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ABSTRACT: We use matrix model technology to study the N'= 2 U(NV) gauge theory with
Ny massive hypermultiplets in the fundamental representation. We perform a completely
perturbative calculation of the periods a; and the prepotential F(a) up to the first instanton
level, finding agreement with previous results in the literature. We also derive the Seiberg-
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1. Introduction

Dijkgraaf, Vafa, and collaborators have discovered remarkable relations between perturba-
tive matrix models and instanton effects in supersymmetric gauge theories [1]-[4]. Recently
we used the new matrix model technology to study the N' = 2 U(NV) gauge theory [5] (ref. [5]
also contains a more extensive list of references). We calculated the prepotential F(a) and
the periods a; perturbatively up to the first instanton level. A new ingredient in our calcu-
lation was a completely perturbative definition of the periods a; as functions of the classical
moduli e;. Our results combined with those of Dijkgraaf and Vafa show that, even when the
matrix model cannot be completely solved, a perturbative diagrammatic expansion of the
matrix model can still be used to obtain all the low-energy non-perturbative information
of N'= 2 gauge theories order-by-order in the instanton expansion.

In this paper we study the N’ = 2 U(N) gauge theory with Ny hypermultiplets trans-
forming in the fundamental representation of the gauge group using matrix model tech-
niques. Several new features present themselves in this case, making the model well worth
studying.

In the first part of the paper, we extend the perturbative results obtained in [5] for
the NV = 2 U(N) theory to the case with Ny fundamental matter hypermultiplets. A



new feature of the calculation, compared to the one in [5], is the appearance of planar
diagrams with boundaries [6]. These contribute, in the diagrammatic expansion of the
matrix model, to the free energy and superpotential. They also affect the relation between
the periods a; and the classical moduli e;. We compute the periods a; and prepotential
F(a) perturbatively to first order in the instanton expansion, finding agreement with earlier
results in the literature. This agreement is a test of our proposed relation [5] between a;
and e;.

In the case of U(N) with fundamental matter, there is an ambiguity in the form
of the Seiberg-Witten curve [7] for N < Ny < 2N [8]-{10], with different forms of the
curve corresponding to different definitions of the classical moduli e;. These different
curves yield slightly different relations between a; and e;. Our perturbative calculation,
which does not start from a curve, yields an unambiguous relation between a; and e; and
therefore implies a particular form the of the Seiberg-Witten curve, which we show to be
y? = Hfil(x —e;)? — fn_1(z) where fy_1(x) is an (N — 1)th order polynomial specified
in eq. (6.3).

In the second part of the paper we derive the form of the Seiberg-Witten curve and
differential for the N' =2 U(V) gauge theory with N; fundamental hypermultiplets, from
the large-M saddle-point solution to the matrix model, without any additional input. The
result is consistent with known results [7]-[10] and also agrees with the form of the curve
implied by the perturbative calculation. Our results give further support to the idea that
all the low-energy information about the ' = 2 theory is contained in the matrix model.!
(Very recently some aspects of the relation between matrix models and Seiberg-Witten
theory have been discussed in ref. [12].)

An important question is why the matrix model approach to supersymmetric gauge
theories works and what the scope and limitations of the method are. Recently, these
questions have been explored and purely field-theoretic proofs for the correctness of the
matrix model approach have been presented for the pure N' =1 U(V) gauge theory with
an arbitrary polynomial superpotential [13, 14]. It would be interesting to extend these
results to cover the model studied in this paper. Also, ref. [15] discusses some aspects of
the correspondence between matrix-model and gauge-theory quantities.

In section 2 we set up the perturbative calculation. In section 3 we calculate 7;; as a
function of the classical moduli to first order in the instanton expansion. In section 4 we
extend our proposed perturbative definition of the periods a; to the case when fundamentals
are present, and use this result to determine the one-instanton corrections to a;. In section 5
we compute the one-instanton correction to the prepotential F(a). When Ny > N a certain
polynomial appears in the relation between a; and the classical moduli; the role of this
polynomial is clarified in section 6. In section 7 we derive the Seiberg-Witten curve from
the large-M saddle point solution to the matrix model. In section 8 we derive the Seiberg-
Witten differential from within the matrix model framework. We conclude the paper with

a summary of our findings.

'The matrix model also knows about string theory corrections in the form of curvature couplings [3];
some such couplings were recently computed [11] using matrix model techniques.



2. Perturbative matrix model approach

In this section, we describe the perturbative matrix model approach to the N’ = 2 U(N)
gauge theory with matter in the fundamental representation, extending our earlier work [5].
Previous work discussing matter in the fundamental representation (focusing mainly on
N =1 theories) in the matrix model context can be found in [6] and [16]-[20].

In the presence of (massless or massive) N = 2 hypermultiplets transforming in the

fundamental representation, the AV = 2 U(NN) gauge theory develops a superpotential
Ny
Winat (6, ¢, q) = Z lGroq" +mrdrg'] (2.1)
I=1
written in terms of the N’ =1 fields ¢ (the adjoint scalar in the N' = 2 vector multiplet),
d I=1,...N ) transforming in the fundamental representation and ¢y, transforming in
the conjugate fundamental representation. We have suppressed the gauge group indices,
and mj are the masses of the fundamentals.

The first step of the matrix model program is to break N' = 2 supersymmetry to N’ = 1
by adding a tree-level superpotential Wy(¢) to the gauge theory. The particular choice of
Wo(¢) relevant to us is the one that freezes the moduli to a generic point on the Coulomb
branch of the N = 2 theory:

N (e) N
Wo(¢) = a % (@) = W) =a]@ -e), (2.2)
/=0 =1

where e; are the classical moduli, s,,(e) is the elementary symmetric polynomial
Sm(e) = (=1)™ Z €i1€iy " €ip s so=1, (2.3)
i1<iz<-<im

and « is a parameter that will be taken to zero at the end of the calculation, restoring
N = 2 supersymmetry [21].

