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1. Introduction

The matrix model approach [1] has provided a new way of studying (the holomorphic

sector of) supersymmetric gauge theories. That the matrix model leads to results identical

to those of the gauge theory has been shown for the simplest model (U(N) with adjoint

matter) using two methods. First, a remarkably succinct perturbative superspace argument

was used to show [2] that the effective superpotential is equal to the corresponding matrix-

model quantity order-by-order in a perturbative expansion in powers of the glueball field.

Second, it was shown [3] that the (quadratic) loop equation of the matrix model is realized

in the chiral ring of the gauge theory as a generalization of the Konishi anomaly equation [4],

thus establishing the (non-perturbative) correctness of the matrix-model description. The

latter method was extended to include fundamental matter in ref. [5]. The perturbative

method can also be used to treat this case, although it was treated in less detail in ref. [2].

Some related earlier work and more recent developments can be found in refs. [6, 7].

In this work, we extend the matrix model/gauge theory equivalence to three N = 1

theories:1 U(N)×U(N) gauge theory with matter in adjoint and bifundamental represen-

tations, U(N) gauge theory with matter in the adjoint and symmetric representations, and

1These theories have in common that, in the N = 2 limit, they all possess non-hyperelliptic (cubic)

Seiberg-Witten curves.
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U(N) gauge theory with matter in the adjoint and antisymmetric representations. We

derive the cubic relations

u3 − r(z)u− s(z) = 0 , (1.1)

satisfied by the resolvents of the associated matrix models, and give explicit expressions

for the coefficients of the polynomials r(z) and s(z) in terms of the adjoint-field eigenval-

ues, using a Ward-identity approach. These loop equations encode the geometry of cubic

algebraic curves underlying these models. On the gauge theory side we consider gener-

alized Konishi anomaly equations and show that they lead to equations identical to the

matrix-model loop equations, thus establishing the equivalence. We also use a perturba-

tive superspace analysis to analyze the relation between the gauge theories and the matrix

models. We find that for the U(N) models with matter in the symmetric/antisymmetric

representations, the gauge coupling matrix is not given by the second derivative of the

matrix-model free energy. Nevertheless, the matrix-model prescription can be modified to

give the gauge theory coupling matrix.

Various aspects of the U(N)×U(N) model were discussed in refs. [8]–[10] and also

recently in ref. [11]. The U(N) models with symmetric or antisymmetric matter were also

studied recently in ref. [12]. There is some overlap between the present work and the recent

papers [11, 12], but for the most part our work is complementary to their analysis. The

explicit expressions for s(z) that we derive in this paper were also obtained in [11, 12]

(using a different method); however, the gauge theory analogs of the loop equations were

not discussed and the equivalence was not established.

In section 2, we discuss the supersymmetric U(N)×U(N) theory with bifundamental

matter. In section 3, we perform a similar analysis for the supersymmetric U(N) gauge

theory with matter in symmetric or in antisymmetric representations. In section 4, we

use superspace perturbation theory to analyze the U(N) models. A summary of the main

results of the paper can be found in section 5. In the appendices, we briefly discuss the

saddle-point approach as an alternative to the method used in the main text, and collect

some background material on the relevant representations.

2. U(N)×U(N) with bifundamental matter

In this section we study the N = 1 U(N)×U(N) supersymmetric gauge theory with

the following matter content: two chiral superfields φi
j , φ̃ı̃

̃ transforming in the adjoint

representation of each of the two factors of the gauge group, one chiral superfield bi
̃

transforming in the bifundamental representation ( , ¯ ), and one chiral superfield b̃ı̃
j

transforming in the bifundamental representation ( ¯ , ). The superpotential of the gauge

theory is taken to be of the form2

W(φ, φ̃, b, b̃) = tr [W (φ)− W̃ (φ̃)− b̃ φ b+ b φ̃ b̃] , (2.1)

2An explicit mass term for the bifundamental field, m tr(bb̃), can be introduced by shifting φ and φ̃ and

redefining the coefficients in W (φ) and W̃ (φ̃); to simplify the presentation we will therefore not explicitly

include such a term, although we think of the bifundamental fields as being massive.

– 2 –
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where W (φ) =
∑N+1

m=1(gm/m)φ
m and similarly for W̃ (φ̃). This superpotential can be

viewed as a deformation of an N = 2 theory.

Below, after a detailed derivation of the loop equations of the matrix model, we estab-

lish the non-perturbative equivalence between the holomorphic sector of the above gauge

theory and the associated matrix model, following the ideas developed in ref. [3]. (The

argument for the perturbative equivalence of the matrix model and gauge theory given

in [2] goes through essentially unchanged for this case.) More precisely, we show that the

matrix-model loop equations are encoded in the gauge theory as vacuum expectation values

of divergences of certain anomalous currents. The anomalies associated with these currents

are generalizations of the Konishi anomaly [4].

2.1 Matrix model analysis

Following the ideas of Dijkgraaf and Vafa, we take the partition function for the matrix

model associated with the above gauge theory to be3

Z =

∫

dΦdΦ̃dB dB̃ exp

(

−
1

gs
tr
[

W (Φ)− W̃ (Φ̃)− B̃ΦB +BΦ̃B̃
]

)

, (2.2)

where Φ is an M×M matrix, Φ̃ is an M̃×M̃ matrix, B is an M×M̃ matrix, and B̃ is

an M̃×M matrix. These matrices should be viewed as holomorphic quantities [13, 3, 11]

and the integrals in (2.2) are along some curve. This point was emphasized in the recent

paper [11], where the above model was also studied. We are interested in the planar limit

of the matrix model, i.e. the limit in which gs → 0 and M , M̃ →∞, keeping S = gsM and

S̃ = gsM̃ fixed.

In the saddle-point approach to this model [14, 15, 8, 10, 11], one diagonalizes the

matrices Φ and Φ̃, and derives equations satisfied by the resolvents4

ω(z) = gs

〈

tr

(

1

z −Φ

)〉

= gs
∑

i

1

z − λi
; ω̃(z) = gs

〈

tr

(

1

z − Φ̃

)〉

= gs
∑

i

1

z − λ̃i
,

(2.3)

where matrix-model expectation values are defined via

〈

O(Φ, Φ̃, B, B̃)

〉

≡
1

Z

∫

dΦdΦ̃dB dB̃O(Φ, Φ̃, B, B̃) e−
1
gs
tr[W (Φ)−W̃ (Φ̃)−B̃ΦB+BΦ̃B̃]

. (2.4)

For completeness we give some details of the saddle-point approach in appendix A.

Below we derive the equations satisfied by the resolvents using an approach [3] that is

close in spirit to the gauge theory analysis given in section 2.2. (We stress that this method

does not assume that the matrices are hermitean.)

Throughout the paper we often suppress matrix indices, assuming that multiplications

are done using the natural contractions.

3We use capital letters to denote matrix model quantities.
4We use an unconventional normalization of the resolvents in order to make the comparison with gauge

theory more transparent. Also, in order not to clutter the formulæ we drop the 〈· · ·〉 when writing expres-

sions in terms of eigenvalues.

– 3 –
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Quadratic relations. We start by considering the Ward identity

0 =
g2s
Z

∫

dΦdΦ̃dB dB̃
d

dBi̃

{(

1

z − Φ
B

1

z − Φ̃

)

i

̃
e
− 1
gs
tr[W (Φ)−W̃ (Φ̃)−B̃ΦB+BΦ̃B̃]

}

= g2s

〈

tr

(

1

z − Φ

)

tr

(

1

z − Φ̃

)〉

+ gs

〈

tr

(

Φ

z − Φ
B

1

z − Φ̃
B̃

)〉

− gs

〈

tr

(

1

z − Φ
B

Φ̃

z − Φ̃
B̃

)

〉

= ω(z) ω̃(z)− gs

〈

tr

(

B
1

z − Φ̃
B̃

)〉

+ gs

〈

tr

(

B̃
1

z − Φ
B

)〉

, (2.5)

where the resolvents were defined in (2.3), and we have used (here and throughout) the

factorization of expectation values in the planar limit. Thus, the expectation values and

resolvents appearing in (2.5) (and in all remaining equations in this section) refer only to

the planar (sphere) parts in the genus expansion; we will not indicate this explicitly as

confusion is unlikely to arise.

Next, we note that for any polynomial f(z), we have the Ward identity

0 =
g2s
Z

∫

dΦdΦ̃dB dB̃
d

dΦij

{(

f(Φ)

z − Φ

)

i

j
e−

1
gs
tr[W (Φ)−W̃ (Φ̃)−B̃ΦB+BΦ̃B̃]

}

(2.6)

= ω(z)2f(z)− g2s

〈

tr

[

d

dΦ

(

f(z)− f(Φ)

z −Φ

)]〉

− gs

〈

tr

(

f(Φ)W ′(Φ)

z − Φ

)〉

+

+ gs

〈

tr

(

B̃
f(Φ)

z − Φ
B

)〉

.

