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Abstract

The consequences of level-rank duality for untwisted D-branes on an SU(N ) group manifold are ex-
plored. Relations are found between the charges of D-branes (which are classified by twisted K-theory)
belonging to ŝu(N)K and ŝu(K)N WZW theories, in the case of odd N + K . An isomorphism between the
charge algebras is also demonstrated in this case.
 2006 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the nature of D-branes is a central issue of contemporary string theory, par-
ticularly the properties of D-branes in nontrivial gravitational and B-field backgrounds. (For
a review, see Ref. [1].) One approach to this question is to study D-branes on group manifolds
[2–21], where the background is highly symmetric, and the associated conformal field theory (the
WZW model) exactly solvable. The D-branes in this theory correspond to boundary states of the
WZW model, which can studied algebraically. For the D-branes to be stable, the bosonic WZW
theory should be regarded as part of a supersymmetric theory on the group manifold [12,14];
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we will only consider the simplest case where the boson and fermion sectors are decoupled.
Strings on arbitrary group manifolds can also serve as building blocks of coset models.

Much can be learned about D-branes by studying their charges, which are classified by
K-theory or, in the presence of a cohomologically nontrivial H -field background, twisted
K-theory [22]. The charge group for D-branes on a simply-connected group manifold G with
level K is given by the twisted K-group [12,14,19,23–25]

(1.1)K∗(G) =
m⊕

i=1

Zx, m = 2rankG−1

where Zx ≡ Z/xZ with x an integer depending on G and K . For ŝu(N)K , for example, x is
given by [12]

(1.2)xN,K ≡ N + K

gcd{N + K, lcm{1, . . . ,N − 1}} .
One of the Zx factors in the charge group corresponds to the charge of untwisted (symmetry-
preserving) D-branes. The remaining factors (for N > 2) correspond to the charges of other
branes of the theory [12,14,19].

An intriguing aspect of WZW models is level-rank duality, a relationship between various
quantities in the ŝu(N)K model and corresponding quantities in the ŝu(K)N model [26–28].
Similar dualities occur for orthogonal and symplectic groups, and also in Chern–Simons theories
[27–29]. Heretofore no analysis of level-rank duality has been given for boundary WZW theories.
In this paper, we begin the study of this issue by considering the relationship between untwisted
D-branes on ŝu(N)K and ŝu(K)N group manifolds.

In Section 2, we review some necessary details of the WZW theory without boundary, in-
cluding simple current symmetries and level-rank duality. Section 3 contains a description of
untwisted D-branes of the ŝu(N)K WZW theory with boundary; these D-branes are labeled by
irreducible representations λ of su(N) that correspond to integrable highest-weight representa-
tions of ŝu(N)K . In Section 4, we demonstrate the relationship between the charge Qλ of an
ŝu(N)K D-brane and that of a related D-brane of ŝu(K)N . Specifically, we find

(1.3)Q̃λ̃ = (−1)r(λ)Qλ modx, for N + K odd

where Q̃λ̃ is the charge of the ŝu(K)N D-brane labeled by the representation λ̃ of su(K) obtained
by transposing the Young tableau of λ, r(λ) is the number of boxes of the Young tableau λ, and
x = min{xN,K, xK,N }. (A similar but more complicated relationship is expected when N + K

is even.3) We also show that the charge algebra of D-branes is isomorphic to the charge algebra
of dual D-branes in the level-rank dual WZW model (for N + K odd), and that the energies of
level-rank dual D-branes are equal. Concluding remarks constitute Section 5.

2. Bulk WZW theory and level-rank duality

Strings on group manifolds are described by the Wess–Zumino–Witten conformal field the-
ory. In this section, we review some aspects of the WZW model, including simple currents and
level-rank duality, that will be needed in subsequent sections to understand D-branes on group
manifolds.