The next step is to reinterpret the superpotential W (¢, q,q) = Wo(¢) + Wiat (0, ¢, G)
as the potential of a chiral matrix model [1]-[4], which has the partition function (denoting
the matrix model analogs of ¢, ¢, and ¢ with capital letters)

1 4 w(2.Q.Q)
Z = ol @) /dq) dQ'dQexp <—T> , (2.4)

where the integral is over M x M matrices ® (which can be taken to be hermitean) and M-
dimensional vectors Q! and Q7. In eq. (2.4), G is the unbroken matrix model gauge group,
and g, is a parameter that later will be taken to zero as M — oo. In taking the M — oo
limit, we keep N finite (as in ref. [18]); our approach thus differs from the one in [16]. The
matrix integral (2.4) is evaluated perturbatively about an extremal point ® = ®(, Qo = 0,
Qo =0 of W(®,Q,Q). We write

erlar 0 e 0 Uy Wiy -0 Wy
0 eolpr, - 0 v v R/
=Dy +V=| o . o Mo (@s)
0 0 o enlary Unr WUne - Unn



where ) . M; = M, and V;; is an M; x M; matrix. This choice breaks the U(M) symmetry
to G = [[X, U(M;).

The connected diagrams of the perturbative expansion of Z may be organized, using
the standard double-line notation, in a topological expansion characterized by the Euler
characteristic x of the surface in which the diagram is embedded [22]

7 = exp Zg;XFX(e, S) where S; = gsM;, (2.6)

X<2
where x = 2—2g—h with g the genus (number of handles) and h the number of holes.
When evaluating the matrix integral in the M; — oo, gs — 0 limit, with S; held fixed,
the leading contribution comes from the planar diagrams that can be drawn on the sphere

(x=2),

Fy(e,S) = Fy=s(e,S) = g2 log Z (2.7)

sphere

As discussed in [6], the presence of the Q, Q1’s leads to the introduction of surfaces with
boundaries in the topological expansion. The leading boundary contribution comes from
surfaces with one boundary (disks), obtained from the sphere by cutting out one hole, and
having x =1,

Fa(e, S) = Fy=1(e,S) = gslog Z (2.8)

disk

It was shown in [5] (generalizing the result in [4] for U(2)) that when one expands
Wo(®) (2.2) to quadratic order in ¥, the coefficients of tr(¥;;¥;;) vanish when i#j. Hence
the off-diagonal matrices W;; are zero modes, and correspond to pure gauge degrees of
freedom. As in ref. [4, 5], we fix the gauge ¥;; = 0 (i#j) and introduce Grassmann-odd
ghost matrices B and C' with action

N N
B[(b, C]) = Z Z(ez - ej) tI‘(BjiCij) + Z Ztr(Bji\IliiCij - BjiCZ-j\I/jj) . (29)

i=1 j#i i=1 j#i
In the ¥;; = 0 (i#j) gauge Wo(®P) becomes [5]
N N p -
_ . . (] p A
Wo(®) = ;MzWO(ez) —l—az;7tr(\11 +az;zg , (2.10)
i= 1= i=1p

where R; = H#i ej; with e;; = e; —e;, and

1 o\ 1y
Vpi = m <£) H(37 — ex) (2.11)
p ’ k=1 r=e;
Writing QF = (Q1,Q%,...,Q%)T, where Q! is an M;-dimensional vector and similarly

for Q;, and expanding Wia(®,Q',Q;) around the vacuum (2.5) one finds (using the
W;; =0 (i#7) gauge)
N Ny

mat (I) ,Q, Q ZZ |: e +my Qlez + QZ[‘PZZQ ] (2‘12)
i=1 I=1



Collecting the above results, the partition function is given by the gauge-fixed integral

1

gf. = vol(QG)

( ZMWO e > / d¥;; dB;; dC;i; dQ'dQ relawatline - (2.13)
S i=1

where the quadratic part of the action is

N Ny
T =~ & Z Z > e te(BjiCy) — Z D (ei+mnNQuQ], (2.14)
=1 I=1

i=1 j#i
and the interaction terms are

N

N Ny
fing = —— Z Z ot gy (¥3) Z Z tr(B;; ;i Cij — BjiCijVj;) — Z Z Qir¥aQ; -

8 i=1p=3 i=1 j#i
(2.15)

The propagators for the various fields can be read off from eq. (2.14) and the vertices from
eq. (2.15). Each ghost loop will acquire an additional factor of (—2) [4].

3. Perturbative calculation of 7;;(e)

The integral over the part of the quadratic action (2.14) involving ¥;;, B;j, and Cj; can be
explicitly performed [5]; including also the classical piece one finds (up to an e;-independent
quadratic monomial in the S;’s)

N | N
2
_ zzl SiWo(ei)+§ Zzl S; log <

)+ZZS S, log (e}'\j>+z F(™ (e, S) .

=1 j#i n>3
(3.1)

As in [4], we have included in eq. (3.1) a contribution — (Zfil Sl-)Q log A that reflects the
ambiguity in the cut-off of the full U(M) gauge group. (A similar contribution is included
in (3.4) below.) The term Fs(n)(e, S) is an nth order polynomial in S; arising from planar
loop diagrams built from the interaction vertices [3]. The contribution to Fs(e, S) cubic in
S; was computed in [5] with the result:

R = 5 S (S i Sy

i k;éz (i .k lkezf
SESk SiSkSe S2S,
_2;§ Riej, Z eir 2;;; R;eirew zzjg;z Rie?k - (32)

Next we turn to the contribution of the fundamentals @, Q to the matrix model free

energy. Since these involve quark loops, they only contribute to the disk-level part of the

free energy. The integral over the quadratic part of Wy,a; gives?

NN 1 N Ny 6 +m1)
/ [T11dQ!dQirexp (—g—(ez + mﬁczuczf) —exp | = > Y M;log— 0 (33)
i=171=1 =1 I=1

2Note that there are no M; log M; terms in the expansion of 1/vol(G) [23].