In particular, setting f(Φ) = 1, eq. (2.6) simplifies to

ω(z)2 −W ′(z)ω(z) = −gs

〈

tr

(

W ′(z) −W ′(Φ)

z −Φ

)〉

− gs

〈

tr

(

B̃
1

z − Φ
B

)〉

. (2.7)

For future reference we also note that by multiplying eq. (2.7) by f(z) and combining the

resulting expression with eq. (2.6) one finds

gs

〈

tr

(

B̃
f(z)− f(Φ)

z − Φ
B

)〉

=−g2s

〈

tr

[

d

dΦ

(

f(z)−f(Φ)

z − Φ

)]〉

+gs

〈

tr

(

f(z)− f(Φ)

z − Φ
W ′(Φ)

)〉

.

(2.8)

Analogously, one can show

0= ω̃(z)2f(z)−g2s

〈

tr

[

d

dΦ̃

(

f(z)− f(Φ̃)

z − Φ̃

)]

〉

+gs

〈

tr

(

f(Φ̃)W̃ ′(Φ̃)

z − Φ̃

)

〉

−gs

〈

tr

(

B
f(Φ̃)

z − Φ̃
B̃

)

〉

,

(2.9)

from which it follows by setting f(Φ̃) = 1 that

ω̃(z)2 + W̃ ′(z) ω̃(z) = gs

〈

tr

(

W̃ ′(z)− W̃ ′(Φ̃)

z − Φ̃

)

〉

+ gs

〈

tr

(

B
1

z − Φ̃
B̃

)〉

. (2.10)

By combining the previous two equations, we obtain

gs

〈

tr

(

B
f(z)− f(Φ̃)

z − Φ̃
B̃

)

〉

= g2s

〈

tr

[

d

dΦ̃

(

f(z)− f(Φ̃)

z − Φ̃

)]

〉

+gs

〈

tr

(

f(z)− f(Φ̃)

z − Φ̃
W̃ ′(Φ̃)

)

〉

.

(2.11)

– 4 –
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From the above equations it is possible to derive a quadratic relation among the resol-

vents that does not involve expectation values with B, B̃’s. Combining eqs. (2.5), (2.7),

and (2.10) to eliminate the B-dependent terms, one obtains the following quadratic relation

involving the two resolvents

ω(z)2 + ω̃(z)2 − ω(z) ω̃(z)−W ′(z)ω(z) + W̃ ′(z) ω̃(z) = r1(z) , (2.12)

where

r1(z) = −gs

〈

tr

(

W ′(z)−W ′(Φ)

z − Φ

)〉

+ gs

〈

tr

(

W̃ ′(z)− W̃ ′(Φ̃)

z − Φ̃

)

〉

= −gs
∑

i

W ′(z)−W ′(λi)

z − λi
+ gs

∑

i

W̃ ′(z)− W̃ ′(λ̃i)

z − λ̃i
, (2.13)

is a polynomial of degree at most N − 1.

The cubic algebraic curve. We now discuss how the cubic algebraic curve that un-

derlies the model [8, 10] emerges. One can eliminate the terms linear in the resolvents in

eq. (2.12) by defining

ω(z) = u1(z) + ωr(z) , ω̃(z) = −u3(z) + ω̃r(z) , (2.14)

where

ωr(z) =
2

3
W ′(z)−

1

3
W̃ ′(z) , ω̃r(z) =

1

3
W ′(z)−

2

3
W̃ ′(z) , (2.15)

giving

u1(z)
2 + u3(z)

2 + u1(z)u3(z) = r0(z) + r1(z) = r(z) , (2.16)

with

r0(z) = ω2
r(z) + ω̃2

r(z)− ωr(z)ω̃r(z)

=
1

3

[

W ′2(z) + W̃ ′2(z)−W ′(z)W̃ ′(z)
]

, (2.17)

a polynomial of degree 2N .

Multiplying eq. (2.16) by u1(z)− u3(z), one finds

u1(z)
3 − r(z)u1(z) = u3(z)

3 − r(z)u3(z) ≡ s(z) , (2.18)

so that u1(z) and u3(z) are both roots of the cubic equation

0 = u3 − r(z)u− s(z) = [u− u1(z)][u − u2(z)][u − u3(z)] . (2.19)

The absence of the quadratic term implies that the third root is u2(z) = −u1(z) − u3(z),

so

s(z) = u1(z)u2(z)u3(z) = [ω(z)− ωr(z)][−ω(z) + ω̃(z) + ωr(z)− ω̃r(z)][−ω̃(z) + ω̃r(z)],

(2.20)

which we will show to be a polynomial below.

– 5 –
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Defining s(z) = s0(z) + s1(z) with

s0(z) = −ωr(z) ω̃r(z) [ωr(z)− ω̃r(z)]

=
1

27
[−W ′(z) + 2W̃ ′(z)][2W ′(z)− W̃ ′(z)][W ′(z) + W̃ ′(z)] , (2.21)

a polynomial of degree 3N , we can rewrite the cubic equation (2.19) as

r1(z)u+ s1(z) = u3 − r0(z)u− s0(z)

= (u+ ωr(z))(u − ωr(z) + ω̃r(z))(u − ω̃r(z)) . (2.22)

From eqs. (2.20) and (2.21) it follows that

s1(z) = ω(z) ω̃(z)[ω(z) − ω̃(z)]−
2

3
[W ′(z) + W̃ ′(z)]ω(z) ω̃(z)

− ω̃r(z) [ω(z)
2 −W ′(z)ω(z)] + ωr(z) [ω̃(z)

2 + W̃ ′(z)ω̃(z)] . (2.23)

We will show below that s1(z) is a polynomial of degree at most 2N−1.

Cubic relations. Above we studied Ward identities leading to expressions with at most

two bifundamental fields. We will now analyze expressions involving two additional bifun-

damental fields. The resulting equations can be used to derive a cubic relation among the

resolvents of the form (2.23). The fact that one need not consider Ward identities with an

even larger number of bifundamental fields can be traced to the form of the potential (2.1).

Our starting point is the Ward identity

0 =
g2s
Z

∫

dΦdΦ̃dB dB̃
d

dΦ̃ı̃ ̃

{(

B̃B
1

z − Φ̃

)

ı̃

̃
e
− 1
gs
tr[W (Φ)−W̃ (Φ̃)−B̃ΦB+BΦ̃B̃]

}

(2.24)

= gs ω̃(z)

〈

tr

(

B
1

z − Φ̃
B̃

)〉

+ gs

〈

tr

(

B
W̃ ′(Φ̃)

z − Φ̃
B̃

)

〉

− gs

〈

tr

(

B̃B
1

z − Φ̃
B̃B

)〉

.

Similarly,

0 = gs ω(z)

〈

tr

(

B̃
1

z − Φ
B

)〉

− gs

〈

tr

(

B̃
W ′(Φ)

z − Φ
B

)〉

+ gs

〈

tr

(

BB̃
1

z − Φ
B̃B

)〉

. (2.25)

We will also need

0 =
g2s
Z

∫

dΦdΦ̃dB dB̃
d

dB̃ı̃j

{(

1

z − Φ̃
B̃BB̃

1

z − Φ

)

ı̃

j
e
− 1
gs
tr[W (Φ)−W̃ (Φ̃)−B̃ΦB+BΦ̃B̃]

}

= gs ω̃(z)

〈

tr

(

B̃
1

z − Φ
B

)〉

+ gs ω(z)

〈

tr

(

B
1

z − Φ̃
B̃

)〉

− gs

〈

tr

(

B̃B
1

z − Φ̃
B̃B

)〉

+

+ gs

〈

tr

(

BB̃
1

z − Φ
BB̃

)〉

. (2.26)

One can eliminate the terms quartic in the bifundamental fields from the above three

equations; by combining (2.24), (2.25), and (2.26) and also using eq. (2.5), one finds

ω(z) ω̃(z) [ω(z)− ω̃(z)] = −gs

〈

tr

(

B̃
W ′(Φ)

z − Φ
B

)〉

+ gs

〈

tr

(

B
W̃ ′(Φ̃)

z − Φ̃
B̃

)

〉

. (2.27)

– 6 –
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Finally, by using eqs. (2.5), (2.7), (2.8), (2.10), and (2.11) to eliminate the remaining

dependence on the bifundamental fields, one obtains the cubic relation (2.23) with the

following explicit expression for s1(z)

s1(z) = gs ω̃r(z)

〈

tr

(

W ′(z)−W ′(Φ)

z − Φ

)〉

+ gs ωr(z)

〈

tr

(

W̃ ′(z)− W̃ ′(Φ̃)

z − Φ̃

)

〉

− g2s

〈

tr

[

d

dΦ

(

W ′(z)−W ′(Φ)

z − Φ

)]〉

− g2s

〈

tr

[

d

dΦ̃

(

W̃ ′(z)− W̃ ′(Φ̃)

z − Φ̃

)]

〉

+ gs

〈

tr

(

W ′(z)−W ′(Φ)

z − Φ
W ′(Φ)

)〉

− gs

〈

tr

(

W̃ ′(z) − W̃ ′(Φ̃)

z − Φ̃
W̃ ′(Φ̃)

)

〉

. (2.28)

At this point, it is clear that s1(z) is a polynomial of degree at most 2N − 1, whose

coefficients depend on the vevs 〈tr(Φk)〉 and 〈tr(Φ̃k)〉 with k ≤ 2N−1.