3 Note added: see Ref. [30].
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The WZW model is a rational conformal field theory whose chiral algebra (for both left- and
right-movers) is the (untwisted) affine Lie algebra ĝK at level K with Virasoro central charge
c = K dimg/(K + h∨), where g is the finite Lie algebra associated with ĝK , and h∨ the dual
Coxeter number of g. The building blocks of the WZW model are integrable highest-weight rep-
resentations Vλ ∈ P K+ of ĝK , which are labeled by λ, the irreducible representation of g spanning
the lowest-conformal-weight-subspace of the ĝK representation. Associated with the affine Lie
algebra ĝK is an extended Dynkin diagram, which has one more dot than the Dynkin diagram of
g. Correspondingly, the highest-weight representation Vλ possesses an extra Dynkin index

(2.1)a0 = K −
n∑

i=1

miai, n = rankg,

where ai are the Dynkin indices of λ and the integers mi are the components of the highest co-
root. (For ŝu(N)K , the affine Lie algebra with which we will be primarily concerned, mi = 1 for
all i.) An integrable highest-weight representation is one satisfying a0 � 0.

For purposes of discussing level-rank duality, it is useful to describe irreducible representa-
tions of g in terms of Young tableaux. For example, an irreducible representation of su(N) with
Dynkin indices ai corresponds to a Young tableau with N − 1 or fewer rows, with row lengths

(2.2)�i =
N−1∑
j=i

aj , i = 1, . . . ,N − 1.

Let r(λ) = ∑
i �i denote the number of boxes of the tableau. Representations λ corresponding

to integrable highest-weight representations Vλ of ŝu(N)K obey �1(λ) � K , i.e., their Young
tableaux have K or fewer columns.

The set of affine characters of the integrable highest-weight representations

(2.3)χλ(τ) = TrVλ e2πiτ(L0−c/24), λ ∈ P K+
is closed under the modular transformation τ → −1/τ , the mixing being described by the mod-
ular transformation matrix Sµν .

A primary field φλ of the conformal field theory is associated with each integrable highest-
weight representation Vλ. The multiplicities of the primary fields appearing in the operator
product expansion of a pair of primary fields of the WZW model are given by the fusion co-
efficients Nµν

λ appearing in the fusion algebra

(2.4)φµ · φν =
∑

λ∈PK+

Nµν
λφλ

where Nµν
λ is given by Verlinde’s formula [31]

(2.5)Nµν
λ =

∑
ρ∈PK+

SµρSνρS∗
λρ

S0ρ

,

with 0 denoting the identity representation. For fixed µ and ν, and for K sufficiently large, the
fusion coefficients Nµν

λ become equal to N̄µν
λ, the multiplicities appearing in the tensor product

decomposition of representations of g

(2.6)µ ⊗ ν =
⊕

λ

N̄µν
λλ.
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In the case of ŝu(N)K , “sufficiently large” means �1(µ) + �1(ν) � K , and N̄µν
λ are just the

Littlewood–Richardson coefficients.
In this paper, we only consider the WZW theory with a diagonal closed-string spectrum:

(2.7)Hclosed =
⊕

λ∈PK+

Vλ ⊗ V̄λ∗

where V̄ represents right-moving states, and λ∗ denotes the representation conjugate to λ, i.e.,
such that Nλλ∗ 0 = 1. The partition function for this theory

(2.8)Z(τ) =
∑

λ∈PK+

∣∣χλ(τ)
∣∣2

is automatically modular invariant.

Simple current symmetries

Automorphisms of the extended Dynkin diagram shuffle the Dynkin indices and thus relate
different integrable representations to one another. For example, the extended Dynkin diagram
of ŝu(N)K has a ZN symmetry σ which takes a representation λ into λ′ = σ(λ), whose Dynkin
indices are a′

i = ai−1 for i = 1, . . . ,N − 1, and a′
0 = aN−1. The Young tableau for λ′ is obtained

by placing a row of length K on top of the tableau for λ, and deleting any columns of length N

that may result. The modular transformation matrix for ŝu(N)K transforms under σ as [28]

(2.9)Sσ(µ)ν = e−2πir(ν)/NSµν,

as a result of which the fusion rule coefficients for ŝu(N)K satisfy

(2.10)Nσm(µ)σn(ν)
σ l(λ) = Nµν

λ for m + n = l modN.

The orbits {λ, σ(λ), . . . , σN−1(λ)} of integrable highest-weight representations are termed “co-
minimal equivalence classes”. (Some orbits may have fewer elements.) The members of the orbit
of the identity representation σ j (0), with j = 1, . . . ,N − 1, are termed “cominimal representa-
tions” or “simple currents”, and correspond to rectangular Young tableaux with j rows and K

columns. The fusion algebra for these representations

(2.11)φλ · φσj (0) = φσj (λ)

contains only one term by virtue of Eq. (2.10).