Figure 1: Disk diagrams contributing to Fy(e,S) at order O(S?). Solid double lines refer to
W;; propagators, solid-plus-dashed double lines refer to ghost propagators, and single dotted lines
correspond to the propagator for the Q’s.

which yields (up to an e;-independent part linear in S;) the first term of

N Ny

—-2 ) s M + Y F (e, 8) (3.4)
=1 I=1

n>2

Here F én) (e,S) is an nth order polynomial in S; arising from planar disk diagrams built
from the interaction vertices. To obtain the O(S?) contribution to Fy(e, S), we need to
evaluate the diagrams displayed in figure 1.

One might also consider diagrams drawn on surfaces with additional holes. One ex-
ample is a “dumb-bell” diagram as in figure 1, but with quark propagators at both ends.
Such a diagram corresponds to a sphere with two holes, the dotted lines encircling each of
the two holes. However, such a surface has y = 0 and the diagram is therefore suppressed
by a factor of g, relative to the y = 1 disk contribution in the g5 — 0, M; — oo limit.

The above diagrams lead to:

1 S?
oFy”(e,5) = ZZRfIZ__ ZZRewfu ZR 69

where fir = e; +my.

To relate the matrix model and its free energy to the N' = 2 U(N) gauge theory
(with N hypermultiplets in the fundamental representation of the gauge group) broken to
[ L, U(2V;), one introduces [1]-[3], [24] and [6]

Fi(e, S)

N N
Weg (e, S) = — Z Nia 95 Fy(e, S) + 2mity Z S;, (3.6)
i=1 ’

=1

where 79 = 7(Ap) is the gauge coupling of the U(NN) theory at some scale Ag. Since we are
breaking U(N) to U(1)", we set N; = 1 for i = 1,..., N. It was conjectured in ref. [6] that
the disk-level part of the free energy Fy(e,S) contributes to Weg without any derivatives
acting on it. We will find further support for this claim. Next, one extremizes the effective
superpotential with respect to S; to obtain (S;):

OWest (e, S)

= 0. (3.7)
05 55=(S;)



Finally,
1 9%Fy(e, S)

Tij(e) = omi 95;08; S,=(S:) -

yields the couplings of the unbroken U(1)"V factors of the gauge theory, as a function of
2
e;. Note that although both the Seiberg-Witten formula 7;;(a) = 97(a) and (3.8) refer to

" 0Oa;0a;
the same quantity (the period matrix of the Seiberg-Witten curve X), they are expressed

in terms of different parameters on the moduli space (a; vs. ¢;).

Above, we have evaluated F(e, S) to cubic order in S; and Fy(e, S) to quadratic order
in S;, which will be sufficient to obtain 7;;(e) to one-instanton accuracy. Inserting the
results eq. (3.1), (3.2), (3.4), and (3.5) in eq. (3.6), we obtain

) (3.9

Warle,) = 3 Wofe) - Zmog( )_zzzsklog(

1 k#i

Ny S2
| fz[ 1 A 25..5)
3 2858y, | 257
+Z§( R R, +Rke?k>+
Ny 25,5
Pk
+ ;;( R; fu Z €ik Z “ Rieir fir B
S2
- 2R-Z 5 ) + (2miTo+const) Z Si .
xyl i

The extrema (S;) are obtained from (3.7), and can be evaluated in an expansion in A

(S;) = a_LiAZN*Nf + a_LiA4N*2Nf x

AT (gt o)+
ki 044,k 2R eineir RkReezkeke
2L 4L 2L 2L, Ny L
7 i k k
i ; (R?e?k RiRkB?k + RiRke?k + R%ﬁ?k) Z RQfQ +
2L 2Ly, ) 6N—3N

" - + O(A ). (3.10

; g ( R26Zkflf RiRyeirfir  Rieifrr ( ). (3.10)

where L; = H?[:f 1(e; +my), and various constants as well as 79 have been absorbed into a
redefinition of the cut-off, A = const x A emiro/N

Although we are primarily interested in the N’ = 2 limit in this paper, the N' = 1
effective superpotential may be easily computed by substituting eq. (3.10) into eq. (3.9).

In the case Ny > N one has to proceed with care, see [16, 18, 19] for further details.



Below we will make repeated use of the identity

L L; 1 L; 1 ~
= TANT L L ENT D e 3.11
k%:i Ryeip, R; k%:z ; R; EI: fir (ed) (3:11)

which can be derived by taking the z — e; limit of both sides of

Ny
L; L -
e (z—er) Ri(z—e) Py Ry(z —ex)
where the polynomlal T( ) = k 0 tkzN r=N=k i the positive part of the Laurent expan-

sion of lel(z + mI)/szl(z — ey,) and is only non-zero when Ny > N. More explicitly,
the coefficients #;, are exactly as in [25, egs. (2.4) and (2.5)]; note that our e; are the same
as their a;.

We can now evaluate

1 9%Fy(e, S)

pert (2N—Ny)d (d)
i 05:08, +ZA (€). (3.13)

Tij(e) = 5

Si=(S:)

The perturbative contribution (up to an additive constant) is

27r1713ert =i [ Zlog ( Zk) + Zlog <f”> + (1= 6;) llog (%)2] . (3.14)

k#1
Using the identity (3.11) one obtains the one-instanton contribution

4Ly, ) 10L;  10L, 4T(e;) 4T(ep)
27rz7' + + + - +
P0=0/5 3 (o e VT (o e+

e;Le Re;
k;éz 144k Rieiere kti kCik

+Z R2 2 +Z R2

8L; 2L 2T (e;
Z R2e; Zj‘“- +Z RZe; kf a Rff-z) ] *
ir gz Zi 1t ikJil KAtk ikJkI iJil
Z B 8L; B 8L; + 4L, 10L; 10L; n
kﬁj RZe;jeq, R]Z‘fjiejk Rieire;i R7,2 12] Rj2612j
N Z AL; \  AT(e) 4T (ey)
R? ezjle Rﬁejifjl Riej; Rjeji

to the gauge coupling matrix. Finally, we take the limit o — 0 to restore N’ = 2 super-

zIfzJ

(3.15)

symmetry, but this has no effect on 7;;, which is independent of a.