We will now write s1(z) more explicitly, in terms of the eigenvalues λi and λ̃i of Φ and

Φ̃ respectively. First observe that, since f(z)−f(Φ)
z−Φ ≡

∑

m cmΦ
m is a polynomial, we have

tr

[

d

dΦ

(

f(z)− f(Φ)

z − Φ

)]

=
∑

m

cm

m−1
∑

k=0

tr(Φk)tr(Φm−k−1) =
∑

i,j

∑

m

cm

m−1
∑

k=0

λki λ
m−k−1
j

=
∑

i,j

∑

m

cm
λmi − λmj
λi − λj

=
∑

i,j

1

λi − λj

[

f(z)− f(λi)

z − λi
−
f(z)− f(λj)

z − λj

]

= 2
∑

i6=j

1

λi − λj

[

f(z)− f(λi)

z − λi

]

. (2.29)

Hence, we may write (suppressing 〈· · ·〉 in the eigenvalue basis)

s1(z) = gs ω̃r(z)
∑

i

[

W ′(z)−W ′(λi)

z − λi

]

+ gs ωr(z)
∑

i

[

W̃ ′(z) − W̃ ′(λ̃i)

z − λ̃i

]

−

− 2g2s
∑

i6=j

1

λi − λj

[

W ′(z) −W ′(λi)

z − λi

]

− 2g2s
∑

i6=j

1

λ̃i − λ̃j

[

W̃ ′(z)− W̃ ′(λ̃i)

z − λ̃i

]

+

+ gs
∑

i

W ′(λi)

[

W ′(z)−W ′(λi)

z − λi

]

− gs
∑

i

W̃ ′(λ̃i)

[

W̃ ′(z)− W̃ ′(λ̃i)

z − λ̃i

]

. (2.30)

Finally, using the saddle point equations (A.2), we may rewrite this as

s1(z) = gs ω̃r(z)
∑

i

[

W ′(z)−W ′(λi)

z − λi

]

+ gs ωr(z)
∑

i

[

W̃ ′(z)− W̃ ′(λ̃i)

z − λ̃i

]

−

− g2s
∑

i,j

1

λi − λ̃j

[

W ′(z) −W ′(λi)

z − λi
−
W̃ ′(z)− W̃ ′(λ̃j)

z − λ̃j

]

, (2.31)
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which is a polynomial of degree no more that 2N−1. This result also appeared recently in

ref. [11], although using a different method of derivation.

This concludes our discussion of the U(N)×U(N) matrix model. We now turn to the

gauge theory analysis.

2.2 Gauge theory analysis

As will now be shown, the matrix-model loop equations can be obtained from certain

generalizations of the Konishi anomaly equations in the gauge theory. We find a one-to-

one correspondence with the matrix-model formulæ derived above.

It is sufficient to study the chiral part of the anomaly equations [3], i.e. one may use

identities that hold in the chiral ring. The chiral ring is defined as all chiral operators

modulo terms of the form {Q̄α̇, ·}. For a Grassmann even field F , one therefore has, in

the chiral ring, 0 = [Q̄α̇, Dαα̇F ] = WαF , where Wα is the (spinor) gauge superfield. As

discussed in appendix B, Wα can be viewed as a diagonal 2×2 matrix where the entries

along the diagonal are the gauge superfields of the two U(N) factors, Wα and W̃α. More

explicitly, Wα = WA
αT

A, where TA are the representation matrices appropriate for the

action of the gauge field on F . Using the explicit expressions for T A given in appendix B

one obtains identities (in the chiral ring) among the adjoint and bifundamental fields of

the form (as anticipated in [3])

[Wα, φ] = 0 , [W̃α, φ̃] = 0 , Wα b = b W̃α , W̃α b̃ = b̃Wα . (2.32)

These identities will be freely used in what follows. The Grassmann oddness ofWα together

with the relations Wα = εαβW
β and εβαεαγ = δβγ will also be used below.

The basic building blocks that we use are the anomalous currents ¯̃bı̃
j(eVb)k

l̃, φ̄i
j(eVφ)k

l,

and φ̃ı̃
̃(eVφ̃)k̃

l̃, where V is the (vector) gauge superfield (see appendix B for more details

about the notation).

We are interested in the action of D̄2 on the currents. Using the superpotential (2.1),

one finds the classical piece of D̄2¯̃bı̃
j(eVb)k

l̃ to be [−(b̃φ)ı̃
j + (φ̃b̃)ı̃

j ]bk
l̃. This current also

has an anomaly (see appendix B for an explanation of the notation)

1

32π2
(Wα)N

M (Wα)Q
P (TM

N )ı̃
j
m
ñ(TP

Q)ñ
m
k
l̃ = (2.33)

=
1

32π2

[

(W̃αW̃
α)ı̃

l̃δjk − (Wα)k
j(W̃α)ı̃

l̃ − (W̃α)ı̃
l̃(Wα)k

j + (WαW
α)k

jδl̃ı̃

]

.

There might be perturbative corrections to the anomaly but these will be non-chiral [3]

and so are not of interest to us. We assume that there are no non-perturbative corrections

to the anomaly.

The classical piece of D̄2φ̄i
j(eVφ)k

l is [W ′(φ)i
j − (bb̃)i

j ]φk
l and the anomaly is

1

32π2
(Wα)s

r(Wα)q
p(Tr

s)i
j
m
n(Tp

q)n
m
k
l = (2.34)

=
1

32π2

[

(WαW
α)i

lδjk − (Wα)k
j(Wα)i

l − (Wα)i
l(Wα)k

j + (WαW
α)k

jδli

]

.
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Similarly, the classical piece of D̄2 ¯̃φı̃
̃(eVφ̃)k̃

l̃ is −[W̃ ′(φ̃)ı̃
̃ − (b̃b)ı̃

̃]φ̃k̃
l̃ and the anomaly is

1

32π2
(W̃α)s̃

r̃(W̃α)q̃
p̃(Tr̃

s̃)ı̃
̃
m̃
ñ(Tp̃

q̃)ñ
m̃
k̃
l̃ = (2.35)

=
1

32π2

[

(W̃αW̃
α)ı̃

l̃δ̃
k̃
− (W̃α)k̃

̃(W̃α)ı̃
l̃ − (W̃α)ı̃

l̃(W̃α)k̃
̃ + (W̃αW̃

α)k̃
̃δl̃ı̃

]

.

We will now consider various anomalous currents generalizing the above expressions.

These currents all satisfy 0 = 〈D̄2J〉 in any supersymmetric vacuum.

Quadratic relations. As a first example we consider the anomaly equation

0 =
1

32π2

〈

D̄2tr

(

¯̃b eV
Wα

z − φ
b
W̃α

z − φ̃

)

〉

=
1

32π2

〈(

Wα

z − φ

)

j

k

(

W̃α

z − φ̃

)

l̃

ı̃
D̄2¯̃bı̃

j(eVb)k
l̃

〉

=
1

32π2

{

〈

tr

(

WαW
α

z − φ

)

tr

(

W̃βW̃
β

z − φ̃

)

〉

−

〈

tr

(

φ

z − φ
b
W̃αW̃

α

z − φ̃
b̃

)

〉

+

+

〈

tr

(

WαW
α

z − φ
b

φ̃

z − φ̃
b̃

)

〉

}

= R(z)R̃(z) +
1

32π2

〈

tr

(

b
W̃αW̃

α

z − φ̃
b̃

)

〉

−
1

32π2

〈

tr

(

b̃
WαW

α

z − φ
b

)〉

, (2.36)

where we introduce

R(z) ≡ −
1

32π2

〈

tr

(

WαW
α

z − φ

)〉

, R̃(z) ≡ −
1

32π2

〈

tr

(

W̃αW̃
α

z − φ̃

)

〉

. (2.37)

A few words of explanation are in order. We have dropped covariantization with eV and

e−V since this will not affect the chiral part [3]. We have used (2.33) together with the

fact that in the chiral ring no more than two Wα’s and W̃α’s can have their gauge indices

contracted [3]. In addition we have also used the factorization of the expectation values in

the chiral ring [16, 3], and made repeated use of the relations (2.32). Similar considerations

will be used throughout this section.

Next we consider (here f(z) is a polynomial; see [3] for similar calculations)

0 =
1

32π2

〈

D̄2tr

(

φ̄ eV
f(φ)WαWα

z − φ

)〉

= R(z)2f(z)−
1

32π2

〈

tr

(

b̃
f(φ)WαW

α

z − φ
b

)〉

−
1

(32π2)2

∑

m

cm

m−1
∑

k=0

tr(φkWαW
α)×

× tr(φm−k−1WβW
β) +

1

32π2

〈

tr

(

W ′(φ)f(φ)WαW
α

z − φ

)〉

,

where we have used (2.34) together with the fact that f(z)−f(φ)
z−φ ≡

∑

m cmφ
m is a polyno-

mial.

In particular, for f(z) = 1 we get

R(z)2 −W ′(z)R(z) =
1

32π2

〈

tr

(

b̃
WαW

α

z − φ
b

)〉

+
1

32π2

〈

tr

(

W ′(z)−W ′(φ)

z − φ
WαW

α

)〉

.

