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Abstract

We perform a completely perturbative matrix model calculation of the physical low-energy
quantities of the F + 2 U(M( gauge theory. Within the matrix model framework we propose
a perturbative definition of the periods ag in terms of certain tadpole diagrams, and check our
conjecture up to first order in the gauge theory instanton expansion. The prescription does not require
knowledge of the Seiberg–Witten differential or curve. We also compute theF + 2 prepotential�(a(

perturbatively up to the first-instanton level, finding agreement with the known result.
♦ 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Dijkgraaf and Vafa, drawing on earlier developments [1–3], have uncovered the
surprising result that non-perturbative effective superpotentials for certain a + 4 F + 1
supersymmetric gauge theories can be obtained by calculating planar diagrams in a related
gauged matrix model [4–7]. In particular, the a-instanton contribution to the effective
superpotential can be obtained from the calculation of (a + 1(-loop planar diagrams in
an associated matrix model. The simplest example is the F + 1 SU(M( gauge theory with
an adjoint chiral superfield φ and tree-level superpotential U (φ(, for which the instanton
corrections can be obtained from the calculation of the planar loop diagrams in a Hermitian
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matrix model. This statement has recently been proven [8]. Further work along these lines
has been presented in Ref. [9].
The new approach can also be used to study a + 4 F + 2 supersymmetric gauge

theories, by using U (φ( to freeze the moduli at an arbitrary point on the Coulomb branch
of the F + 2 theory, thereby breaking F + 2 to F + 1, and then turning off U (φ( at
the end of the calculation to restore F + 2 supersymmetry [3–6]. The crucial feature that
makes this work is that certain quantities are independent of the parameter that goes to zero
in the limit when F + 2 supersymmetry is restored, and can thus be calculated for finite
values of the parameter.
Even when the matrix model cannot be completely solved, a perturbative diagrammatic

expansion of the matrix model can still be used to obtain non-perturbative information
about the F + 2 gauge theory. In Ref. [7], the effective gauge coupling matrix τgi of the
unbroken U(1(·U(1( gauge group at an arbitrary point on the Coulomb branch of the
F + 2 U(2) gauge theory was computed, as a function of the classical modulus, to several
orders in the instanton expansion.4
In this paper, we extend this result to the F + 2 U(M ) gauge theory, computing the

matrix of effective gauge couplings τgi of the unbroken U(1(M gauge group as a function
of the classical moduli, which we denote by dg . To explicitly obtain the full low-energy
physical content of the model, however, one also needs to determine the relation between
the periods ag and the classical moduli dg . We argue that ag can be determined by computing
tadpole diagrams in perturbative matrix theory, and verify that this prescription yields
the correct results for pure U(M ) gauge theory up through one-instanton. Knowing the
connection between ag and dg enables us to re-express τgi as a function of ag . This then
allows the relations τgi (a( + /aC.g</ai + /2�(a(</ag/ai to be integrated. Thus, we
demonstrate that exact non-perturbative quantities in low-energy F + 2 supersymmetric
theories, namely, the prepotential �(a( and the masses of BPS states |ma + laC|, can
be computed from a diagrammatic expansion of the matrix model, even in cases when an
exact solution of the matrix model is not known.
Solving for the gauge coupling matrix, prepotential and BPS mass spectrum pertur-

batively, without using the exact solution of the matrix model, is equivalent to deriving
these results without knowledge of the Seiberg–Witten curve or differential (although they
are known in the particular case we study). Thus the techniques developed here and in
Refs. [4–7] could be used to obtain non-perturbative information about F + 2 supersym-
metric gauge theories for which the Seiberg–Witten curve is not known.
In Section 2, we review the Seiberg–Witten approach to the calculation of the

prepotential, periods, and gauge couplings in F + 2 gauge theories. In Section 3, we
describe the matrix model approach to the calculation of the gauge coupling matrix τgi , and
in Section 4 we carry out the calculation of τgi to one-instanton order for the F + 2 U(M )
gauge theory. In Section 5, we present our proposal for computing ag in the perturbative
matrix model, and in Section 6 we compute the relation between ag and dg up to one-
instanton for U(M ). Using this result together with the results of Section 4, we compute

4 For this case, the exact all-orders result can be obtained from the known large-K two-cut solution of the
matrix model [4,6,7].
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the F + 2 prepotential �(a( to one-instanton level. Finally, in Section 7, we calculate
the gauge theory invariants }tr(φm(〈 perturbatively in the matrix model, finding agreement
with known results. In Appendix A, we present an alternative method of computing the
relation between ag and dg using the relation between the Seiberg–Witten differential and
the density of gauge theory eigenvalues in the large-M limit [7].

2. Seiberg–Witten approach toF � 2 gauge theories

The Seiberg–Witten approach to F + 2 supersymmetric gauge theory [10] involves
identifying a complex curve Σ and a meromorphic differential λSW on this curve. For
pure SU(M ) gauge theory5 the curve is given by a genus M � 1 hyperelliptic Riemann
surface [11,12]

Σ ] x2 + NM (w(2 � 4�2M.

(2.1)NM (w(+
M∏

Z+0
pM�Z(d(wZ +

M∑

g+1
(w � dg(.