Level-rank duality

An intriguing relation, level-rank duality, exists between the WZW model for ŝu(N)K and
the corresponding WZW model with N and K exchanged [26–29]. The Young tableau λ cor-
responding to an integrable highest-weight representation of ŝu(N)K maps under transposition
(i.e., exchange of rows and columns) to a Young tableau λ̃ that corresponds to an integrable
highest-weight representation of ŝu(K)N (possibly after removing any columns of length K).
This map is not one-to-one, since cominimally-equivalent representations of ŝu(N)K may map
into the same representation of ŝu(K)N (due to the removal of columns). It is clear, however, that
the cominimal equivalence classes of the two theories are in one-to-one correspondence.
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The modular transformation matrices and fusion rule coefficients of the ŝu(N)K theory obey
simple relations under the exchange of N and K . Letting Sµν and S̃µ̃ν̃ denote the modular trans-
formation matrices of ŝu(N)K and ŝu(K)N , one finds [28]

(2.12)Sµν =
√

K

N
e−2πir(µ)r(ν)/NKS̃∗

µ̃ν̃ .

From this and Eq. (2.5), it follows that [28]

(2.13)Nµν
λ = Ñµ̃ν̃

σ∆(λ̃), ∆ = r(µ) + r(ν) − r(λ)

N
∈ Z

where Ñ denotes the fusion rule multiplicities of ŝu(K)N . (For N sufficiently large—viz., for
N > k1(µ) + k1(ν), where k1(µ) denotes the length of the first column of µ—∆ vanishes, so
that on the right-hand side of the fusion algebra (2.4), λ is simply dual to λ̃, its transpose, but in
general the relation is more complicated.)

3. Boundary WZW theory and D-brane charges

D-branes on group manifolds have received a lot of attention, from both the algebraic and
geometric point of view [2–21]. Algebraically, D-branes on group manifolds can be studied in
terms of the possible boundary conditions that can be imposed on a WZW model with boundary.
Let the open string world-sheet be the upper half plane. The nonvanishing components of the
stress-energy tensor must satisfy T (z) = T̄ (z̄) on the boundary z = z̄. Additional restrictions
may be imposed on the currents of the affine Lie algebra on the boundary, e.g.

(3.1)
[
J a(z) − ωJ̄ a(z̄)

]∣∣
z=z̄

= 0,

where ω is an automorphism of the affine Lie algebra, although Eq. (3.1) is not required by the
conformal symmetry. Open–closed string duality correlates the boundary conditions (3.1) of the
boundary WZW model with certain coherent states |B〉〉 of the bulk WZW model satisfying

(3.2)
[
J a

n + ωJ̄ a−n

]|B〉〉 = 0

where J a
n are the modes of the current algebra generators.

Symmetry-preserving, or untwisted, D-branes correspond to ω = 1, and it is this special class
of branes that will be the focus of this paper. For ω = 1, Eq. (3.2) can be satisfied by a state
belonging to a single sector Vλ ⊗ V̄λ∗ of the WZW theory; such states are termed “Ishibashi
states” |λ〉〉I [32]. Because we are considering the diagonal WZW theory, all states |λ〉〉I for
λ ∈ P K+ belong to the spectrum of the bulk WZW theory.

Boundary states corresponding to D-branes must satisfy additional (Cardy) conditions [33],
whose solution may be written as certain linear combinations of the Ishibashi states known as
Cardy states |λ〉〉C . For untwisted D-branes of the diagonal WZW theory, these states are of the
form

(3.3)|λ〉〉C =
∑

µ∈PK+

Sλµ√
S0µ

|µ〉〉I .