(2.38)
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Analogously, one readily derives

0 =
1

32π2

〈

D̄2tr

(

¯̃
φ eV

f(φ̃)W̃αW̃
α

z − φ̃

)

〉

= R̃(z)2f(z) +
1

32π2

〈

tr

(

b
f(φ̃)W̃αW̃

α

z − φ̃
b̃

)

〉

−
1

(32π2)2

∑

m

cm

m−1
∑

k=0

tr(φ̃kW̃αW̃
α)×

×tr(φ̃m−k−1W̃βW̃
β)−

1

32π2

〈

tr

(

W̃ ′(φ)f(φ̃)W̃αW̃
α

z − φ̃

)

〉

, (2.39)

and

R̃(z)2 + W̃ ′(z)R̃(z) = −
1

32π2

〈

tr

(

b
W̃αW̃

α

z − φ̃
b̃

)

〉

−
1

32π2

〈

tr

(

W̃ ′(z)− W̃ ′(φ̃)

z − φ̃
W̃αW̃

α

)

〉

.

(2.40)

The similarity of eqs. (2.36), (2.38) and (2.40) with eqs. (2.5), (2.7) and (2.10) is

obvious. Combining eqs. (2.36)-(2.40) to eliminate b and b̃, we find

R(z)2 + R̃(z)2 −R(z)R̃(z) −W ′(z)R(z) + W̃ ′(z)R̃(z) = r1(z) (2.41)

with

r1(z) =
1

32π2

〈

tr

(

W ′(z)−W ′(φ)

z − φ
WαW

α

)〉

−
1

32π2

〈

tr

(

W̃ ′(z)− W̃ ′(φ̃)

z − φ̃
W̃αW̃

α

)

〉

.

(2.42)

The above two equations are the gauge theory analogs of the matrix-model results (2.12)

and (2.13). Since the effect of r1(z) in (2.41) is to eliminate the positive powers in the

Laurent expansion of −W ′(z)R(z)+W̃ ′(z)R̃(z), the polynomial r1(z) has the same function

as in the matrix model. The two equations are therefore equivalent and we may identify

R(z) = ω(z) , R̃(z) = ω̃(z) . (2.43)

By looking at the other equations above one may also identify

gs

〈

tr
(

B f(Φ̃) B̃
)

〉

= −
1

32π2

〈

tr
(

b f(φ̃)W̃αW̃
α b̃
)

〉

,

gs

〈

tr
(

B̃ f(Φ)B
)

〉

= −
1

32π2

〈

tr
(

b̃ f(φ)WαW
α b
)

〉

. (2.44)

Cubic relations. Strictly speaking, equation (2.41) involves both resolvents so we need

one more relation before we can make the identifications (2.43). Such a relation is obtained

if we can show that the cubic loop equation (2.23), (2.28) is also realized in the gauge theory.

Given the close correspondence between the gauge theory and matrix model expressions

noted above, the only thing we need to check is that (2.24), (2.25) and (2.26) are also

realized in gauge theory consistent with the above identifications. If this is true then the

cubic equation will follow in the same way as in the matrix model analysis.
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The gauge-theory analog of (2.24) is

0 =
1

32π2

〈

D̄2 tr

(

¯̃
φ eV b̃ b

W̃αW̃
α

z − φ̃

)

〉

= −
1

32π2
R̃(z)

〈

tr

(

b
W̃αW̃

α

z − φ̃
b̃

)

〉

−
1

32π2

〈

tr

(

b
W̃ ′(φ̃)

z − φ̃
W̃αW̃

αb̃

)

〉

+

+
1

32π2

〈

tr

(

b̃b
W̃αW̃

α

z − φ̃
b̃b

)

〉

. (2.45)

Similarly, consideration of 1
32π2

〈D̄2 tr
(

φ̄ eV b b̃ WαW
α

z−φ

)

〉 leads to the analog of (2.25):

0 = −
1

32π2
R(z)

〈

tr

(

b̃
WαW

α

z − φ
b

)〉

+
1

32π2

〈

tr

(

b̃
W ′(φ)

z − φ
WαW

αb

)〉

−

−
1

32π2

〈

tr

(

bb̃
WαW

α

z − φ
bb̃

)〉

. (2.46)

Finally, the analog of (2.26) is

0 =
1

32π2

〈

D̄2 tr

(

b̄ eV
W̃α

z − φ̃
b̃ b b̃

Wα

z − φ

)

〉

= −
1

32π2
R̃(z)

〈

tr

(

b̃
WαW

α

z − φ
b

)〉

−
1

32π2
R(z)

〈

tr

(

b
W̃αW̃

α

z − φ̃
b̃

)

〉

+

+
1

32π2

〈

tr

(

b̃ b
W̃αW̃

α

z − φ̃
b̃ b

)

〉

−
1

32π2

〈

tr

(

b b̃
WαW

α

z − φ
b b̃

)〉

. (2.47)

This completes the discussion of the equivalence of the matrix-model loop equations and

gauge-theory anomaly equations.

It is worth noting that we did not have to use the entire chiral ring (which includes

expressions with arbitrary many bifundamental fields) to derive the equations which de-

termine R(z), R̃(z).

Relation between gauge-theory and matrix-model expectation values. It is also

of obvious interest to look for equations which determine

T (z) ≡

〈

tr

(

1

z − φ

)〉

, T̃ (z) ≡

〈

tr

(

1

z − φ̃

)〉

, (2.48)

since these expressions act as generating functions for the gauge-theory expectation values

tr(φk) and tr(φ̃k), whereas R(z) and R̃(z) (which by the above analysis are equal to ω(z)

and ω̃(z), respectively) are the generating functions (2.3) for the matrix-model expectation

values tr(Φk) and tr(Φ̃k).

Before discussing the U(N)×U(N) case, let us recall the case of the U(N) theory

with adjoint matter only. In a supersymmetric vacuum the equations governing this model
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are [3]

R(z)2 −W ′(z)R(z) =
1

4
f(z) =

1

32π2

〈

tr

(

W ′(z)−W ′(φ)

z − φ
WαW

α

)〉

, (2.49)

2R(z)T (z) −W ′(z)T (z) =
1

4
c(z) = −

〈

tr

(

W ′(z) −W ′(φ)

z − φ

)〉

. (2.50)

Recalling the definition of the glueball field, S = − 1
32π2

tr(WαW
α), we see that the second

equation is formally the derivative of the first equation, with the identifications T (z) =
∂
∂SR(z) and c(z) =

∂
∂Sf(z). On the gauge theory side, this of course does not quite make

sense; on the matrix model side, however, where S is just a parameter (= gsM), it makes

sense to take a derivative with respect to S. Since R(z) in the gauge theory is identified

with ω(z) in the matrix model, we are therefore led to the equation5

T (z) =
∂

∂S
ω . (2.51)

Precisely this formula was proposed in refs. [17, 18] (taking into account differences in

conventions and recalling that ω in the formula above is only the leading term in the genus

expansion of the resolvent, ω0).

A similar analysis can be carried out in the U(N) model with additional matter in the

fundamental representation and a superpotential of the form tr[W (φ)]+
∑Nf

I=1 q̃
I(φ+mI)q

I .

For this particular case we have, using the results in [5]

R(z)2 −W ′(z)R(z) =
1

4
f(z) =

1

32π2

〈

tr

(

W ′(z)−W ′(φ)

z − φ
WαW

α

)〉

,

2R(z)T (z) −W ′(z)T (z) −

Nf
∑

I=1

q̃I
1

z − φ
qI =

1

4
c(z) = −

〈

tr

(

W ′(z) −W ′(φ)

z − φ

)〉

. (2.52)

The first equation is the same as in the case without fundamental matter (2.50), but the

second equation has an extra contribution. We also have [5]

q̃I
(φ+mI)

z − φ
qI = R(z) (no sum over I) . (2.53)

It follows from this equation that

R(z)

z +mI
= q̃I

1

z − φ
qI − q̃I

1

z +mI
qI = q̃I

1

z − φ
qI +

R(−mI)

z +mI
. (2.54)

Using this result to eliminate the q-dependence in (2.52) and using the argumentation

above we are led to the identification (where R(z) = ω0(z))

T (z) =
∂

∂S
ω0(z) +

1

2ω0(z) −W ′(z)

∑

I

ω0(z)− ω0(−mI)

z +mI
=

∂

∂S
ω0(z) + ω1/2(z) , (2.55)

5Here, and in subsequent equations, ∂/∂S should be identified with
∑

iNi∂/∂Si, as can be seen by

considering the z → ∞ part of this equation. When we compare with the results in ref. [18], we set Ni = 1

for all i.
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where ω1/2(z) is the subleading (disk) contribution [18] in the topological expansion of the

resolvent: ω(z) = ω0(z) + gsω1/2(z) + · · ·. Note that the expression (2.55) precisely agrees

with eqs. (8.7), (8.9) in (version 3 of) ref. [18] (after taking into account differences in

conventions: ω0 = −Sωs, ω1/2 = −ωd). It is interesting to note that on the matrix-model

side the extra term in (2.55) compared to (2.51) comes from a subleading (disk) effect in the

matrix-model loop equation [18], whereas on the gauge theory side it arises from another

equation, rather than from a subleading term. We also note that (2.55) and the more

explicit expression derived from it (in [18, eq. (8.15)], valid when Nf < N) agrees with (a

special case of) the expression for T (z) given in the very recent paper [7] (cf. eqs (3.10),

(3.11) of that paper), using in particular the result 〈tr(φk)〉 = 〈tr(φk)〉classical for k ≤ N .