4. Perturbative determination of «;

If we are to use the matrix model results (3.14) and (3.15) to determine the N' =
prepotential F(a), we must first express 7;; in terms of the periods a;. In [5] we proposed
a definition of a; within the context of the perturbation expansion of the matrix model,



without referring to the Seiberg-Witten curve or differential.®> We argued in [5] that a; can
be determined perturbatively via

; (4.1)

e—0

where W(jﬂ(e, S, €) is the effective superpotential that one obtains by considering the matrix
model with action Wi(q), Q, Q) =W (o,Q, Q) + € tr; ®. Here the trace is only over the ith
block. For motivations for this proposal we refer the reader to [5]. In the present case, it
is sufficient to consider

A voll(G) /d<I> exp <—i [W(Q),Q,Q) + € tr; @})

1 -~ 1 -~
= exp (g—ZFSZ(e, S,e) + —Fi(e,S,€) + - ) . (4.2)

Gs

Writing Fl(e, S,€) = Fi(e,S) + €JF} and similarly for Fi(e,S,¢), and observing that to

first order in €
71 1 € . W(q)’ Q’ Q)
Z'=7+ ol @) /dq) [ gs] tr; ®exp ( . , (4.3)

one finds §F! = — g,(tr; D) |spheres Where (tr; @)
nected one-point functions at sphere-level in the matrix model with action W (®,Q, Q).

sphere 15 Obtained by calculating all con-

Similarly, 6F§ = —(tr; ®)|4q where (tr; ®)| . is obtained by computing all connected
one-point functions at disk-level.
Now the effective potential for the matrix integral (4.2) is

N ] N
- F .
Wis(e,S,e) = — ZA@M — Fi(e,S,€) + 2mimg »_ S;

=1 95; i=1
Y0
= Weg(e, S) — —_SFi +6F| . 4.4
(e, S) —¢ ; igg; s + ok (4.4)

Extremizing Wig (e, S, €) with respect to S gives (S;) = (S;) + €dS; + O(€?). Substituting
(S) into eq. (4.4), one obtains

- N 8We
ia(e, (S),e) = ) + eZéSJ t

(S)

N 5 .
j=1 J (s)

(4.5)
The second term vanishes by the definition of (S). Finally, using eq. (4.1), one obtains

(4.6)

Z 5F’ + 6F:
J d
S, )

3For the model studied in this paper the Seiberg-Witten curve is known [7]-[10] and the relationship
between a; and e; is straightforwardly obtained [25] from the A;-period integral. However, our goal in this
section is to determine a; using only the matrix model perturbation expansion.



Figure 2: Tadpole diagrams contributing to the one-instanton contribution to a;.

Considering a generic point in moduli space, where U(N) — U(1)" (so that N; = 1) and
expanding ® around the vacuum (2.5), tr; ® = M;e; + tr(¥;;), we find

N
0
a; =i+ [ D 29500 Wi pere + (00 i) i » (4.7)
2. 55, )

where (tr ‘I’ii>|sphere is obtained by calculating, using the matrix model (2.13), all con-
nected planar tadpole diagrams with an external ¥;; leg that can be drawn on a sphere,
and (tr Uy;)| 4 s obtained by computing all connected planar tadpole diagrams with an
external W;; leg at disk-level in the topological expansion.

It should be emphasized that (4.7) offers a completely perturbative means of obtaining
the relation between a; and e;, which does not require knowledge of the Seiberg-Witten
curve or differential.

We will now evaluate eq. (4.7) for the case of the N' =2 U(V) gauge theory with Ny
fundamental hypermultiplets. The relevant tadpole diagrams contributing to first order in
the instanton expansion are displayed in figure 2.

The first two diagrams contribute to (tr ;)| These were evaluated in [5] with

sphere*
the result 52 SiS;
1 .
o _ 5 4.8
(tr zz)’sphere ags Z [ Rie;i; +2 R; ez]] -
J#i

The third diagram in figure 2 contributes to (tr ¥;;)|yq.- By using the Feynman rules
derived from the action (2.13) one finds

s, g
tr i)y = — —— S 4.
< r >|dlsk O[Ri ; fi[ ( 9)

Inserting the above results into eq. (4.7), evaluating the resulting expression using eq. (3.10),
and using the identity (3.11), one finds

Z

The relation between a; and e; that we have just derived agrees precisely, at the one-

a; = e; + A2N—Ny

ez) AN—2N
O(A . 4.10
ezg RZ2 ; le Rz * ( ) ( )

instanton level, with [25, eq. (3.10)], provided that the polynomial 7'(z) in their expression
is set equal to %T(x) We will discuss the implications of this result in section 6.

,10,



5. Perturbative calculation of 7;;(a) and F(a)

Now that we have determined the relation between a; and e;, we can rewrite 7;;(e) in terms
of a;, and from that determine the form of the prepotential F(a) to one-instanton accuracy.
Equation (4.10) implies that

2L; 2L; 2L; 2L,
loge;j = loga;; + A*N s [ Z ( + . ) + =5 =

2. o 20 . 0. 2,2 2.2
k#i,j Riejjeq R-eﬂe]k R:e i Rjeij

Lj 2T(€Z) 2T(€]):|
_ + + , 5.1
Z (R %fu R?%ifj[) Rieij — Rjeji 5

where a;; = a; — aj, and

Ny -
2L, L: 1 2T(e)
log fir = log(a; +my) + AN ~Ns = — + : 5.2
8 fur Blai ) ; Rleyfir  Rifir = fir o Rifir (52)
We can now re-express 7;; (3.15) in terms of a;
() = 75" (@) + ZA NN (@), (5.3)

where the perturbative contribution is (up to additive constants)