From a geometric point of view (and for large values of K), the untwisted D-branes wrap con-
jugacy classes on the group manifold and are stabilized by flux stabilization [4–14]. Quantization
imposes constraints on the allowed conjugacy classes, which are in one-to-one correspondence
with integrable highest-weight representations Vλ ∈ P K+ of ĝK .
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D-brane charges

Next we consider the charge of the untwisted D-brane associated with the boundary state
|λ〉〉C . The state |0〉〉C corresponds geometrically to a D0-brane located at the identity element
of the group manifold, to which we assign unit charge, Q0 = 1. A collection of n such D0-
branes has D0-charge n. By renormalization group flow arguments presented in Refs. [7,10–
12,14,34], these D0-branes may form a bound state (D-brane) associated with the Cardy state
|λ〉〉C , corresponding to an n-dimensional representation λ of g. Hence the D0-charge Qλ of this
D-brane is (dimλ), but is only defined modulo some integer x [11,12,14,17].

By considering condensation of D-branes, one finds that the charges must obey the fusion
algebra [12]

(3.4)Qµ · Qν =
∑

λ∈PK+

Nµν
λQλ.

From Eq. (2.6), one has

(3.5)(dimµ)(dimν) =
∑
λ

N̄µν
λ(dimλ) �

∑
λ∈PK+

Nµν
λ(dimλ).

For sufficiently large K , the last inequality is saturated, in which case Eq. (3.4) is consistent with
Qλ = dimλ. In general, however, the charge algebra (3.4) is only satisfied modulo x, which is
the largest integer for which

(3.6)(dimµ)(dimν) =
∑

λ∈PK+

Nµν
λ(dimλ) modx

holds for all µ, ν ∈ P K+ .
Now we turn to the specific case of ŝu(N)K . To determine the value of x, it is sufficient [12] to

consider the fusion algebra (2.11) involving simple currents and the fundamental representations
Λs of su(N), s = 1, . . . ,N − 1, whose Young tableaux are }s. This implies

(dimΛs)
(
dimσ(0)

) = dimσ(Λs) modx,

(3.7)

(
N

s

)(
N + K − 1

K

)
= (N + K − 1)!

(N − s)!(K − 1)!s!(K + s)
modx.

Then x is given by greatest common denominator of the difference between the two sides of
Eq. (3.7)

(3.8)x = gcd

{
s

K + s

(
N + K

K

)(
N

s

)∣∣∣∣s = 1, . . . ,N − 1

}
.

In Refs. [12,17], it is shown that Eq. (3.8) implies x = xN,K where

(3.9)xN,K ≡ N + K

gcd{N + K, lcm{1, . . . ,N − 1}} .

Hence, the charge algebra (3.4) is satisfied provided the charges of the untwisted D-branes in
ŝu(N)K are defined modulo xN,K ,

(3.10)Qλ = dimλ modxN,K for ŝu(N)K.
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(The values of x for all other simple groups is given in Ref. [17].) Thus untwisted D-branes
correspond to the first factor ZxN,K

of the twisted K-theory group (1.1).
Finally, we consider the relation between the charges of ŝu(N)K D-branes corresponding

to the cominimally-equivalent Cardy states |λ〉〉C and |σ(λ)〉〉C . The action of σ on integrable
highest-weight representations corresponds geometrically to the action of the center of g on the
conjugacy classes of g [11,14]. The rotation of a conjugacy classes, however, cannot change the
(magnitude of the) charge of the associated brane, thus [14]

(3.11)Qσ(λ) = (−1)N−1Qλ modxN,K, for ŝu(N)K

where the relative sign comes from the action of N − 1 elements of the Weyl group, each reflec-
tion changing the orientation of the D-brane.

4. Level-rank duality of WZW D-branes

In this section, we will establish a relation between the charges of untwisted D-branes of
ŝu(N)K and those of the level-rank dual theory ŝu(K)N .

Level-rank duality of D-brane charges

Level-rank duality relates the cominimal equivalence classes of ŝu(N)K to those of ŝu(K)N .
Since untwisted D-branes are labeled by integrable highest-weight representations, and since
by Eq. (3.11) their charges are invariant (modulo sign and modulo x) under the operation σ ,
and therefore depend only on the cominimal equivalence class of the representation, it would
be reasonable to expect the charges of level-rank dual D-branes to be equal (modulo sign and
modulo x). Indeed we will demonstrate below that this expectation is borne out, provided N +K

is odd. The situation is unclear for N + K even.
Since the charges of ŝu(N)K D-branes are only defined modulo xN,K , and the charges of

ŝu(K)N D-branes are only defined modulo xK,N , comparisons of these charges is only possible
modulo gcd{xN,K, xK,N }. For the remainder of this section, we assume without loss of generality
that N � K , in which case gcd{xN,K, xK,N } = xN,K . (Thus the group with the larger rank has
the smaller periodicity.) All D-brane charges will be considered modulo x ≡ xN,K .