M∏

g+1
dg + 0.

corresponding to a generic point on the Coulomb branch of the moduli space of vacua,
where the gauge symmetry is broken to U(1(M�1. In the equation above, pl(d( is the
elementary symmetric polynomial

(2.2)pl(d(+ (�1(l
∏

g1,g2,···,gl
dg1dg2 · · ·dgl. p0 + 1)

Next, one chooses a canonical homology basis of Σ , !Ag .Ag{, g + 1. ) ) ) .M � 1, in terms
of which

ag +
1
2π g



Ag

λSW. aC.g +
1
2π g



Ag

λSW.

(2.3)λSW + w
dx
x
+ wN ⇒

M (w(dw
˜
NM (w(2 � 4�2M

)

We will choose Ag , g + 1. ) ) ) .M � 1 to be the contour that remains on one sheet of the
two-sheeted Riemann surface and encircles the branch cut emanating from dg [13]. AM
and am are defined similarly. However, AM is not an independent cycle, being equivalent
to �∮M�1

g+1 Ag , and one can show that
∮M
g+1 ag +

∮M
g+1 dg by deforming the contour and

evaluating the residue of λSW at infinity.
TheAg-period integral may be inverted to write dg in terms of ag , allowing one to express

aC.g as a function of ag . Then, since /aC.g</ai + /aC.i</ag , one may write

(2.4)aC.g +
/�(a(

/ag
. �(a(+�pert(a. log�(+

∞∏

a+1
�2Ma� (a((a(.

5 This is the nontrivial piece of the U(M( gauge theory (in later sections we focus on the U(M( theory).
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thus defining the F + 2 prepotential �(a(, which can be written as a sum of perturbative
and instanton contributions. The masses of the BPS states of the theory can be expressed
as |ma +laC|, for integers m, l. Finally,

(2.5)τgi (a(+
/2�(a(

/ag/ai
.

yields the period matrix of Σ , identified with the gauge couplings of the U(1(M�1 factors
of the unbroken gauge theory.

3. Matrix model approach toF � 2 gauge theories

In this section we describe the matrix model approach to F + 2 supersymmetric U(M(

gauge theory. The first step is to break F + 2 to F + 1 by the addition of a tree-level
superpotentialU (φ( to the gauge theory. This superpotential is identified with the potential
of a chiral matrix model [4–7]. The matrix model thus has the partition function [4–7]

(3.1)W + 1
vol(F(

∏
dΦ exp

∣
�U (Φ(

ep

(
.

where the integral is overK·K matricesΦ (which can be taken to be Hermitian), ep is a
parameter that later will be taken to zero asK → ∞, and F is the unbroken matrix model
gauge group. One chooses a superpotentialU (Φ( that freezes the moduli to a generic point
on the Coulomb branch of the F + 2 theory:

(3.2)U (Φ(+ α

M∏

Z+0

pM�Z(d(
Z+1 tr

�
ΦZ+1

(
⇒ U ⇒(w(+ α

M∑

g+1
(w � dg(.

where pl(d( was defined in Eq. (2.2), and α is a parameter that will be taken to zero at
the end of the calculation, restoring F + 2 supersymmetry. The matrix integral (3.1) is
evaluated perturbatively about the extremum

(3.3)Φ0 +

/



d1�K1 0 · · · 0
0 d2�K2 · · · 0
)))

)))
) ) )

)))

0 0 · · · dM�KM



 . where
M∏

g+1
Kg +K.

which breaks the U(K( symmetry to F+∑M
g+1 U(Kg(. (This is the matrix model analog

of the gauge theory breaking U(M(→ U(1(M . Note that in the matrix model Kg ≡ 1 for
all g .)
Using the standard double-line notation, the connected diagrams of the perturbative

expansion of W may be organized in an expansion characterized by the genus e of the
surface in which the diagram is embedded [14]

(3.4)W + exp
]

∏

e�0
e
2e�2
p De(d. R(

(

. where Rg ≡ epKg)
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Evaluating the matrix integral in the Kg → ∞, ep → 0 limit, with Rg held fixed, is
equivalent to retaining only the planar (genus e + 0) diagrams. Thus

(3.5)D0(d. R(+ e2p logW
〉〉
planar

corresponds to the connected planar diagrams of the matrix theory.
To relate this to theF + 2 U(M ) gauge theory broken to∑

g U(Mg(, one introduces [2–6]

(3.6)Ueff(d. R(+�
∏

g

Mg
/D0(d. R(

/Rg
+ 2π gτ0

∏

g

Rg .

where τ0 + τ (�0( is the gauge coupling of the U(M( theory at some scale �0. In this
paper, we are interested in breaking U(M( to U(1(M , so Mg + 1 for all g , and g runs from 1
to M . The effective superpotential is extremized with respect to Rg to obtain }Rg〈:

(3.7)
/Ueff(d. R(

/Rg

〉〉〉〉
Ri+}Ri 〈

+ 0)

Finally,

(3.8)τgi (d(+
1
2π g

/2D0(d. R(

/Rg/Ri

〉〉〉〉
Rg+}Rg 〈

yields the couplings of the unbroken U(1(M factors of the gauge theory, as a function
of dg . At the end of the matrix model calculation, one must take α → 0 to restore F + 2
supersymmetry, but as will be seen, τgi is independent of α, and can thus be calculated for
any value of α.
In the next section, we will explicitly carry out the procedure outlined above for the

pureF + 2 U(M ) gauge theory.
Despite the superficial similarity of Eqs. (2.5) and (3.8), the F + 2 gauge theory

prepotential �(a( and the free energy D0(d. R( of the large Kg matrix model are
conceptually distinct. �(a( is a function of the periods ag of the Seiberg–Witten
differential, whereas D0(d. R( is a function of the dg ’s as well as the auxiliary parameters Rg
(which can understood as SU(I( glueball superfields in the related U(MI(→ U(I(M

theory [2]). Although both (2.5) and (3.8) correspond to the same quantity (the period
matrix of Σ), they are expressed in terms of different parameters (ag vs. dg ) on the moduli
space.
If we are to use the matrix model result (3.8) to determine the F + 2 prepotential