2
ert( — Gk a; +mg a; — a;
2m7’5 = 0;j [ Zlog ( ) +Zlo ( ) +(1—0d35) [log (T) ]

ki
(5.4)
and the one-instanton contribution is
(1) 4L; 1 6L; 6Ly
2mit (a) = 64 + +
v (@) = b [; D Drrrrh e ]
4L; L;
+ —— +
Z Z Rgazkle Jz:# R2firfig
4L, 4L ; 4L 6L; 6L ;
A=) | X~ + 212 2j2+
k;éij Riaijaik Rjajiajk Rkaikajk Rz ij R] ij

2L

J
+ Z <R az]fz] Rjz‘ajifjl) ] l (55)

where now R; = Hj#(ai —a;) and f;; = a; + my. Observe that all the T(az) terms cancel
out in the final expression for 7;;(a). As will be discussed in more detail in the next section,
T(x) can be absorbed into a redefinition of the e; [25]. Since 7;;(a) is independent of e; it
should be insensitive to this redefinition, and therefore to the form of T'(x).
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Finally, it is readily verified that (5.4), (5.5) can be written as 7;; = §°F(a)/0a;0a;
with (up to a quadratic polynomial)

2miF(a) = ——ZZ a; — a;) log(

i jF#

“) zzamm o (45 )

L A2N-Ny (ai + mI L O(AN-2Ny) | 56
E; ]1;11 IH1 vy ( ) (5.6)
This precisely agrees with the result obtained in [25, eq. (4.34)].

To conclude, we have shown that a completely perturbative matrix model calculation,
which does not use the Seiberg-Witten curve or differential, gives the correct result for
the prepotential to first order in the instanton expansion for the U(N) gauge theory with
N; fundamentals. Higher-instanton corrections to the prepotential may be obtained by
higher-loop contributions to the matrix model free energy and tadpole diagrams.

6. The meaning of T'(z)

In ref. [25] D’Hoker, Krichever, and Phong derived the prepotential for the N’ = 2 U(N)
theory with Ny flavors from a Seiberg-Witten curve of the form*

N 2 Ny
v = |[[(@—e) + 402NN (2) | — AN ] (= +mp) - (6.1)
=1 I=1

In their work the (Ny — N)th order polynomial 7'(x) was left unspecified (although two
different candidates [8, 10] were presented) since, as shown in section 2.c of that paper, the
prepotential F(a) is independent of T'(x). This is because T'(x) can always be absorbed
into a redefinition of the e;, and F(a) is insensitive to a redefinition of e;. However, since
T'(z) is tied to the definition of e;, its form will affect the relation between a; and e;.

Our matrix model calculation of the relation between a; and e; (4.10) implies (via [25,
eq. (3.10)]) a specific form for T'(z), namely

Nf N
T(z) = —T(x) + O(A2N=Ny) Z L Nr =Nk L (AN | (6.2)
k=0

and thus corresponds to a specific choice of the e;. (Our perturbative matrix model calcu-
lation only yields a result valid to one-instanton accuracy.) The Seiberg-Witten curve (6.1)
corresponding to eq. (6.2) has the form

N
HCU*@z f(x),

Nf N
fl@) = 4NN TT @ +my) = T(@) [[(z = ei) | + OAN2Nr). (6.3)
I=1 =1

“Note: A2N=Ns in ref. [25] differs from ours by a factor of 4, except in eq. (4.34). In the e-print version
of ref. [25] the factor of 4 in eq. (2.6) should be omitted, and the right hand sides in eq. (2.8) should be
multiplied by 1/4. These typos are corrected in the published version.
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The definition of T'(z), given below eq. (3.12), ensures that f(z) is at most an (N — 1)th
order polynomial. Thus, the choice of e; in the matrix model is such that none of the
coefficients of 2V or higher powers in y? receive O(A2V=Nr) corrections. (However, as we
discuss below, the gauge-invariants (u,) do receive corrections.) As we will see in the next
section, this is exactly what the saddle-point solution of the matrix model requires.

It is curious to note that the form of T'(z) proposed in ref. [10] and on the right hand
side of eq. (2.8) in ref. [25] is® T'(x) = (1/4) ,Ijzf(;N traNr~N=k precisely one-half of that
in eq. (6.2). Why the difference?

Consider the gauge-invariant variables (u,) = (1/n)(tr(¢")), which classically have the
values (up)q = (1/n) Zfi 1 er. Quantum mechanically, these may be computed via [4, 5]
(un) = (1/2min) "N | § 4, 2" " Asw, where Agw is the Seiberg-Witten differential. They
may also be computed in the matrix model [5], starting from the correlators (tr(®")) (and
modifying the expressions of ref. [5] to include the (tr(®™))|qisk contribution, as in eq. (4.7)
of this paper; see section 8). It is easily shown that for Ny < N (in which case T'(x)
vanishes) (un) = (un)aq for n = 1,...,N [21, 5]. When Ny > N, however, (u,) with
2N — Ny <n < N can get O(A2N=N7) corrections.

As stated above, choosing a particular T'(z) corresponds to a particular choice of pa-
rameters e; used to parametrize the moduli space. It is possible to define the N parameters

e; so that the relation (u,) = (1/n) N, en

i—1 € continues to hold quantum mechanically for
n=1,...,N. This requirement then leads to the form of T'(z) in ref. [10, 25] (see however
ref. [26]). In contrast, for the choice of T'(x) in eq. (6.2), (u,) = (u,)a no longer holds at

the one-instanton level.

7. Matrix model derivation of the Seiberg-Witten curve

In this section, we will derive the form of the Seiberg-Witten curve for N' = 2 U(N) gauge
theory with Ny < 2N fundamental hypermultiplets by solving the matrix model integral
using saddle-point methods (for a review of this method, see, e.g., ref. [27]).

Our starting point is the matrix model partition function (2.4)

Ny

1 ~ 1 1 ~ ~
Z = —VOI(G) /d<1> dQIdQI exp —gWO(Q)) — ; ; [Ql¢ QI + mIQlQl] . (7.1)

Diagonalizing ® and integrating over @Q, Q, one obtains (\; are the eigenvalues of ®) [1, 16]

M Ny
1
7 x /Hd)\i exp [ ==Y Wo(\i) +2> log(Ai = Aj) = D> log(Ai+my) | . (7.2)
i=1 s 7 i<j I=1 i
The saddle-point equation is obtained by varying the action with respect to A;:
Ny
—iw’(x)+2z ! > Ly (7.3)
g 0 j#i Ai = Aj T Aty . .