The relation (which we prove below) between Qλ, the charge of the D-brane corresponding
to the state |λ〉〉C of ŝu(N)K , and Q̃λ̃, the charge of the level-rank dual D-brane |λ̃〉〉C of ŝu(K)N ,
is

(4.1)Q̃λ̃ = (−1)r(λ)Qλ modx, for N + K odd.

To establish Eq. (4.1), we need to prove

(4.2)(dim λ̃)su(K) = (−1)r(λ)(dimλ)su(N) modx, for N + K odd

for any integrable highest-weight representation of ŝu(N)K .

Proof. Consider the branching of a representation λ of su(M1 +M2) into representations (λ′, λ′′)
of su(M1) × su(M2)

(dimλ)su(M1+M2) =
∑
λ′,λ′′

N̄λ′λ′′λ(dimλ′)su(M1)(dimλ′′)su(M2)
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where the integers N̄λ′λ′′λ are the Littlewood–Richardson coefficients [35]. Formally, we let
M1 = N + K and M2 = −K , and then use

(4.3)(dimλ′′)su(−K) = (−1)r(λ
′′)(dim λ̃′′)su(K)

to obtain

(dimλ)su(N) = (−1)r(λ)(dim λ̃)su(K)

(4.4)+
∑
λ′ 	=0
λ′′

(−1)r(λ
′′)N̄λ′λ′′λ(dimλ′)su(N+K)(dim λ̃′′)su(K)

where we have separated the λ′ = 0 term from the rest of the sum.
First consider the case where N + K is prime. Using the hook length formula for the dimen-

sion of a representation

(4.5)(dimλ′)su(N+K) =
∏
(i,j)

N + K + j − i

hij

,

where the product is over the boxes (i, j) of the Young tableau, labeled by their row i and
column j , and hij are the corresponding hook lengths, we see that, for all λ′ 	= 0, the numerator
contains the factor N + K . The maximum hook length h11 is given by �1 + k1 − 1, where �i and
ki are the row and column lengths respectively of the Young tableau. Since λ is an integrable
representation of ŝu(N)K , its maximum hook length is N + K − 2, and therefore this is also
true for λ′. Since none of the hook lengths divide N + K (prime), we have that (dimλ′)su(N+K)

is a multiple of N + K for all λ′ 	= 0, thus the sum in Eq. (4.4) is divisible by N + K , which
establishes Eq. (4.2) when N + K is prime, since x = N + K in this case.

For N + K not prime, we must use a different approach. The dimension of an arbitrary irre-
ducible representation of su(N) can be written as the determinant of an �1 × �1 matrix [35]

(4.6)dimλ = |dimΛki+j−i |, i, j = 1, . . . , �1

where Λs is the completely antisymmetric representation of su(N), whose Young tableau is }s.
The maximum value of s appearing in Eq. (4.6) is k1 +�1 −1, which is bounded by N +K −2 for
integrable highest-weight representations of ŝu(N)K . For 1 � s � N −1, Λs are the fundamental
representations of su(N), with dimΛs = (

N
s

)
. The representations Λ0 and ΛN both correspond

to the identity representation with dimension 1. We define dimΛs = 0 for s < 0 and for s > N .
There is an alternative formula for the dimension of a representation in terms of the determi-

nant of a k1 × k1 matrix, viz., [35]

(4.7)dimλ = |dim Λ̃�i+j−i |, i, j = 1, . . . , k1

where Λ̃s is the completely symmetric representation of su(N), whose Young tableau is ︸︷︷︸
s

.

For s � 0, dim Λ̃s = (
N+s−1

s

)
. We define dim Λ̃s = 0 for s < 0.