�(a(, we must first express τgi in terms of ag . Although the relationship between ag and dg
is straightforwardly obtained [13] in the Seiberg–Witten approach from the Ag -period
integral (2.3), we wish to derive this relationship from within the matrix model, without
referring to the Seiberg–Witten curve or differential. After explicitly calculating τgi for
U(M( in the next section, we will turn to a perturbative matrix model calculation of ag for
that same model in Section 5.
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4. Calculation of �ai for U()( using the matrix model

In this section, we will evaluate the planar free energy D0(d. R(, defined via

(4.1)exp
∣
1
e2p
D0(d. R(

(
+ 1
vol(F(

∏
dΦ exp

∣
�U (Φ(

ep

(〉〉〉〉
planar

to cubic order in Rg . This will enable us to calculate the gauge coupling matrix τgi for
F + 2 U(M ) gauge theory to one-instanton accuracy.
As described in the previous section, we expand Φ about the following extremum of

U (Φ(,

(4.2)

Φ +Φ0 + Ψ +

/



d1�K1 0 · · · 0
0 d2�K2 · · · 0
)))

)))
) ) )

)))

0 0 · · · dM�KM



 +

/



Ψ11 Ψ12 · · · Ψ1M
Ψ21 Ψ22 · · · Ψ2M
)))

)))
) ) )

)))

ΨM1 ΨM2 · · · ΨMM



 .

where Ψgi is anKg ·Ki matrix. This choice breaks U(K(→F+∑M
g+1 U(Kg(.

ExpandingU (Φ( to quadratic order in Ψ , we obtain

U (Φ(+
M∏

g+1
KgU (dg(+

1
2
α

M∏

g+1

]
M∏

Z+0
ZpM�ZdZ�1g

(

tr
�
Ψ 2
gg

(

(4.3)+ 1
2
α

M∏

g+1

∏

i ∞+g

]
M∏

Z+1
pM�Z

Z�1∏

l+0
dlg d

Z�l�1
i

(

tr(ΨgiΨig (+N
�
Ψ 3()

It can be shown that

M∏

Z+0
ZpM�ZdZ�1g +

)
/

/w

M∑

j+1
(w � dj(

[〉〉〉〉〉
w+dg

+
∑

j ∞+g
(dg � dj(.

(4.4)
M∏

Z+1
pM�Z

Z�1∏

l+0
dlg d

Z�l�1
i + 0.

which implies that the coefficient of tr(ΨgiΨig( vanishes when g ∞+ i . Hence the off-
diagonal matrices Ψgi are zero modes, and correspond to pure gauge degrees of freedom.
These zero modes parametrize the coset U(K(<F+U(

∮
g Kg(<˜U(K1(· · · ··U(KM([.

Following Ref. [7], we will fix the gauge Ψgi + 0 (g ∞+ i ) and introduce Grassmann-odd
ghost matrices A and B with the action

(4.5)

tr
�
A˜Φ.B[(+

M∏

g+1

∏

i ∞+g
(dg � di ( tr(AigBgi (+

M∏

g+1

∏

i ∞+g
tr(AigΨggBgi �AigBgiΨii ()

Thus the planar free energy is given in terms of the gauge-fixed integral
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exp
∣
1
e2p
D0(d. R(

(
+ 1
vol(F(

exp

]

� 1
ep

M∏

g+1
KgU (dg(

(

(4.6)·
∏
dΨgg dAgi dBgi eGquad+Gint

〉〉〉〉〉
planar

.

where the quadratic part of the action is

Gquad +�
1
2

α

ep

M∏

g+1
Pg tr

�
Ψ 2
gg

(
�

M∏

g+1

∏

i ∞+g
dgi tr(AigBgi (.

(4.7)Pg +
∑

i ∞+g
dgi . dgi + dg � di

and the interaction terms are (after implementing the gauge choice Ψgi + 0)

(4.8)Gint +�
α

ep

M∏

g+1

M∏

n+3

γn.g

n
tr
�
Ψ
n

gg

(
�

M∏

g+1

∏

i ∞+g
tr(AigΨggBgi �AigBgiΨii ()

Here

(4.9)γn.g +
1

(n� 1(:

)∣
/

/w

(n�1 M∑

j+1
(w � dj(

[〉〉〉〉〉
w+dg

and, in particular, we will need

(4.10)γ3.g + Pg
∏

j ∞+g

1
dgj
. γ4.g +

1
2
Pg

∏

j ∞+g

∏

Z ∞+g.j

1
dgjdgZ

)

TheΨgg and ghost propagators can be derived fromEq. (4.7) and the vertices fromEq. (4.8).
Each ghost loop will acquire an additional factor of (�2( [7].
For largeKg , the volume prefactor in Eq. (4.6) becomes [15]