5Taking into account the correction in the previous footnote 4.
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To solve (7.3), it is standard procedure [27] to introduce the trace of the resolvent

w(m)z%tr(@ibr):%zi:)\il_l‘ (7.4)

which can be shown to satisfy [27]

) Wi (x 1 Wi (z) — Wi (s
w(z) + g:](w) w(z) + PRTE El: o ;_ )\i(’( )
1, 1 ali 1
—q¢ @+ WZZ i —z) (N +mp) 0- (7:5)

i I=1
Now we let g; — 0, M — oo, with S = g,M held fixed. We also hold N fixed; in this,
our approach differs from ref. [16]. In this limit, the last two terms of eq. (7.5) vanish.

The large-M limit expressions are conveniently written in terms of the density of
eigenvalues

p(A) = % 80—, / PN dA =1, (7.6)

In this language the resolvent becomes

() = / ALY o) = L it ie) — w(h — i) (7.7)

A—z’ 2

and eq. (7.5) can be rewritten as

Wl
(@) + P00y 4 @) =0, (78
where W) — WI(A)
_ o\r) = Wo
flz) = 4S/d)\ p(N) X (7.9)
is an (as yet) arbitrary (N — 1)th order polynomial. Defining
y(z) = 2Sw(z) + Wj(x) (7.10)
one may rewrite eq. (7.8) as
N-1
v’ =Wi(2)* = flx),  fl@)=>_ bpa". (7.11)
n=0

This equation characterizes a hyperelliptic Riemann surface. When the roots of W(z) are
well-separated and f(x) is a small correction to W{(z), the curve has N cuts in the x plane,
centered approximately on the roots of W{(z). The eigenvalues of ® are clustered along
these cuts. The function f(z) determines the distribution of the eigenvalues of ® among
the N cuts, and the spreading of those eigenvalues due to eigenvalue repulsion. Let M;
denote the number of eigenvalues along the i*® cut:

M; =M / A p(N). (7.12)
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Define S; = gsM;, which remains finite in the M, M; — oo limit. Then, using egs. (7.7)
and (7.10), we see that eq. (7.12) may be rewritten

1
S = —— d 7.13
! 4 Aiy o ( )

where A; denotes the contour surrounding the ith cut. This is eq. (3.10) of [1] (up to a
factor of 2; the sign depends on the direction of the contour integrals, which we take to be
counterclockwise). Up to this point, we have just been following ref. [1].

As in ref. [21], we denote by P and @ the points x = oo on the two sheets of the
curve (7.11). (If one needs a cutoff for an integral, one takes P and @ to be at z = Ay
with Ag large.) To be specific, let P be on the sheet on which W{(z) — y(z) goes to zero
as & — 0o0. Also, denote by C; a path from @Q to P that passes through the i*" cut. The
Riemann surface of genus N — 1 described by the curve (7.11) can be given a canonical
homology basis as follows: A; (i=1,...,N—1)and B;=C; —Cy (i=1,...,N —1).

Our goal in the remainder of this section is to use matrix-model methods to determine
the explicit form of f(x) in the spectral curve (7.11). This will in turn yield the (hyper-
elliptic) Seiberg-Witten curve for the U(NN) theory with N fundamental hypermultiplets.
The saddle-point evaluation of the partition function (7.2) gives (here we need to keep the
first subleading term since it contributes to Fy)

s

2
7 = exp (— % / dX p(\) Wo(N) + 5—2 / dAdN p(A) p(X) log(A — \') —

Ny
- gﬁ Z/d)\ p(A) log(\ + mf)) (7.14)
S I=1

from which we infer

F,=-8 / dX p(\) Wo(\) + S? / dAdX p(A) p(X) log(A — \) (7.15)
and
Ny
Fy = SZ/d)\ p(\) log(\ +my). (7.16)
I=1

In order to compute Weg, we need the variation of Fy under a small change in S;. From
(7.12) we see that such a variation can be implemented by letting p(A) — p(A)+(8S;/5)d x
(X — ¢;) where e; refers to an arbitrary, but fixed, point along the i*" cut. Using this result
in (7.15) gives®

0Fy =65S; |:—W0(€i) + 2S/d)\ p(A) log(A —e;)| . (7.17)

5See [1] and appendix A of ref. [28] for related discussions.
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This may be rewritten as (here const refers to a constant of integration)

OF; P , Pdx
a5, /81 dz Wo(a:)—ZS/d)\p()\)/Ei m—kconst

= /P dzx (Wé(:ﬁ) + QSw(:U)) + const

€

P
= / ydz + const (7.18)

which is just [1, eq. (3.11)]. Using the fact that y differs only by a sign on the two sheets,
together with the definition B; = C; — Cy, we may rewrite this as

e; 1 P
/ ydx—i——/ y dz + const
Q 2 Je,

/ ydx 4 const
C.

OF,
28;

N|— N~ N~

7

1
/ ydx—i——/ ydx + const . (7.19)
B; 2 Cn

For Wg, we will also need

P
= 1 Z / y(z) dz + const, (7.20)

where we absorb the S;-independent Wy (P)—Wy(—my) terms into the integration constant.
We now use egs. (7.19) and (7.20) in the effective superpotential (setting N; = 1)

N OF N
Weg =— 85? — Fq+2mitg »_ S; (7.21)

i=1 i=1

1 = 1 1 e 1 Y
=—= ydx—N/ ydx + = / ydx — =19 ?{ydx+const.