Let us now return to the U(N)×U(N) model. By repeating the steps which lead

to (2.41) using analogous currents, but without the WαW
α and W̃αW̃

α factors, one may

derive

0 = −D̄2

〈

tr

(

φ̄ eV
1

z − φ

)〉

− D̄2

〈

tr

(

¯̃
φ eV

1

z − φ̃

)〉

+ D̄2

〈

tr

(

¯̃
b eV

1

z − φ
b

1

z − φ̃

)〉

= 2R(z)T (z) + 2R̃(z)T̃ (z) −R(z)T̃ (z)− R̃(z)T (z) −W ′(z)T (z) + W̃ ′(z)T̃ (z)− c1(z)

(2.56)

(where we have dropped terms involving — after factorization — 〈tr( Wα

z−φ)〉 and 〈tr(
W̃α

z−φ̃
)〉

since such terms vanish in a supersymmetric vacuum) and the polynomial c1(z) is explicitly

given by

c1(z) = −

〈

tr

(

W ′(z)−W ′(φ)

z − φ

)〉

+

〈

tr

(

W̃ ′(z)− W̃ ′(φ̃)

z − φ̃

)

〉

. (2.57)

We note that (2.56) can formally be obtained by taking derivatives of (2.41). We are

therefore led to suggest the identifications6

T (z) =

[

∂

∂S
+

∂

∂S̃

]

ω , T̃ (z) =

[

∂

∂S
+

∂

∂S̃

]

ω̃ . (2.58)

which fit nicely into the structure given by the results (2.51), (2.55). Since we have two

unknowns but only one equation, we can not argue unambiguously in favor of the above

identifications, but consideration of the cubic equation for T (z), T̃ (z) analogous to the one

for R(z), R̃(z) presumably also leads to (2.58), although we have not checked this explicitly.

3. U(N) with symmetric or antisymmetric matter: I

In this section we consider the N = 1 U(N) supersymmetric gauge theory with one chiral

superfield φi
j transforming in the adjoint representation of the gauge group, one chiral

superfield xij transforming in either the symmetric ( ) or the antisymmetric ( ) rep-

resentation, and one chiral superfield x̃ij transforming in the conjugate representation.

We treat the cases of the symmetric and antisymmetric representations simultaneously

6This result may also be obtained via the method in refs. [22, 17].
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by assuming that x, x̃ satisfy xT = βx and x̃T = βx̃, where β = 1 for the symmetric

representation, and β = −1 for the antisymmetric representation.

The superpotential of the gauge theory is taken to be of the form7

W(φ, x, x̃) = tr[W (φ)− x̃ φ x] , (3.1)

where W (φ) =
∑N+1

m=1(gm/m)tr(φ
m). This superpotential can be viewed as a deformation

of an N = 2 theory.

Below, after deriving the loop equations of the matrix model (including the first sub-

leading contribution in the 1/M expansion) we establish the non-perturbative equivalence

of the holomorphic sector of the above gauge theory to the associated matrix model, by

showing how the matrix-model loop equations are encoded in the gauge theory.

The extension of the perturbative argument given in ref. [2] to include the models

considered in this section will be treated in section 4.

3.1 Matrix model analysis

The partition function for the (holomorphic) matrix model is taken to be8

Z =

∫

dΦdX dX̃ e−
1
gs
tr[W (Φ)−X̃ΦX] , (3.2)

where XT = βX, X̃T = βX̃ , and β = 1 (−1) for ( ).

We are interested in the planar limit of the matrix model, i.e. the limit in which

gs → 0 and M → ∞, keeping S = gsM fixed. The above matrix model is closely related

to the O(n) matrix model [19] with n = 1. The planar saddle-point solution of that model

was derived in refs. [20]; see also the recent paper [12] where the planar solution to (3.2)

was discussed. In the saddle-point approach, one diagonalizes the matrix Φ and derives

equations satisfied by the resolvent9

ω(z) = gs

〈

tr

(

1

z − Φ

)〉

= gs
∑

i

1

z − λi
, (3.3)

where matrix-model expectation values are defined via

〈O(Φ, X, X̃)〉 =
1

Z

∫

dΦdX dX̃ O(Φ, X, X̃) e−
1
gs
tr[W (Φ)−X̃ΦX] . (3.4)

Some details of the saddle-point analysis are given in appendix A.

Below we derive the equations satisfied by the resolvents using an approach [3] (see

also the approach in e.g. [19, 20]) that is close in spirit to the gauge theory analysis given

7We do not explicitly include a mass term for the x, x̃ fields although we think of these fields as being

massive, cf. footnote 2.
8As in the previous section, we use capital letters to denote matrix model quantities. All matrix indices

run over M values.
9We use an unconventional normalization of the resolvent in order to make the comparison with gauge

theory more transparent. Also, in order not to clutter the formulæ we drop the 〈· · ·〉 when writing expres-

sions in terms of eigenvalues.
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in section 3.2. The discussion closely parallels the one in section 2 (which is not surprising

since the models in this section are orientifolds10 of the one in section 2). (We stress that

this method does not assume that the matrices are hermitean.)

Quadratic relations. We begin by considering the Ward identity

0 =
2g2s
Z

∫

dΦdX dX̃
d

dXij

{[

1

z − Φ
X

(

1

z +Φ

)T
]

ij
e
− 1
gs
tr[W (Φ)−X̃ΦX]

}

= g2s

〈

tr

(

1

z − Φ

)

tr

(

1

z +Φ

)〉

+ βg2s

〈

tr

(

1

z − Φ

1

z +Φ

)〉

+

+ gs

〈

tr

[

1

z − Φ
X

(

1

z +Φ

)T

X̃Φ

]

〉

+ gs

〈

tr

[

1

z +Φ
X

(

1

z − Φ

)T

X̃Φ

]

〉

= −ω(z)ω(−z) +
βgs
2z
[ω(z)−ω(−z)] + gs

〈

tr

(

X̃
1

z−Φ
X

)〉

− gs

〈

tr

(

X̃
1

z+Φ
X

)〉

, (3.5)

where we have used factorization of the expectation values in the planar limit. The correc-

tions to factorization go like 1
M2 (or g

2
s ). In the above expression, we have neglected the

1
M2

corrections, but have kept the 1
M (or gs) subleading terms. Note that it is only the terms

that are proportional to β that are subleading (this feature is true in all equations in this

section); the gs-dependence in the last two terms in (3.5) is related to our normalizations

of X, X̃ and ω(z), and does not mean that these terms are subleading.

In complete analogy with (2.7) and (2.8) one may derive

ω(z)2 −W ′(z)ω(z) = −gs

〈

tr

(

W ′(z) −W ′(Φ)

z − Φ

)〉

− gs

〈

tr

(

X̃
1

z − Φ
X

)〉

, (3.6)

as well as

gs

〈

tr

(

X̃
f(z)− f(Φ)

z − Φ
X

)〉

= −g2s

〈

tr

[

d

dΦ

(

f(z)− f(Φ)

z − Φ

)]〉

+

+ gs

〈

tr

(

f(z)− f(Φ)

z − Φ
W ′(Φ)

)〉

. (3.7)

Combining (3.5) with (3.6) to eliminate the X-dependent terms, one finds

ω(z)2 + ω(−z)2 + ω(z)ω(−z)−W ′(z)ω(z) −W ′(−z)ω(−z) = r1(z) +
βgs
2z
[ω(z)− ω(−z)] ,

(3.8)

where

r1(z) = −gs

〈

tr

(

W ′(z)−W ′(Φ)

z − Φ

)〉

− gs

〈

tr

(

W ′(−z)−W ′(Φ)

−z − Φ

)〉

= −gs
∑

i

W ′(z)−W ′(λi)

z − λi
− gs

∑

i

W ′(−z)−W ′(λi)

−z − λi
(3.9)

is a (manifestly even) polynomial of degree at most N − 1.