(4.11)
1

vol(F(
+ exp

]
1
2

M∏

g+1
K2
g logKg

(

)

The integral of the quadratic action Gquad may be evaluated to give

(4.12)
M∑

g+1

∣
ep

αPg

( 1
2K

2
g
M∑

g+1

∑

i ∞+g
(dgi (

KgKi

up to some multiplicative factors. Thus, setting Rg + epKg , the matrix integral (4.6) yields
the planar free energy (up to a quadratic monomial in the Rg ’s)

D0(d. R(+�
M∏

g+1
RgU (dg(+

1
2

M∏

g+1
R2g log

∣
Rg

αPg =�2
(

(4.13)+
M∏

g+1

∏

i ∞+g
RgRi log

∣
dgi

=�

(
+

∏

m�3
D

(m(
0 (d. R(.
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Fig. 1. Diagrams contributing to D0(d.R( at �(R3(. Solid double lines correspond to Ψgg propagators; solid plus
dashed double lines correspond to ghost propagators.

where D (m(
0 (d. R( is an mth order polynomial in Rg arising from planar loop diagrams

built from the interaction vertices [6]. We have included in Eq. (4.13) a contribution
�
�∮M

g+1 Rg
(2 log =� that reflects the ambiguity in the cut-off of the full U(K( gauge

group [7]. As we will see below, the first three terms in Eq. (4.13) are already sufficient to
give the complete perturbative (from the gauge theory perspective) contribution to τgi .
To obtain τgi to one-instanton accuracy in the gauge theory, we need to evaluate the

contribution to D0(d. R( cubic in Rg . The Feynman diagrams that contribute at this order
are depicted in Fig. 1.
The six diagrams in Fig. 1 give

αD
(3(
0 (d. R(+

∣
1
2

+ 1
6

(∏

g

R3g
Pg

∣∏

j ∞+g

1
dgj

(2
� 1
4

∏

g

R3g
Pg

∏

j ∞+g

∏

Z ∞+g.j

1
dgjdgZ

� 2
∏

g

∏

j ∞+g

R2g Rj

Pgdgj

∏

Z ∞+g

1
dgZ

+ 2
∏

g

∏

j ∞+g

∏

Z ∞+g

RgRjRZ

PgdgjdgZ

(4.14)�
∏

g

∏

j ∞+g

R2g Rj

Pgd
2
gj

)

Using Eqs. (4.13) and (4.14) in Eq. (3.6), we obtain

Ueff +
∏

g

U (dg(�
∏

g

Rg log
∣

Rg

αPg =�2
(
� 2

∏

g

∏

j ∞+g
Rj log

∣
dgj

=�

(

� 1
α

)
�3
4

∏

g

∏

j ∞+g

∏

Z ∞+g.j

R2g
PgdgjdgZ

+ 2
∏

g

∏

j ∞+g

∏

Z ∞+g.j

RjRZ

PgdgjdgZ

�
∏

g

∏

j ∞+g

R2g
Pgd

2
gj

� 2
∏

g

∏

j ∞+g

RgRj

Pgd
2
gj

+ 2
∏

g

∏

j ∞+g

R2g
Pjd

2
gj

[

(4.15)+ (2π gτ0 + const(
∏

g

Rg )
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Extremizing this with respect to Rg yields the equation

0+ log
∣
RgPg

α =�2M
(

+ 1
α

)
�3
2
Rg

Pg

∏

j ∞+g

∏

Z ∞+g.j

1
dgjdgZ

� 4
∏

j ∞+g

∏

Z ∞+g.j

RZ

PjdgjdjZ

(4.16)

� 2 Rg
Pg

∏

j ∞+g

1
d2gj
� 2
Pg

∏

j ∞+g

Rj

d2gj
� 2

∏

j ∞+g

Rj

Pjd
2
gj

+ 4Rg
∏

j ∞+g

1
Pjd

2
gj

[
� 2π gτ0 + const

whose solution, to N(�4M(, is

}Rg 〈+
α

Pg
�2M + α

Pg
�4M

)
3
2P2g

∏

j ∞+g

∏

Z ∞+g.j

1
dgjdgZ

+ 4
∏

j ∞+g

∏

Z ∞+g.j

1
PjPZdgjdjZ

(4.17)+ 2
P2g

∏

j ∞+g

1
d2gj
� 2
Pg

∏

j ∞+g

1
Pjd

2
gj

+ 2
∏

j ∞+g

1
P2jd

2
gj

[
+N

�
�6M

(
.

where τ0 and the other constants in Eq. (4.16) have been absorbed into a redefinition of
the cut-off � + const· =� eπ gτ0<M . (This definition of � corresponds to that used in the
Seiberg–Witten curve (2.1).)
Although we are primarily interested in the F + 2 limit in this paper, the F + 1

effective superpotential may be easily computed by substituting Eq. (4.17) into Eq. (4.15).
We can now evaluate