In the prescription relating the matrix model and the N' = 2 gauge theory we are instructed
to extremize Weg with respect to S;. Since the S;’s are determined by f(z) and therefore
by the b,’s through eqgs. (7.11) and (7.13), we may equivalently vary (7.21) with respect to
by, [21]. From eq. (7.11), one sees that (0y/0by,)dx = —(1/2)z"dz/y. For 0 <n < N — 2,
these form a complete basis of holomorphic differentials on the Riemann surface [29]. We
may therefore change basis to the unique basis of holomorphic differentials (; dual to

K3
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the homology basis, ie., ¢ 4. Gk = Oix. Consequently, the equations 6Weg/0b, = 0 for
0 < n < N — 2 may be rewritten

N-1 P Ny .p
0=— - N + : 7.9
; ﬁi Ch /Q Ch 1221/’”1 Ch (7.22)

where vaz %) 4. Gk = 0 because the sum of A; cycles is a trivial cycle. The first term just
yields Zfi ;1 Tik, which is an element of the period lattice. Hence”

Q Nioopp
¥ ey [ a- (7.23)
P =17 —mI
Q P Ny emy
= N/ G — (N — Nf)/ Ck — Z/ ¢k =0 (modulo the period lattice) ,
po po I=1"vPo

where pg is an arbitrary (generic) point on the Riemann surface. It now follows from Abel’s
theorem [29] that there exists a function ¢ (z) on the Riemann surface with an Nth order
pole at @, an (N — Ny)th order zero (or pole, if Ny > N) at P, and simple zeros at —m
for I =1,...,Ny. As we will now show, this requirement suffices to fix the form of f(z),
and therefore the Seiberg-Witten curve.

For 0 < Ny < N, the function () is simply (proportional to) the resolvent:

() =y —Wy(z) =/ Wi(@)? — f(z) - Wg(x), 0<Ny<N. (7.24)

This can be seen as follows: 1 (z) has an Nth order pole at @, and (at least) a simple zero
at P (because f(z) is a polynomial of at most (N — 1)th order). Abel’s theorem yields
N —1 conditions and therefore completely constrains the remaining zeros. Thus v (z) must
have a simple zero at x = —my, so f(z) must contain a factor (x + my) for each I. For
Y(x) to have an (N — Ny)th order zero at P, f(x) can be of Nyth order at most. These
two conditions require f(z) o H;V:f 1(x +my). Naming the constant of proportionality
4A?N=Ny and setting a = 1 in eq. (2.2), we see that the spectral curve (7.11) is given by

N Ny
v’ =[J(@—e)? =4 T (@ + my) (7.25)
=1 I=1

precisely the Seiberg-Witten curve [7]-[10] for Ny < N. (It should also be possible to
determine this constant of proportionality by setting 0Weg/dby—1 = 0, and using the gauge
theory relation 2miT(Ag) = (2N — Ny)log(A/Ag) and the fact that [21] SN, $pyde =
*Wibel.)

For N < Ny < 2N, the function 1 (z) is not given by the resolvent but by a related
function

P(z) = VA@Z)? — g(x) — A(x), N < Njy<2N, (7.26)
where A(x) is an Nth order polynomial and g(x) o H;V:fl(:v+m1). (As before, we name the
proportionality constant 4A2Y=Nr.) Under these conditions, v(x) vanishes at = —my,

"This equation was obtained in ref. [21] for the case N; = 0 by a somewhat different approach. Here we
have derived it using only matrix-model methods.
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for I =1,... Ny, has an Nth order pole at @, and an (Ny — N)th order pole at P. For
¥(x) to be a function on the Riemann surface (7.11), the square root in (z) must be
proportional to y(x), that is (normalizing appropriately)
Ny
Ax)? = 4NN T (@ 4 my) = Wo(2)® = f(z), (7.27)
I=1

where f () is a polynomial of order at most (N —1). The solution to this, to O(A2NV=Vr) is

N
A@) = [J(= — ei) + 20NV T (),
=1
Ny 3 N
f@) = 4NN Tl @ +mp) = T(@) [[(e—e) | (7.28)
=1 =1

where T(x) is defined below eq. (3.12), and again we have set o = 1 in eq. (2.2). Thus the
spectral curve (7.11) and function ¢ (z) are given by

N
yQZH(:v—ei)Z—f(x), N <Ny <2N
i=1
$(x) =y - Al), (7.20)

in agreement with the Seiberg-Witten curve for N < Ny < 2N [7]-[10] but with a particular
choice of subleading term 7'(x). (This form of the curve was already obtained (6.3) in the
previous section by comparing our perturbative matrix model calculation with the curve
in ref. [25]. The subleading term T'(z) simply corresponds to a particular choice of moduli
parameters e; picked out by the matrix model.)

Thus, for both Ny < N and N < N; < 2N, the spectral curve obtained from
the matrix-model saddle-point integral agrees precisely with the known Seiberg-Witten
curve (6.1) for the N' =2 U(N) gauge theory with Ny fundamental hypermultiplets.

Finally, from the properties of ¢ (x) (7.24) and (7.26), we see that

d
hz)dz = 2 (7.30)
(G
is a meromorphic differential with simple poles at P, ), and 2 = —m [ and residues N — Ny,

—N, and 1 respectively. These conditions imply that the meromorphic differential given by
Asw = x h(z)dz has all the correct properties to be the Seiberg-Witten differential [7, 10,
30]. Moreover, using the specific forms of 9 (x) given in egs. (7.25) and (7.29), we obtain
exactly the form of the Agy given in ref. [25].