10Most of the equations in this section can be related to the ones in section 2 by implementing an

orientifold projection on the fields. Note, however, that the subleading terms to be discussed below can not

be obtained this way.
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The β-dependent terms on the r.h.s. of eq. (3.8) are subleading in gs compared to

the rest of the terms. We may expand the resolvent in powers of gs, i.e. in a topological

expansion [21] as ω(z) =
∑

χ≤2 g
2−χ
s ω1−χ/2(z) = ω0(z) + gs ω1/2(z) + · · ·. Here χ is the

Euler characteristic, the leading term is the sphere (χ = 2) contribution, and the next term

is an RP2 (χ = 1) contribution. Using this expansion to solve (3.8) order-by-order we find

(in agreement with [20])

ω0(z)
2 + ω0(−z)

2 + ω0(z)ω0(−z)−W ′(z)ω0(z)−W ′(−z)ω0(−z) = r1(z) , (3.10)

and

2ω0(z)ω1/2(z) + 2ω0(−z)ω1/2(−z) + ω0(z)ω1/2(−z) + ω0(−z)ω1/2(z)−

−W ′(z)ω1/2(z) −W ′(−z)ω1/2(−z)−
β

2z
[ω0(z) − ω0(−z)] = 0 . (3.11)

The cubic algebraic curve. As we now discuss (see also refs. [20, 12]) there is a cubic

algebraic curve underlying the model. The linear term in eq. (3.10) can be eliminated by

defining

ω0(z) = u1(z) + ωr(z), ω0(−z) = u3(z) + ωr(−z) , (3.12)

with

ωr(z) =
2

3
W ′(z)−

1

3
W ′(−z) , (3.13)

giving

u1(z)
2 + u3(z)

2 + u1(z)u3(z) = r0(z) + r1(z) , (3.14)

with

r0(z) = ω2
r (z) + ω2

r(−z) + ωr(z)ωr(−z)

=
1

3

[

W ′2(z) +W ′2(−z)−W ′(z)W ′(−z)
]

, (3.15)

a polynomial of degree 2N . Multiplying eq. (3.14) by u1(z)− u3(z), we find [20]

u1(z)
3 − r(z)u1(z) = u3(z)

3 − r(z)u3(z) ≡ s(z) , (3.16)

so that u1(z) and u3(z) are both roots of the cubic equation

0 = u3 − r(z)u− s(z) = (u− u1(z))(u − u2(z))(u − u3(z)) . (3.17)

The absence of the quadratic term show that the third root is u2(z) = −u1(z)−u3(z), and

s(z)=u1(z)u2(z)u3(z)=[ω0(z)−ωr(z)][−ω0(z)−ω0(−z)+ωr(z)+ωr(−z)][ω0(−z)−ωr(−z)] ,

(3.18)

which we will show to be a (manifestly even) polynomial below.

Defining s(z) = s0(z) + s1(z) with

s0(z) = ωr(z)ωr(−z)[ωr(z) + ωr(−z)]

=
1

27
[−W ′(z) + 2W ′(−z)][2W ′(z)−W ′(−z)][W ′(z) +W ′(−z)] , (3.19)
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a polynomial of degree 3N , we can rewrite the cubic equation as

r1(z)u+ s1(z) = u3 − r0(z)u− s0(z)

= (u+ ωr(z))(u − ωr(z) − ωr(−z))(u + ωr(−z)) . (3.20)

From eqs. (3.18) and (3.19) it follows that

s1(z) = −ω0(z)ω0(−z)[ω0(z) + ω0(−z)] +
2

3
[W ′(z) +W ′(−z)]ω0(z)ω0(−z) +

+ωr(−z) [ω0(z)
2 −W ′(z)ω0(z)] + ωr(z) [ω0(−z)

2 −W ′(−z)ω0(−z)] . (3.21)

We will show below that s1(z) is an even polynomial of degree at most 2N−1.

Cubic relations. Using Ward identities, we now show how to obtain the relation (3.21)

with an explicit expression for s1(z). In complete analogy with eq. (2.24) and (2.25) we

have

0 = gs ω(z)

〈

tr

(

X̃
1

z − Φ
X

)〉

−gs

〈

tr

(

X̃
W ′(Φ)

z − Φ
X

)〉

+gs

〈

tr

(

XX̃
1

z −Φ
X̃X

)〉

. (3.22)

It can also be shown that

0 = 2
g2s
Z

∫

dΦdX dX̃
d

dXij

{[

1

z − Φ
XX̃X

(

1

z +Φ

)T
]

ij
e−

1
gs
tr[W (Φ)−X̃ΦX]

}

= gs ω(z)

〈

tr

(

X̃
1

z +Φ
X

)〉

−gs ω(−z)

〈

tr

(

X̃
1

z − Φ
X

)〉

+gs

〈

tr

(

XX̃
1

z − Φ
XX̃

)〉

−

− gs

〈

tr

(

XX̃
1

z +Φ
XX̃

)〉

+
βg2s
z

[〈

tr

(

X̃
1

z −Φ
X

)〉

+

〈

tr

(

X̃
1

z +Φ
X

)〉]

. (3.23)

Combining eqs. (3.22) and (3.23), and using eqs. (3.5) and (3.6), we find

−ω(z)ω(−z) [ω(z) + ω(−z)] = −gs

〈

tr

(

X̃
W ′(Φ)

z − Φ
X

)〉

+ gs

〈

tr

(

X
W ′(Φ)

z +Φ
X̃

)〉

+

+
βgs
2z

[

ω(z)2 − ω(−z)2
]

−

−
βg2s
z

〈

tr

(

W ′(Φ)

z − Φ

)

+ tr

(

W ′(Φ)

z +Φ

)〉

.

Only the first two (non β-dependent) terms on the r.h.s. of this equation contribute to

the leading-order (sphere) piece on the l.h.s., i.e. to −ω0(z)ω0(−z) [ω0(z) + ω0(−z)]. Con-

sidering only the leading terms in eq. (3.24) and using eqs. (3.5)–(3.7), one obtains (by

comparison with (3.21)) an explicit expression for s1(z) in terms of the matrix model vevs

〈tr(Φk)〉

s1(z) = −gs ωr(−z)

〈

tr

(

W ′(z)−W ′(Φ)

z − Φ

)〉

− g2s

〈

tr

[

d

dΦ

(

W ′(z)−W ′(Φ)

z − Φ

)]〉

+

+ gs

〈

tr

(

W ′(z)−W ′(Φ)

z − Φ
W ′(Φ)

)〉

+ (z → −z) . (3.24)
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Using eq. (2.29), we can rewrite this more explicitly, in terms of the eigenvalues λi of Φ:

s1(z) = − gs ωr(−z)
∑

i

[

W ′(z)−W ′(λi)

z − λi

]

− 2g2s
∑

i6=j

1

λi − λj

[

W ′(z)−W ′(λi)

z − λi

]

+

+ gs
∑

i

W ′(λi)

[

W ′(z)−W ′(λi)

z − λi

]

+ (z → −z) . (3.25)

Finally, using the saddle point equations (A.7), we may rewrite this as

s1(z) = −gs ωr(−z)
∑

i

[

W ′(z) −W ′(λi)

z − λi

]

− g2s
∑

i,j

1

λi + λj

[

W ′(z)−W ′(λi)

z − λi

]

+(z → −z) .

(3.26)

From this expression it is clear that s1(z) is an even polynomial of degree at most 2N−1.

The result (3.26) also appeared recently in ref. [12], although using a different method of

derivation. Next we turn to the gauge theory analysis.

3.2 Gauge theory analysis

Below we show that the matrix-model loop equations discussed above can be obtained in

the gauge theory from generalizations of the Konishi anomaly equations.

As in section 2, it is sufficient to study the chiral part of the anomaly equations. In

the chiral ring we have 0 = [Q̄α̇, Dαα̇F ] =WαF , where Wα is the gauge spinor superfield;

more explicitly, Wα = W
A
α T

A, where TA are the representation matrices appropriate for

the action of the gauge field on the field F . Using the explicit expressions for T A given in

appendix B one obtains the identities (valid in the chiral ring)

[Wα, φ] = 0 , Wαx = −x(Wα)
T , x̃Wα = −(Wα)

T x̃ , (3.27)

which will be repeatedly used below.

The basic building blocks that we will need are the (anomalous) currents ¯̃xij(eVx)kl
and φ̄i

j(eVφ)k
l. Using the superpotential (3.1), one finds the classical piece of D̄2 ¯̃xij(eVx)kl

to be −(x̃φ)[ij)xkl = −
1
2 [x̃φ+ φT x̃]ijxkl; the anomalous contribution [4] is

1

32π2
(Wα)n

m(Wα)q
p(Tm

n)ijrs(Tp
q)srkl =

1

32π2

[

2(WαW
α)[k

[jδ
i)
l)
+ 2(Wα)[k

[j(Wα)l)
i)
]

.

(3.28)

(The [ ) notation is explained in appendix B.) The classical piece of D̄2φ̄i
j(eVφ)k

l is given

by W ′(φ)i
jφk

l − (xx̃)i
jφk

l and the anomaly is the same as in eq. (2.34).

As in section 2, we now generalize these currents.11 The approach is very similar to

the one in section 2 so we suppress the details.

11One can argue [3] that there should be no chiral, perturbative corrections to the anomalies of the

currents, but what about non-perturbative corrections? The SU(2N) + theory does have composite

pfaffian operators which might affect the discussion. However, since we are dealing with U(N) it seems that

such operators should not be present.
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Quadratic relation. It can be shown that

0 =
1

32π2

〈

D̄2

[

tr

(

φ̄ eV
WαW

α

z − φ

)

+ tr

(

φ̄ eV
WαW

α

−z − φ

)

+ 2 tr

(

¯̃x eV
Wα

z − φ
x

(

Wα

z + φ

)T
)]〉

= R(z)2 +R(−z)2 +R(z)R(−z)−W ′(z)R(z) −W ′(−z)R(−z) − r1(z) , (3.29)

with

r1(z) =
1

32π2

〈

tr

(

W ′(z)−W ′(φ)

z − φ
WαW

α

)〉

+
1

32π2

〈

tr

(

W ′(−z)−W ′(φ)

−z − φ
WαW

α

)〉

,

(3.30)

where we have used (here and throughout) the fact that in the chiral ring no more than

two Wα’s can have their gauge indices contracted [3], together with the factorization prop-

erty [16, 3] and also the relations (3.27), valid in the chiral ring.