To establish level-rank duality of D-brane charges using Eqs. (4.6) and (4.7), we need to obtain
the relation between (dimΛs)su(N) and (dim Λ̃s)su(K) for all s � N + K − 2. We consider three
cases separately:
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• s � N − 1:
For the fundamental representations of su(N), we use Eq. (4.4) to establish that

(4.8)(dimΛs)su(N) = (−1)s(dim Λ̃s)su(K) modx, s � N − 1

since each term in the sum on the r.h.s. of Eq. (4.4) includes a factor (dimΛt)su(N+K) =(
N+K

t

)
, 1 � t � s, and

(4.9)gcd

{(
N + K

t

)∣∣∣∣t = 1, . . . ,N − 1

}
= x,

as shown in Appendix C of Ref. [14]. Eq. (4.8) also applies trivially when s � 0.
• N + 1 � s � N + K − 2:

For this case, (dimΛs)su(N) vanishes, so Eq. (4.8) will hold provided that (dim Λ̃s)su(K)

vanishes modx. To show this, we repeatedly use the identity
( M+1

j

) = ( M
j

) + ( M
j−1

)
to

show that

(dim Λ̃s)su(K) =
(

K + s − 1
s

)
=

s−N−1∑
u=0

(
s − N − 1

u

)(
N + K

N + u + 1

)
,

(4.10)N + 1 � s � N + K − 2.

Since
(

N+K
N+u+1

) = (
N+K

K−u−1

)
, and recalling that K � N , we see that each term in the sum in

Eq. (4.10) contains a factor belonging to the set in Eq. (4.9), and therefore (dim Λ̃s)su(K) is
a multiple of x.

• s = N :
The remaining case is easily evaluated using Eq. (3.11):

(dimΛN)su(N) = (dim 0)su(N) = (dim 0)su(K)

= (−1)K−1(dimσ(0)
)

su(K)
modx

(4.11)= (−1)N−K−1[(−1)N(dim Λ̃N)su(K)

]
modx

which is in accord with Eq. (4.8), but only when N + K is odd.

To summarize, we have shown that

(4.12)
(dimΛs)su(N) = (−1)s(dim Λ̃s)su(K) modx, s � N + K − 2, for N + K odd.

The equality (4.12) also holds for N + K even, except when s = N , in which case the sign is
reversed.

Restricting ourselves to N + K odd, we use Eq. (4.12) in Eq. (4.6) to find

(dimλ)su(N) = ∣∣(−1)ki+j−i (dim Λ̃ki+j−i )su(K)

∣∣ modx

(4.13)= (−1)r(λ)
∣∣(dim Λ̃ki+j−i )su(K)

∣∣ modx, for N + K odd

where r(λ) = ∑�1
i=1 ki(λ). Comparing this with Eq. (4.7), we see that (provided �1 < K) the

r.h.s. is the dimension of a representation with row lengths ki and column lengths �i , that is, the
transpose representation λ̃, hence

(4.14)(dimλ)su(N) = (−1)r(λ)(dim λ̃)su(K) modx, for N + K odd



190 S.G. Naculich, H.J. Schnitzer / Nuclear Physics B 740 (2006) 181–194

from which follows the level-rank duality of D-brane charges (4.1). One subtlety remains: if
�1 = K for λ, then the transpose λ̃ contains leading columns of K boxes. In that case, one can use
Eq. (3.11) kK times to relate λ to a tableau λ̂ with no rows of length K , and then apply Eq. (4.14).

The overall prefactor is then (−1)r(λ̂)+(N−1)kK , which is equal to (−1)r(λ̂)+KkK = (−1)r(λ) since
N + K is odd, so that Eq. (4.14) holds in this case as well. �

The failure of Eq. (4.12) to hold for s = N when N + K is even, however, precludes (4.14)
from holding generally in this case. The adjoint of SU(3)3 provides a simple counterexample. If,
however, the maximum hook length of λ (viz., �1 + k1 − 1) is less than N , then Eq. (4.14) also
holds for N + K even.

At present,4 we do not know the precise relation between the charges of level-rank dual
D-branes for even N + K when the maximum hook length is equal to or greater than N . (In
many cases where N + K is even and N 	= K , however, x is unity, so Eq. (4.1) is trivially satis-
fied.)

Level-rank duality of the charge algebra

The level-rank duality of D-brane charges proved above, together with the previously-known
level-rank duality for fusion coefficients, can be used to show that the charge algebras associated
with ŝu(N)K and ŝu(K)N are isomorphic, in the case that N + K is odd.