8. Derivation of the Seiberg-Witten differential

In the previous section we obtained an expression (7.30) related to the Seiberg-Witten
differential Agyy. Although this form can be motivated from the Calabi-Yau approach [21,
31] it does not constitute a genuine matrix-model derivation of Agy. In this section we
present a derivation of Agy entirely within the framework of the matrix model.
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In the Seiberg-Witten approach, the gauge-theory expectation value of tr ¢ is calcu-
lated via [4, 5]

(br ¢") = —— EJV:]{ 271 (8.1)
2mi = [, S '

The relation between the gauge theory vev and matrix model quantities is

N
0
(tI’ ¢n> = E ﬁgs <t1‘ ¢)n>sphere + <tI’ ¢)n>disk (82)
j=1 "7 (S)

which generalizes [5, eq. (5.10)] to the case when boundaries are present (see also [15]). The
derivation of eq. (8.2) is similar to that of eq. (4.7) of this paper but uses the deformation

W(2,Q,Q) =W(®,Q,Q) +e(1/n) tr (™).
The matrix-model expectation values (tr ®") in eq. (8.2) may be expressed in terms
of the resolvent (7.4)

[e.°]

w(z) = —% <trx ! ¢> _ —%Zx—"—lmw

n=0

(tr ") = QMZ% x"w(x (8.3)

which acts as a generating function for the expectation values. To proceed, we rewrite the
last term in (7.5) as

Ny
1
MQZZ()\—x)()\ —i—m[): Z IZ x+my Mzzx—i—mlz)\—i—ml

Z

i I=1 %
Ny (=my)
_ 1 4
M Z T+ my (8.4)
so that eq. (7.5) becomes
Weo(z) We (x) ( )
2 WolT) 0 i)
s Ta g0 g, M2 Z
—iw (@) + i (=mo) _ g, (8.5)
I x+my
Next, we expand w(z) as
1 1 1
w(z) = Z m%-xp(ﬂ?) = wo(x) + M‘Ul/Z( r)+ O Ve (8.6)

X<2

Using the method developed in ref. [32],% we can solve the loop-equation (8.5) order-by-
order in 1/M, which in principle will give us (tr ®") to arbitrary order in the topological

8See also the recent paper [33].

,19,



expansion. For eq. (8.2), however, we will only need ws(x) = wo(z) and wq(r) = wy/2(z).
Inserting (8.6) into eq. (8.5), and using the fact [32]° that the (1/M)w’(z) term is O(1/M?),
we find

ws(@) = % b

B ws(w (—mr)
=2 Z " + oy : (8.7)

where y? = W/ (z)?> — f(x). This result, together with (8.3), allows us to write the contri-
butions to (tr ®™) at the sphere (x = 2) and disk (y = 1) levels as

M N
(tI‘ q)n>sphe1re = - % Z% z" ws(‘r) dz,
=1 Ai
1 N
(i B = — 5= > 7{4 " wq(x) da. (8.8)

Inserting these expressions into eq. (8.2) and comparing with (8.1) one can read off

dx. (8.9)
(5)

N oo
Asw = [Z 5, (Sws(x)) — wd(ﬂv)]
i=1 v

This generalizes eq. (5.3) in v3 of ref. [15] to the case when boundaries are present.
Using eq. (8.7), we have

N 1 L oy
g —Swy(z)) = — 5; 75 (8.10)
This expression has unit A;-periods,
N N
1 Oy 0 1 0
omi ), T asj[ 4m'f£_y x] Zaj (8.11)
‘ J=1 j=1 ' J=1
using the definition of S; (7.13). Moreover, by writing (b,, was defined in eq. (7.11) )
N N N-1 N
oy b, Oy 1 Oy Obn_1
- _Z - = _Z hol hi
98 ; nz 98, 0b,  20bw 1 ; ps; | oomomnie
N N-1
= =% | holomorphic (8.12)
Y

we see that this expression has simple poles at P and @) with residues &N, and no other
poles. The properties (8.11) and (8.12) suffice to show that

_ Wé’(x)

(8.13)

as the function on the r.h.s. has the same properties.

9The relation to the formulz in ref. [32] is: (1/M)w’(z) = —(1/M?)(tr(1/(z — ®)) tr(1/(z — ®)))conn-
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To simplify the remainder of the discussion, we consider Ny < N. In this case, we
found in the previous section that f(x) o H;V:fl(:v + myg), so f(—my) = 0. The contours
in eq. (8.8) are on the sheet on which y = +W/(z) + ---, and on this sheet, egs. (7.10)
and (7.11) imply ws(—my) = 0 so this term drops out of eq. (8.7), yielding

Ny / /
y — Wy(z) 1 y — Wo(z) f
= — E = — —. 8.14
wa () 2y —x+mr 2y f ( )
Collecting the above results one finds
x 1 !
dsw =2 [W5(@) - 50%(0) - ) (8.15)

which is in perfect agreement with the Ny < N result in ref. [25].

9. Summary

In this paper we have continued the program initiated in [5] for analyzing N' = 2 gauge
theories within the matrix model approach [1]-[4]; here we included matter in the funda-
mental representation of U(N). This addition exposes new features of the method, one
of which is the appearance of disk diagrams that contribute to the free energy. Similarly,
the tadpole diagrams necessary for computing the periods a; also have a contribution from
disk diagrams. We computed the relation between a; and the classical moduli e;, as well
as the N’ = 2 prepotential F(a), finding complete agreement with known results.

An interesting feature of our calculation is that the two cases Ny < N and N <
Ny < 2N are on the same footing and can be treated using the same method within the
matrix model approach. The only difference between the two cases is the appearance of
the polynomial T(x) when Ny > N, cf. (4.10). In the final expression for the prepotential,
however, T'(z) disappears. In section 6 we discussed the meaning of T'(2), explaining how
it affects the form of the Seiberg-Witten curve when N; > N.

From the point of view of computational efficiency, the matrix model approach cannot,
in its present form, compete with other methods for computing multi-instanton contribu-
tions [34]-[36]. However, it would be interesting to connect these approaches with the
matrix model perspective to improve our understanding of multi-instanton effects.

In sections 7 and 8 we presented derivations, entirely within the context of the matrix
model, of the Seiberg-Witten curve and differential for the N' = 2 U(N) theory with
Ny < 2N flavors. The contribution to the free energy from disk diagrams (7.20) played an
important role in the analysis. A comparison of (7.24) and (7.29) exhibits the difference
between the Seiberg-Witten curves for Ny < N and N < Ny < 2N. In the latter case, the
matrix model makes a specific choice for the modification of the curve. This result was
also inferred in section 6 from the perturbative calculation.
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