Cubic relation. One may also derive (3.21) in the gauge theory. To show this it is

sufficient to obtain the gauge theory analogues of (3.22) and (3.23). This is done by

considering

0 =
1

32π2

〈

D̄2 tr

(

φ̄ eV x x̃
WαW

α

z − φ

)〉

= −
1

32π2
R(z)

〈

tr

(

x̃
WαW

α

z − φ
x

)〉

+
1

32π2

〈

tr

(

x̃
W ′(φ)

z − φ
WαW

αx

)〉

−

−
1

32π2

〈

tr

(

xx̃
WαW

α

z − φ
xx̃

)〉

, (3.31)

and

0 = −
1

32π2

〈

D̄2 tr

(

¯̃x eV
Wα

z − φ
x x̃ x

(

Wα

z + φ

)T
)

〉

= −
1

32π2
R(z)

〈

tr

(

x̃
WαW

α

z + φ
x

)〉

+
1

32π2
R(−z)

〈

tr

(

x̃
WαW

α

z − φ
x

)〉

−

−
1

32π2

〈

tr

(

x x̃
WαW

α

z − φ
x x̃

)〉

+
1

32π2

〈

tr

(

x x̃
WαW

α

z + φ
x x̃

)〉

.

By comparison of the leading (β-independent) parts of the matrix-model expressions with

the above gauge theory equations, we find that they agree provided we identify

R(z) = ω0(z) . (3.32)

We note that it was not necessary to consider the entire chiral ring (i.e. operators with

arbitrary many symmetric or antisymmetric fields) to obtain this result. It is also possible

to derive relations between expectation values involving the symmetric (or antisymmetric)

fields, e.g.

−
1

32π2

〈

tr(x̃ f(φ)WαW
α x)

〉

= gs

〈

tr(X̃ f(Φ)X)

〉

. (3.33)

Notice that no subleading terms appeared in the gauge theory equations. The role of the

subleading terms in the matrix model expressions will become clear below.
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Relation between gauge-theory and matrix-model expectation values. The gen-

erating function for the gauge theory expectation values 〈tr(φk)〉 is

T (z) ≡

〈

tr

(

1

z − φ

)〉

. (3.34)

An equation involving this function, analogous to (3.29), can be derived by dropping the

WαW
α factors in the above currents, i.e.

0 = −D̄2

〈

tr

(

φ̄ eV
1

z − φ

)〉

− D̄2

〈

tr

(

φ̄ eV
1

−z − φ

)〉

+

+2D̄2

〈

tr

(

¯̃x eV
1

z − φ
x

(

1

z + φ

)T
)

〉

= 2R(z)T (z) + 2R(−z)T (−z)+R(z)T (−z)+R(−z)T (z)−W ′(z)T (z)−W ′(−z)T (−z)−

− c1(z)−
2β

z
[R(z)−R(−z)] , (3.35)

where the polynomial c1(z) is explicitly given by

c1(z) = −

〈

tr

(

W ′(z)−W ′(φ)

z − φ

)〉

−

〈

tr

(

W ′(−z)−W ′(φ)

−z − φ

)〉

. (3.36)

As in section 2.2, we note that, were it not for the β-dependent terms, eq. (3.35) could be

viewed as the formal derivative of eq. (3.29), provided that c1 =
∂
∂S r1; T =

∂
∂SR = ∂

∂Sω0.

To deal with the β-dependent terms we recall eq. (3.11) and note that the identification12

T (z) =
∂

∂S
ω0 + 4ω1/2 (3.37)

resolves the discrepancy. Our suggested expression (3.37) generalizes the formula proposed

in ref. [18] (see also [17, 22, 3]). Consideration of cubic equations involving T (z) and R(z)

presumably also leads to (3.37).

4. U(N) with symmetric or antisymmetric matter: II

In this section we discuss how to extend the approach in ref. [2] to the case with matter in

the symmetric and antisymmetric representations. We will first give a heuristic argument

and then give a more detailed argument and present an explicit sample calculation.

Going through steps similar to the ones carried out in [2], it can be shown that, for the

purpose of determining the effective action, the superspace action for a field ϕR in some

non-real representation R of U(N), together a field ϕ̃R̄ in the representation conjugate to

R, can be rewritten as

∫

d4xd2θ

[

−
1

2
ϕ̃R̄( +m− iWαDα)ϕR +Wtree(ϕ, ϕ̃)

]

. (4.1)

12Here ∂/∂S =
∑

iNi∂/∂Si. See footnote 5.
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Following [2] we transform to momentum superspace (pµ, πα), where πα is the fermionic

momentum conjugate to the superspace coordinate θα. We write the propagator of the nth

edge of a Feynman diagram in a Schwinger parameterization as [2]

∫ ∞

0
dsne

−sn(p2n+W
απnα+m) . (4.2)

Now, in standard double-line notation, the only difference (for planar diagrams drawn

on the sphere) between the symmetric (or antisymmetric) representation and the adjoint

one is that the orientation of one of the lines has changed.13. Compared to the case

with adjoint fields only, this means that each insertion of a Wα on a line with flipped

orientation comes with a minus sign. However, since Weff is a function of the glueball

fields14 Si = − 1
32π2 tr(WiαW

α
i ) there are necessarily an even number (zero or two) of

insertions on each line (index loop) and thus the extra minus signs cancel out and as

in [2, 23] one finds

Weff =
∑

i

Ni
∂

∂Si
FS2 + 4FRP 2 . (4.3)

Here the second piece arises from the twisted part of the propagator (equivalently, from

planar diagrams on RP2). A gauge theoretic argument for the presence of this piece can

be given along the lines of refs. [23]. The factor of 4 has the same origin as in the SO /Sp

models discussed in [23]. Also note that the factor of 4 that appeared in (3.37) is the same

as the one in the equation above, as can been seen by using the methods in ref. [22, 18].

On the other hand, the gauge-coupling matrix τij(S) couples to tr(W
i
α)tr(W

jα) in the

effective action and since insertions of a single Wα on an index loop coming from one of

the lines with flipped orientation leads to a sign change, this implies that τij will in general

no longer will be given by ∂2F
∂Si∂Sj

.15 This is also clear from the point of view in [3] where it

was argued that the relation between τij and
∂2F

∂Si∂Sj
follows from a shift symmetry of the

U(1) part of the gauge superfield Wα. In the case of adjoint fields only, this symmetry is

a consequence of the decoupling of the U(1) (since the adjoint action is via commutators).

However, the symmetric (or antisymmetric) representation couples to the U(1) (the gauge

action is longer via commutators) so there is no shift symmetry and hence no direct relation

between τij and
∂2F

∂Si∂Sj
.

However, even though τij is not given by
∂2F

∂Si∂Sj
, there is a simple way to keep track

of the extra signs in matrix-model perturbation theory, i.e. to determine τij perturbatively

from the matrix model. To demonstrate this, we represent the X̃ ΦX matrix-model vertex

graphically as in figure 1. Now if one proceeds to calculate the matrix-model Feynman

diagrams as usual, but for each index-loop constructed from a dashed line one makes the

13In addition the propagator for fields in the symmetric (or antisymmetric) representation has a twisted

part not present for adjoint fields. This feature leads to the presence of planar diagrams drawn on RP2 in
the topological expansion.

14For simplicity we restrict to the case of only one glueball field, S = − 1
32π2 tr(WαWα), in our explicit

calculations, but whenever possible we write the formulæ in their general form.
15A similar discrepancy was observed in [24] in the context of multi-trace operators, but in that case the

discrepancy appeared already in Weff .
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Φ

~
X

X

Figure 1: The X̃ ΦX-vertex. The dashed line has the opposite orientation compared to the Φ3

vertex.

-1 -1 +1

Figure 2: The black dots indicate Wα insertions.

identification gsMi = S̃i, one will obtain a free energy of the form F (S, S̃). If one then

takes the second derivative ∂2F (S,S̃)
∂Si∂Sj

using the rule ∂S̃i
∂Sj

= −δji , and then afterwards sets

S̃i = Si, one will obtain the right result for τij. That is, the extra signs will be taken care

of and the resulting τij will agree with the gauge theory result.

We will now give more details for a specific set of diagrams (for simplicity we consider

the case of a single glueball field, S). We consider the three gauge theory diagrams in

figure 2.

There are two Schwinger parameters corresponding to the momentum running in the

two loops. Calling these s1, s2, the integral over bosonic momenta gives const× (s1 s2)
−2.

The integral over fermionic momenta gives for the sum of the above three diagrams (plus

an additional RP2 diagram not shown in the figure above) a constant times

(s1 s2)
2(Wα)j

i(Wα)l
k(Wβ)n

m(Wβ)q
p(Ti

j)r
s
t
u(Tk

l)u
t
s
v(Tm

n)bcva(Tp
q)arcb =

= (s1s2)
2[3Ntr(WαW

α)tr(WβW
β) + 4βtr(WαW

α)tr(WβW
β) +

+ 2tr(WβW
β)tr(Wα)tr(W

α)]

∝ (s1s2)
2[N(3S2) + 4βS2 − S wαw

α] , (4.4)

where we have used the formulæ in appendix B as well as the definition wα =
1
4π tr(Wα). We

see that the si dependence cancels between the bosonic and fermionic momentum integrals

as required for the reduction to a matrix model. For comparison, if all the fields had been

in the adjoint representation, one would have obtained instead the same constant as above

times

(s1 s2)
2(Wα)j

i(Wα)l
k(Wβ)n

m(Wβ)q
p(Ti

j)r
s
t
u(Tk

l)u
t
s
v(Tm

n)v
a
b
c(Tp

q)c
b
a
r =

= (s1s2)
2[3Ntr(WαW

α)tr(WβW
β)− 6tr(WβW

β)tr(Wα)tr(W
α)]

∝ (s1s2)
2[N(3S2) + 3S wαw

α] . (4.5)

By comparing (4.4) and (4.5) we see that the terms proportional to N agree. These are

contributions to N ∂
∂SFS2 . The second term in (4.4) contributes to 4FRP2 and comes from a
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diagram (not displayed in the figure above) with a twisted propagator. Finally, the last set

of terms contribute to 1
2τ(s)wαw

α and explicitly illustrate the sign rule discussed above.