(4.18)τgi (d(+
1
2π g

/2D0(d. R(

/Rg/Ri

〉〉〉〉
Rg+}Rg 〈

+ τ
pert
gi (d(+

∞∏

a+1
�2Maτ (a(

gi (d(

to obtain the perturbative contribution

(4.19)2π gτ pertgi (d(+ δgi

)
const�

∏

j ∞+g
log

∣
dgj

�

(2[
+ (1� δgi (

)
const+ log

∣
dgi

�

(2[

and the one-instanton contribution

2π gτ (1(
gi (d(+ δgi

)
8
P2g

∏

j ∞+g

∏

Z ∞+g.j

1
dgjdgZ

� 4
∏

j ∞+g

∏

Z ∞+g.j

1
P2j dgjdjZ

+ 10
P2g

∏

j ∞+g

1
d2gj

+ 10
∏

j ∞+g

1
P2jd

2
gj

[

+ (1� δgi (

)
� 8
P2g

∏

j ∞+g.i

1
dgi dgj

� 8
P2i

∏

j ∞+g.i

1
digdij

(4.20)+ 4
∏

j ∞+g.i

1
P2jdgjdij

� 10
P2g d

2
gi

� 10
P2i d

2
gi

[

to the gauge coupling matrix. We have repeatedly used the identity

(4.21)
∏

j ∞+g

1
Pjdgj

+� 1
Pg

∏

j ∞+g

1
dgj
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which can be derived by taking the y→ dg limit of both sides of

(4.22)
M∑

j+1

1
y� dj

� 1
Pg(y� dg(

+
∏

j ∞+g

1
Pj(y� dj(

)

Finally, we take the limit α → 0 to restore F + 2 supersymmetry, but this has no effect
on τgi , which is independent of α.
The logarithmic terms in Eq. (4.19) reflect the running of the coupling constants of this

asymptotically free theory.
The gauge couplings τgi are usually written in terms of the periods ag , which are related

to the dg ’s by ag + dg+N(�2M(. From this it can be seen that onemay write the perturbative
contribution to the gauge couplings as

2π gτ pertgi (a(+ δgi

)
const�

∏

j ∞+g
log

∣
ag � aj

�

(2[

(4.23)+ (1� δgi (

)
const+ log

∣
ag � ai

�

(2[

which implies that the perturbative prepotential is

(4.24)2π g�pert(a(+�
1
4

∏

g

∏

i ∞+g
(ag � ai (

2 log
∣

ag � ai

const·�

(2

in agreement with the well-known result. To obtain the one-instanton contribution to the
prepotential, � (1((a(, from perturbative matrix theory, however, one needs to know the
N(�2M( correction to the relation between ag and dg . We turn to this question in the next
section, and then return to the computation of � (1((a( in Section 6.

5. Determination of Na within the matrix model

In Seiberg–Witten theory, ag is the Ag -period integral of λSW. How is ag defined in the
context of the perturbative matrix model?
To motivative the conjecture below, we first consider

(5.1)sm +
1
m
tr
�
φm

(
.

where φ is the scalar component of the adjointF + 1 chiral superfield of theF + 2 vector
multiplet. In the Seiberg–Witten approach, the vevs of these operators may be written in
terms of integrals over the Ag cycles [7]:

(5.2)}sm〈+
1

2π gm

M∏

g+1



Ag

wm�1λSW)
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On the matrix model side, }sm〈 may be computed via6

(5.3)}sm〈+
/ ∫Ueff(d. }∫R〈. δ(

/δ

〉〉〉〉
δ→0

.

where ∫Ueff(d. R. δ( is the effective superpotential that one obtains by considering the
matrix model with action ∫U (Φ( + U (Φ( + δ(1<m( tr(Φm(.7 Spelling this out more
explicitly, one considers

∫W + exp
∣
1
e2p

∫D0(d. R. δ(
(

(5.5)+ 1
vol(F(

∏
dΦ exp

∣
� 1
ep

)
U (Φ(+ δ

1
m
tr
�
Φm

([(〉〉〉〉
planar

)

Then, writing ∫D0(d. R. δ(+ D0(d. R(+ δδD , one computes

∫Ueff(d. R. δ(+�
M∏

g+1
Mg
/∫D0(d. R. δ(

/Rg
+ 2π gτ0

M∏

g+1
Rg

(5.6)+Ueff(d. R(� δ

M∏

g+1
Mg

/

/Rg
δD)

Extremizing ∫Ueff(d. R. δ( with respect to R gives }∫Rg〈+ }Rg 〈+ δδRg +N(δ2(. Substituting
}∫R〈 into Eq. (5.6), one obtains

(5.7)

∫Ueff
�
d. }∫R〈. δ

(
+Ueff

�
d. }R〈

(
+ δ

M∏

g+1
δRg
/Ueff

/Rg

〉〉〉〉〉
}R〈
� δ

M∏

g+1
Mg

/

/Rg
δD

〉〉〉〉〉
}R〈

+N
�
δ2

(
)

The second term vanishes by the definition of }R〈. Finally, using Eq. (5.3), one obtains

(5.8)}sm〈+�
M∏

g+1
Mg

/

/Rg
δD

〉〉〉〉
}R〈
)

Now observing that to first order in δ

∫W + 1
vol(F(

∏
dΦ exp

∣
�U (Φ(

ep

(〉〉〉〉
planar

(5.9)+ 1
vol(F(

∏
dΦ

)
� δ

epm

[
tr
�
Φm

(
exp

∣
�U (Φ(

ep

(〉〉〉〉
planar

6 We thank Cumrun Vafa for this explanation.
7 For m�M + 1, ∫U (Φ( is equivalent to U (Φ( (3.2), with αpM+1�m → αpM+1�m + δ, so (5.3) becomes [2]

(5.4)}sm〈+
1
α

/Ueff(d. }R〈(
/pM+1�m

)
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we see that δD can be obtained by computing the (connected) planar m-point function
}tr(Φm(〈 in the matrix model with actionU (Φ(, thus giving the explicit expression