We begin with the charge algebra for ŝu(N)K

(4.15)Qµ · Qν =
∑

λ∈PK+

Nµν
λQλ

or

(4.16)(dimµ)su(N)(dimν)su(N) =
∑

λ∈PK+

Nµν
λ(dimλ)su(N) modx.

Using Eq. (4.14), we have

(dim µ̃)su(K)(dim ν̃)su(K)

(4.17)=
∑

λ∈PK+

(−1)N∆Nµν
λ(dim λ̃)su(K) modx, for N + K odd

where ∆ = [r(µ) + r(ν) − r(λ)]/N ∈ Z. Since N + K is odd, we have (−1)N∆ = (−1)(K−1)∆,
which together with Eq. (3.11) yields

(dim µ̃)su(K)(dim ν̃)su(K)

(4.18)=
∑

λ∈PK+

Nµν
λ
(
dimσ∆(λ̃)

)
su(K)

modx, for N + K odd.

Finally, we use the level-rank duality of fusion coefficients (2.13) to obtain the level-rank dual
charge algebra

4 See footnote 3.
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(dim µ̃)su(K)(dim ν̃)su(K)

(4.19)=
∑

λ∈PK+

Ñµ̃ν̃
σ∆(λ̃)

(
dimσ∆(λ̃)

)
su(K)

modx, for N + K odd.

That the D-brane charges of ŝu(K)N satisfy the ŝu(K)N charge-algebra

(4.20)Q̃µ̃ · Q̃ν̃ =
∑

λ∈PK+

Ñµ̃ν̃
σ∆(λ̃)Q̃σ∆(λ̃)

is obvious, but what we have shown is that the solutions to the ŝu(N)K charge algebra are iso-
morphic (modulo x) to the solutions to the charge algebra of the dual D-branes in the ŝu(K)N
theory, when N + K is odd. That is, term-by-term, the right-hand sides of Eqs. (4.15) and (4.20)
match: each term Qλ is equal (mod x) to the corresponding term Q̃σ∆(λ̃), possibly modulo a sign
common to all the terms in the sum.

Note that this isomorphism does not hold for N +K even. A simple counterexample is ⊗ =
1 ⊕ in SU(2)2, where dim( ) = 3 mod 4 is not equal to dim( ) = 1 mod 4.

Level-rank duality of the masses of Cardy states

In Ref. [14], it is shown that the mass of a boundary state, normalized to that of the identity
representation, is given by

(4.21)
Energy(|λ〉〉C)

Energy(|0〉〉C)
= S0λ

S00

where the r.h.s. of this equation is simply the q-dimension of λ where q = e2πi/(N+K). It was
shown in Ref. [27] that q-dimensions of primary fields are invariant under level-rank duality

(4.22)

(
S0λ

S00

)
ŝu(N)K

=
(

S̃0λ̃

S̃00

)
ŝu(K)N

hence the masses of the level-rank dual Cardy states are equal:

(4.23)

(
Energy(|λ〉〉C)

Energy(|0〉〉C)

)
ŝu(N)K

=
(

Energy(|λ̃〉〉C)

Energy(|0〉〉C)

)
ŝu(K)N

.

5. Conclusions

In this paper, we have begun to analyze the consequences of level-rank duality in boundary
WZW models. We have found that the D0-charge of a symmetry-preserving D-brane |λ〉〉C of
the ŝu(N)K model is equal (up to a sign(−1)r(λ), where r(λ) is the number of boxes of the
Young tableau of λ) to the charge of the level-rank dual D-brane |λ̃〉〉C of the ŝu(K)N model,
provided that N + K is odd. (A similar relation for even N + K , but with a more complicated
expression for the relative sign, is anticipated.5) The charges of D-branes are only defined modulo
xN,K , given by Eq. (1.2), which is related to the twisted K-theory group of ŝu(N)K . Since the
periodicities xN,K are not level-rank dual, the charges of level-rank dual D-branes can only be
compared modulo the periodicity of the smaller charge group.

5 See footnote 3.
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We have also shown that the charge algebras of D-branes of level-rank dual theories are iso-
morphic, again when N + K is odd. Finally, we observed that the masses of the level-rank dual
D-branes are equal, which follows from the level-rank duality of quantum dimensions of inte-
grable highest weight representations.
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