In the first case we have −1− 1+ 1 = −1, and in the second case we get +1+ 1+ 1 = +3.

The relative factor of − 1
3 is indeed present in (4.4) vs. (4.5).

5. Summary

In this paper we focused on three N = 1 supersymmetric gauge theories: U(N)×U(N)

with matter in adjoint and bifundamental representations, U(N) with matter in adjoint

and symmetric representations, and U(N) with matter in adjoint and antisymmetric rep-

resentations. As was shown, each of these theories exhibits a cubic algebraic curve. The

equivalence of the matrix model and the gauge theory descriptions was established by

means of generalized Konishi anomalies equations, which were shown to be equivalent to

the matrix model loop equations. This result demonstrates the equivalence of the matrix

models to the holomorphic sector of the gauge theories.

In addition, we studied the relation between the generating functions T (z) of gauge

theory vevs and the generating functions ω(z) of matrix model vevs for each of the theories

considered, generalizing the results of refs. [17, 18].

We also investigated the matrix model/gauge theory equivalence using a perturba-

tive superspace analysis. If matter in the symmetric (or antisymmetric) representation is

present it was shown that the gauge-coupling matrix τij is not given by the second deriva-

tive of the matrix model free energy; the latter must be modified diagram-by-diagram by

suitably chosen minus signs in the matrix-model perturbative expansion so as to yield the

correct gauge coupling matrix. As a result there does not appear at this point to be a con-

cise formula expressing τij in terms of the matrix model free energy, contrary to situations

involving only adjoint, fundamental, or bifundamental matter.
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A. Saddle-point analysis

Here we will briefly discuss the saddle-point approach to study the planar solution of the

matrix models discussed in this paper. In the recent papers [11, 12] this approach has been

extended to holomorphic matrix models.

A.1 U(N)×U(N) with bifundamental matter

The saddle-point approach to the U(N)×U(N) quiver model has previously been discussed

in refs. [14, 15, 8, 10] (and was recently extended to holomorphic matrices in [11]). The

first step is to transform to an eigenvalue basis for the adjoint fields and then integrate out
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the bifundamental fields. This reduces (2.2) to

Z ∝

∫

∏

i

dλi dλ̃i

∏

i<j(λi − λj)
2(λ̃i − λ̃j)

2

∏

i,j(λi − λ̃j)
e
− 1
gs

∑

i[W (λi)−W̃ (λ̃i)]. (A.1)

The saddle-point equations of motion are thus

−
W ′(λi)

gs
+ 2

∑

j 6=i

1

λi − λj
−
∑

j

1

λi − λ̃j
= 0 ,

W̃ ′(λ̃i)

gs
+ 2

∑

j 6=i

1

λ̃i − λ̃j
−
∑

j

1

λ̃i − λj
= 0 . (A.2)

The equations (2.12) and (2.23) can be derived directly from the saddle-point equations.

For instance, (2.12) can be obtained by considering

g2s
∑

i

1

z − λi



−
W ′(λi)

gs
+ 2

∑

j 6=i

1

λi − λj
−
∑

j

1

λi − λ̃j



+

+g2s
∑

i

1

z − λ̃i





W̃ ′(λ̃i)

gs
+ 2

∑

j 6=i

1

λ̃i − λ̃j
−
∑

j

1

λ̃i − λj



 = 0 . (A.3)

Alternatively, an expedient way to obtain (2.12) and (2.23) is by imposing [15, 8, 10]
∮

dz
1

x− z
W (s)(z) = 0 , (A.4)

where the contour encloses all eigenvalues but not the point x and the W-algebra currents

W (s)(z) (s = 2, 3) are given by

W (s) =
(−1)s

s

3
∑

i=1

(ui)
s , (A.5)

where the ui’s were defined in (2.14) and below (2.19).

A.2 U(N) with (anti)symmetric matter

The first step of the saddle-point approach is to transform (3.2) into an eigenvalue basis

for Φ and then integrate out xij and x̃
ij . This leads to

Z ∝

∫

∏

i

dλi

∏

i<j(λi − λj)
2
∏

i λ
−β/2
i

∏

i,j(λi + λj)1/2
e
− 1
gs

∑

iW (λi) . (A.6)

The saddle-point equation of motion is thus

−
W ′(λi)

gs
+ 2

∑

j 6=i

1

λi − λj
−
∑

j

1

λi + λj
−
β

2

1

λi
= 0 , (A.7)

where the last term is a 1/M (or gs) effect.
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The model (A.6) is closely related to the O(n) matrix model [19] with n = 1. The

planar solution of that model was derived in [20]. (The extension to holomorphic matrices

was recently discussed in ref. [12].)

The expressions (3.8), (3.21) can be derived directly from the saddle-point equations.

For instance, (3.8) can be obtained by considering

∑

i

1

z − λi



−
W ′(λi)

gs
+ 2

∑

j 6=i

1

λi − λj
−
∑

j

1

λi + λj
−
β

2

1

λi



+ (z ↔ −z) = 0 . (A.8)

Alternatively, an expedient way to obtain (3.8) and (3.21) is by imposing

∮

dz
1

x− z
W (s)(z) = 0 , (A.9)

where the contour encloses all eigenvalues but not the point x and the W-algebra currents

W (s)(z) (s = 2, 3) are given by

W (s) =
(−1)s

s

3
∑

i=1

(ui)
s , (A.10)

where the ui’s were defined in (3.12) and below (3.17).

B. Some representation theory

Here we collect some explicit formulæ for the generators in the various representations

discussed in the main text.

Adjoint representation of U(N). In standard double-index notation the generators in

the adjoint representation are

(Ti
j)k

l
m
n = δni δ

j
kδ
l
m − δliδ

j
mδ

n
k . (B.1)

This gives the well-known results

(V φ)k
l = Vj

i(Ti
j)k

l
m
nφn

m = [V, φ]k
l ; (Wαφ)k

l = (Wα)j
i(Ti

j)k
l
m
nφn

m = [Wα, φ]k
l ,

(B.2)

where V and Wα are the vector and spinor gauge superfields, respectively.

Bifundamental representations of U(N)×U(N). To describe the action of the gauge

superfields on the bifundamental field bi
̃ it is convenient to use a composite index I = (i, ı̃).

In this notation the gauge vector superfield is V = VJ
I(TI

J), where

(TI
J)i

̃
k̃
l = δlIδ

J
i δ

̃

k̃
− δ̃Iδ

J
k̃
δli , (B.3)

and we have used the double-index notation. This implies

(Vb)i
̃ = VJ

I(TI
J)i

̃
k̃
lbl

k̃ = Vi
kbk

̃ − bi
k̃Ṽk̃

̃ , (B.4)
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where V , Ṽ are the gauge superfields for the two U(N) factors. One may view V as a

diagonal 2×2 matrix, diag(V, Ṽ ). In this notation b and b̃ can be combined into an off-

diagonal 2×2 matrix, and φ and φ̃ can be combined into a diagonal 2×2 matrix. In the

2×2 matrix notation, the gauge action is via commutators. Similarly the action of the

gauge spinor superfield can be written as

(Wαb)i
̃ = (Wα)i

kbk
̃ − bi

k̃(W̃α)k̃
̃ , (B.5)

whereWα and W̃α are the gauge spinor superfields corresponding to the two U(N) factors.

The action on the bifundamental field b̃ı̃
j is the same as the one on b, but with tilde

and un-tilde indices interchanged.

Symmetric/antisymmetric representation of U(N). The generators in the symmet-

ric or antisymmetric representation of U(N) are

(Ti
j)mnkl = 2δj[kδ

[m
l) δ

n)
i , (B.6)

where we have used the notation u[ivj) =
1
2 (uivj+β ujvi), where β = +1 for the symmetric

representation and β = −1 for the antisymmetric representation. The action of Wα on x is

(Wαx)kl = (Wα)j
i(Ti

j)mnkl xnm = [(Wα)k
jxjl + β(Wα)l

jxjk] , (B.7)

or in matrix notation: Wαx+ x(Wα)
T .

The generators of semi-simple Lie algebras satisfy trR(T
ATB) = I(R)δAB where I(R)

is the index of the representation, i.e. 2N for the adjoint, N − 2 for the antisymmetric

and N + 2 for the symmetric representation. Using the above forms of the generators

the expression trR(T
ATB) will contain some extra trace factors since we are dealing with

U(N)’s.
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