(5.10)}sm〈+
∏

g

Mg
/

/Rg

ep

m

]
tr
�
Φm

(〈〉〉〉〉
}R〈
)

In Section 7, we will use this expression to compute the one-instanton contribution to }sm〈.
Turning now to ag , recall that on the gauge theory side,

(5.11)ag +
1
2π g



Ag

λSW)

We propose that, just as }sm〈 is related to tr(Φm(, so ag is related to trg(Φ(, where in the
latter case, we trace only over the gth diagonal block of Φ . This prescription is motivated
by the following facts. Whereas the contour in Eq. (5.2) is over the sum of Ag cycles,
the contour in Eq. (5.11) is only over a single Ag cycle. It has been observed that when
one sums the matrix perturbation series [4], each block of eigenvalues spreads out via
eigenvalue repulsion into a distribution along a branch cut of the spectral curve; thus a
single block corresponds to a single branch cut.
Considering a generic point in moduli space, where U(M(→ U(1(M (so that Mg + 1),

we have

(5.12)ag +
∏

i

/

/Ri
ep

]
trg(Φ(

〈〉〉〉〉
}R〈
)

Now expandingΦ around the vacuum (4.2), trg(Φ(+Kgdg + tr(Ψgg (, and we find

(5.13)ag + dg +
∏

i

/

/Ri
ep

]
tr(Ψgg (

〈〉〉〉〉
}R〈
.

where }tr(Ψgg (〈 is obtained by calculating connected planar tadpole diagrams with an
external gg leg in the matrix model.
Eq. (5.13) is our conjectured matrix model definition of ag . The right-hand side of

Eq. (5.13) is independent of α, and thus survives in the F + 2 limit, as required for
consistency. One important implication of our conjecture is that we need only evaluate
tadpole diagrams in the matrix model to find the relation between ag and dg . We stress that
this procedure does not require knowledge of the Seiberg–Witten curve or of λSW, and the
calculation can be done order-by-order in the perturbative expansion.

6. Calculation of Na and �(N( for U()(

Wewill now test our proposal for the matrix model definition of ag for the case ofF + 2
U(M( gauge theory. The relevant tadpole diagrams to first order in the instanton expansion
are displayed in Fig. 2.
Using the Feynman rules derived from the action (4.6), one obtains

(6.1)
]
tr(Ψgg (

〈
+ 1

αep

∏

i ∞+g

)
� R2g
Pgdgi

+ 2 RgRi
Pgdgi

[
)
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Fig. 2. Tadpole diagrams contributing to the one-instanton contribution to ag .

Inserting this result into Eq. (5.13), evaluating the resulting expression using Eq. (4.17),
and using the identity (4.21), we find (note that this expression is α independent)

(6.2)ag + dg �
2�2M

P2g

∏

i ∞+g

1
dgi

+N
�
�4M

(
.

which agrees with the known result [13]. (In Appendix A, we present an alternative
derivation of this formula that uses the fact that the Seiberg–Witten differential is related
to the density of gauge theory eigenvalues in the large-M limit [7].) Eq. (6.2) implies that

(6.3)

log dgi + logagi +�2M
)
2
P2g

∏

j ∞+g.i

1
dgi dgj

+ 2
P2i

∏

j ∞+g.i

1
digdij

+ 2
P2g d

2
gi

+ 2
P2i d

2
gi

[
.

where agi + ag � ai . We can now re-express τgi (4.19), (4.20) in terms of ag

(6.4)τgi (a(+ τ
pert
gi (a(+

∞∏

a+1
�2Maτ (a(

gi (a(.

where the perturbative contribution is as found above (4.23)

2π gτ pertgi (a(+ δgi

)
const�

∏

j ∞+g
log

∣
agj

�

(2[

(6.5)+ (1� δgi (

)
const+ log

∣
agi

�

(2[

and the one-instanton contribution is

2π gτ (1(
gi (a(+ δgi

)
4
P2g

∏

j ∞+g

∏

Z ∞+g.j

1
agjagZ

+ 6
P2g

∏

j ∞+g

1
a2gj

+ 6
∏

j ∞+g

1
P2ja

2
gj

[

+ (1� δgi (

)
� 4
P2g

∏

j ∞+g.i

1
agiagj

� 4
P2i

∏

j ∞+g.i

1
aigaij

(6.6)+ 4
∏

j ∞+g.i

1
P2jagjaij

� 6
P2g a

2
gi

� 6
P2ia

2
gi

[
.
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where now Pg +
∑
i ∞+g(ag � ai (. It is readily verified that this can be written as τgi +

/2�(a(</ag/ai with

2π g�(a(+�1
4

∏

g

∏

i ∞+g
(ag � ai (

2 log
∣

ag � ai

const·�

(2

(6.7)+�2M
∏

g

∑

i ∞+g

1
(ag � ai (2

+N�
�4M

(
)

This precisely agrees with the result obtained in Eq. (4.34) of Ref. [13].
To conclude, we have shown that a completely perturbative matrix model calculation,

which does not use the Seiberg–Witten curve or differential, gives the correct result for the
prepotential to first order in the instanton expansion. Higher-instanton corrections to the
prepotential may be obtained by higher-loop contributions to the matrix model free energy
and tadpole diagrams.

