi and LHI are unrelated, which reflects the independence of the 2 M5-

branes. Classically, the moduli space of the toroidal M5-brane is the conifold (5.5). The
ADS superpotential modifies the classical geometry to the deformed conifold (5.31).
The solution for the antisymmetric meson matrix T HI (5.35) involves a single vev,

which by virtue of the relation [20] �3M1�1�+1 + µM1+1�2M1�2�+2 becomes

(6.11)Y + 2
3�M1
2M1�2µ��+2)

This is proportional to the parameter v0 (6.10) of the MQCD brane. This is consistent
with our interpretation that LHI describes the M5-brane that is the lift of two orthogonal
NS5-branes and 2M1 � 2 D4-branes.
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Case II
In the case II solution, Mgi and LHI are also unrelated, indicating that the two M5-

branes are still disconnected. LHI has the same form as in case I, so the MQCD brane
is unaltered. In addition to satisfying the deformed conifold constraint, the Mgi must also
obey M11 +M22 + 0 (5.38). This may be understood geometrically as follows.
Case II represents a Higgs branch of the gauge theory in which the scalar vevP2 is non-

zero. In the type IIA configuration, this branch corresponds to D4-branes breaking on the
D6-branes that lie in the interval between the two NS-branes containing the 2 D4-branes.
Thus, only the D4-branes that wrap around the w6 circle (those which lift to the toroidal
M5-brane) can break on the D6-branes. Since the D6-branes are coincident with the O6-
plane (the fundamental fields have no bare mass), which is located at u + 0 (i.e., v + y),
the D4-branes can only break on them if they satisfy v + y as well. This then implies that
the toroidal M5-brane must satisfy the condition M11 +M22 + 0.

Case III
Case III represents a Higgs branch of the gauge theory in which the scalar vev P1

is non-zero. This branch corresponds to D4-branes breaking on the D6-branes that lie in
the interval between the two NS5-branes containing the 2M1 D4-branes. Since all the D4-
branes can now break on the D6-branes, the configurations of both M5-branes, described
byLHI and Mgi , are altered by the P1 vevs.
As in case II, the D4-branes can only break on the D6-branes if they satisfy v + y, thus

the toroidal M5-brane satisfies M11 +M22 + 0 (5.40). The remaining 2M1 � 2 D4-branes
were already pinned at the D6-brane locus, so there is no additional constraint onLHI .
Finally, since the breaking of the D4-branes on the D6-branes allows the entire

configuration of D4-branes to be interconnected, the M5-branes to which they lift are
no longer disconnected; this is reflected in the fact that Mgi and LH I are no longer
independent, but are related by Eq. (5.41).

7. Summary

In this paper we have presented a description of the moduli space of the F + 1
cascading Sp(2M1(· Sp(2M2( gauge theory, and the interpretation of its various branches
in terms of both type IIB and type IIA/M-theory brane configurations.
In Section 4 we discussed the (classical) F-term equations appropriate to the generic

case, i.e., without restriction to the end of the cascade. When the scalar components of the
Pg ’s do not have vevs, we argued that the D3-branes move on the orientifolded conifold.
When the vevs of the Pg ’s are no longer zero we found that there are subsectors in which
theMgi ’s are no longermutually commutingmatrices. In these sectors there does not appear
to be a geometric interpretation of theMgi ’s as (commuting) coordinates. However, the vevs
of these non-commutativeMgi ’s span (at most) a 4·4 subspace of the 2M2·2M2 matrices
Mgi , therefore for M2 large, one intuitively expects them to be only a 1,M2 effect.
In Section 5, which is the main part of the paper, we presented an extensive study of

the various branches of the moduli space at the end of the cascade. We studied both the
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classical and the quantum versions of the moduli space. The structure of the moduli space
and the dual type IIB interpretations was summarized in Section 5.3.
In Section 6 we discussed the moduli space from the viewpoint of type IIA brane

configurations and their lift to M-theory. The solutions of the quantum F-term equations
can be interpreted in terms of the configuration of two M5-branes, with Mgi corresponding
to a toroidal M5-brane that wraps the w6 direction, and LHI corresponding to an MQCD
brane that is the lift of the NS5-branes and D4-branes connecting them. The case III
solution in whichMgi andLHI are related (5.41) corresponds to one of the Higgs branches
of the theory in which the two M5-branes are connected.
In a companion paper we will discuss the leading α∝-corrections to the supergravity

solution for the orientifoldedmodels discussed in this paper (analogous to those considered
in Ref. [31] for the supergravity solution of Ref. [3]) and the role of these corrections in
the dual field theory.
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