7. Calculation of =nj〈 in the matrix model

In Section 5, we showed that the gauge theory invariant }sm〈 + (1<m(}tr(φm(〈 can be
expressed in terms of a matrix model m-point function as

(7.1)}sm〈+
∏

g

Mg
/

/Rg

ep

m

]
tr
�
Φm

(〈〉〉〉〉
}R〈
)

As a check of Eq. (7.1) we now evaluate this expression to one-instanton order in the
U(M(→U(1(M theory (so Mg + 1).
First one expands Φ around the vacuum (4.2), using Ψgi + 0 (g ∞+ i )

tr
�
Φm

(
+

M∏

g+1

m∏

Z+0

∣
m

Z

(
tr
�
dm�Zg Ψ Z

gg

(

(7.2)+
M∏

g+1

)
Kgd

m
g + mdm�1g tr(Ψgg (+

m(m� 1(
2

dm�2g tr
�
Ψ 2
gg

(
+ · · ·

[
)

By counting powers of Rg of the diagrams, it is not hard to see that only the Z� 2 terms
will contribute to the one-instanton term. The tadpole term }tr(Ψgg (〈 was already computed
in the previous section. To quadratic order, the only diagram contributing to }tr(Ψ 2

gg (〈 is a
Ψgg loop, giving epK2

g <αPg . Thus,

ep

m

]
tr
�
Φm

(〈
+ 1
m

M∏

g+1
Rgd

m
g + 1

α

) M∏

g+1
dm�1g

∏

i ∞+g

∣
� R2g
Pgdgi

+ 2 RgRi
Pgdgi

(
+ m� 1

2
dm�2g

R2g
Pg

[

(7.3)+N�
R3

(
)
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Substituting this into Eq. (7.1), one obtains the α-independent expression

(7.4)}sm〈+
1
m

M∏

g+1
dmg +�2M

)

2
M∏

g+1

∏

i ∞+g

dm�1g

PgPi dgi
+ (m� 1(

M∏

g+1

dm�2g

P2g

[

+N
�
�4M

(
)

The first term is just the classical vev of sm. Using the identity (4.21) the term in square
brackets can be written

(7.5)�2
M∏

g+1

dm�1g

P2g

∏

i ∞+g

1
dgi

+ (m� 1(
M∏

g+1

dm�2g

P2g
+

M∏

g+1

/

/dg

dm�1g

P2g
)

Now consider ym�1<
∑
i (y � di (2. This function has double poles at y + dg . The sum of

the residues at these poles is exactly equal to the sum that appear on the right hand of the
equality in (7.5). Thus provided that there is no residue at infinity the sum vanishes. This is
the case for m , 2M ; thus, there is no one-instanton correction to (sm(cl for m , 2M . This
is consistent with the exact result [3] }sm〈+ (sm(cl for m�M + 1, which should hold to all
orders in matrix model perturbation theory.
For m > 2M , however, the term in square brackets does not vanish, since for this case

the residue at infinity is equal to the residue at u + 0 of �u2M�m�1<∑
i (1�udi (2. The

sum above is equal to minus the residue at infinity, and hence equals (l+ m� 2M > 0)

(7.6)
1
l:

∣
dl

dul

()
1∑

i (1�udi (2
[〉〉〉〉
u+0

)

For example, it is exactly equal to 1 for m+ 2M , yielding

(7.7)}s2M 〈+ 1
2M

M∏

g+1
d2Mg +�2M +N

�
�4M

(
)

It may be readily verified by deforming the contour, and evaluating the residue at w +∞,
that the gauge theory expression (5.2), which uses the Seiberg–Witten differential, yields
precisely the same result.
Matrix model perturbation theory thus provides an alternativeway of evaluating }tr(φm(〈

in F + 2 U(M( gauge theory.

8. Conclusions

The remarkable results of Dijkgraaf, Vafa, and collaborators indicate that several non-
perturbative results in supersymmetric gauge theories can be obtained from perturbative
calculations in auxiliary matrix models, without reference to string/M-theory.
The Seiberg–Witten approach to F + 2 gauge theories requires the knowledge of a

Seiberg–Witten curve and one-form, where the most general method of obtaining these
involves M-theory [16].
By contrast, in the matrix model approach to F + 2 gauge theories, one expects that

all the relevant information should be contained within the matrix model itself. Previously,
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the only way to obtain the periods ag has been via the Seiberg–Witten differential, which
was obtained from the restriction of a three-form in the Calabi–Yau setup [3]. However,
this approach falls outside the spirit of the Dijkgraaf–Vafa program, as all gauge theory
quantities should be derivable without reference to string theory. One of the main results of
this paper is to provide the missing link that allows us to compute the periods ag of F + 2
gauge theories by means of a perturbative calculation in the matrix model. We have shown
that the prescription reproduces previously known results.
To obtain explicit expressions for the periods ag , aCg , and the prepotential �(a(

from knowledge of the curve requires extensive calculations (see, e.g., Ref. [13]).
Our computations are somewhat simpler than such calculations. However, it should be
emphasized that there are other methods for obtaining theF + 2 instanton expansion. One
is via the solution of Picard–Fuchs differential equation [17]; this method quickly becomes
cumbersome as the rank of the gauge group increases. A promising technique involves
recursion relations relating multi-instanton results to the one-instanton results [18]. Other
methods utilize the connection to integrable models [19] and Whitham hierarchies [20].
It would be interesting to see how the above strategies manifest themselves in the matrix
model setup. Most importantly, there are other methods which also do not make reference
to string/M-theory. In this context we note the beautiful work of Nekrasov [21]. It would
be very interesting to connect this approach to that of the matrix model.
Each of the above methods has certain advantages for particular aspects of F + 2

theories. The matrix model approach promises to give a number of new insights into the
structure of F + 2 gauge theories and their relations to string theory. In its present form
the approach seems to be less computationally efficient than the state-of-the-art methods of
Nekrasov [21], although there might be some models for which the matrix model approach
offer certain advantages. We should also mention that the matrix model approach toF + 2
theories as presented here is rather roundabout.A more direct approach would be desirable.
In Ref. [5], a more direct route was proposed for SU(2( by relating this case to a double
scaling limit of a unitary matrix model. It is not obvious to us, however, how to extend this
to more general models.
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Appendix A

In this appendix, we will derive the relation between ag and dg in an expansion in �
purely within the context of Seiberg–Witten theory. This calculation was done in a very
elegant fashion in Ref. [13]. We will present an alternative route to the same result, based
on the relation between the Seiberg–Witten differential and the density of gauge theory
eigenvalues in the large-M limit [7].
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Consider the U(IM( theory on the dimension M subspace of the Coulomb branch at
which the symmetry is broken only to U(I(M . The SW curve ∫Σ on this subspace takes
the form [2,12]

∫Σ ] x2 + NIM (w(2 � 4�̂2IM.

(A.1)NIM (w(+
M∑

g+1

I∑

i+1
(w � d̂gi (+ �̂IMSI

�
NM (w(<�M

(
.

where

(A.2)SI (w(+ 2 cos
)
I arccos

∣
1
2
w

([

are the first Chebyshev polynomials. Using SI (w(2�4+ (w2�4(TI�1(w(2, whereTI(w(

are the second Chebyshev polynomials, it follows that

(A.3)x2 + �̂2IM��2M
)
TI�1

�
NM (w(<�M

([2�
NM (w(2 � 4�2M

(

that is, ∫Σ shares the 2M branch points of Σ , and the other 2M(I � 1( branch points
coalesce in pairs to giveM(I � 1( double zeros of x2. In other words, theIM branch cuts
of the U(IM( Seiberg–Witten curve at a generic point in its moduli space merge along this
subspace of the moduli space to give the M branch cuts of the U(M( theory. Thus, the Ag
cycle of Σ is the sum

∮I
i+1 Âgi of cycles of ∫Σ .

From Eqs. (A.1) and (A.2), the roots d̂gi of NIM (w( obey

(A.4)NM (d̂gi (+ 2�M cos
)
π

∣
i � 1

2

(]
I

[
. i + 1. ) ) ) .I

that is

(A.5)d̂gi � dg +
2�M∑

j ∞+g(d̂gi � dj(
cos

)
π

∣
i � 1

2

(]
I

[
)

This equation can be iteratively solved for d̂gi giving

d̂gi + dg +
2�M cos

)
π
�
i � 1

2
(
<I

[
∑
j ∞+g(dg � dj(

(A.6)� 4�
2M cos2

)
π
�
i � 1

2
(
<I

[
∑
j ∞+g(dg � dj(2

∏

Z ∞+g

1
(dg � dk(

+ · · · )

Moreover, using Eq. (A.4), one may calculate that, in the largeI limit, the density σ(w(

of d̂gi along the branch cut is

(A.7)σ(w(+ I
π

N ⇒
M (w(

˜
4�2M � NM (w(2

)

Comparing this to Eq. (2.3) we see that

(A.8)σ(w(dw + I

π gw
λSW
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which is no accident, as we will now see.
Again using Eq. (A.2), one may compute that the SW differential of the U(IM ) theory

along this subspace of the Coulomb branch is proportional to that of the U(M ) theory:

(A.9)λ̂SW +
wN ⇒
IM (w(dw

√
N 2IM (w(� 4�̂2IM

+ IwN ⇒
M (w(dw

√
N 2M (w(� 4�2M

+IλSW)

Thus

(A.10)ag +
1
2π g



Ag

λSW +
1

2π gI

I∏

i+1



Âgi

λ̂SW +
1
I

I∏

i+1
âgi )

Also, using Eq. (5.2), it immediately follows from Eq. (A.9) that }ŝm〈 + I}sm〈 for
m + 1. ) ) ) .M , where }ŝm〈 are the vevs of (1<m( tr(φm( in SU(IM ). Eq. (A.10) holds for
all I , so we take I large. In the I → ∞ limit, âgi + d̂gi , thus

(A.11)ag + lim
I→∞

1
I

I∏

i+1
d̂gi )

In the large I limit, the sum over i can be replaced with an integral over the density
of d̂gi ’s along the gth cut

(A.12)ag +
1
I

∏

gth cut

wσ(w(dw + 1
π g

∏

gth cut

λSW

which is simply our starting point (2.3), since the integral along the cut is exactly half an Ag
cycle. Moreover, in the large I limit, we can use Eq. (A.6) in Eq. (A.11) to obtain

(A.13)ag + dg �
2�2M∑

j ∞+g(dg � dj(2
∏

Z ∞+g

1
(dg � dk(

+ · · · )

This agrees with the results of Ref. [13], and with the matrix model calculation presented
in the main body of this paper.
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