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islet Reveals Segmentation in the Amphioxus
Hindbrain Homolog

William R. Jackman, James A. Langeland,* and Charles B. Kimmel
Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403; and
*Department of Biology, Kalamazoo College, Kalamazoo, Michigan 49006

The vertebrate embryonic hindbrain is segmented into rhombomeres. Gene expression studies suggest that amphioxus, the
closest invertebrate relative of vertebrates, has a hindbrain homolog. However, this region is not overtly segmented in
amphioxus, raising the question of how hindbrain segmentation arose in chordate evolution. Vertebrate hindbrain
segmentation includes the patterning of cranial motor neurons, which can be identified by their expression of the
LIM-homeodomain transcription factor islet1. To learn if the amphioxus hindbrain homolog is cryptically segmented, we
cloned an amphioxus gene closely related to islet1, which we named simply islet. We report that amphioxus islet expression
includes a domain of segmentally arranged cells in the ventral hindbrain homolog. We hypothesize that these cells are
developing motor neurons and reveal a form of hindbrain segmentation in amphioxus. Hence, vertebrate rhombomeres may
derive from a cryptically segmented brain present in the amphioxus/vertebrate ancestor. Other islet expression domains
provide evidence for amphioxus homologs of the pineal gland, adenohypophysis, and endocrine pancreas. Surprisingly,
homologs of vertebrate islet1-expressing spinal motor neurons and Rohon-Beard sensory neurons appear to be
absent. © 2000 Academic Press

Key Words: amphioxus; hindbrain; islet; motor neuron; rhombomere; segmentation.

INTRODUCTION

Since the dawn of evolutionary theory, comparative
anatomists have hypothesized that vertebrates evolved
from an ancestor with a segmented body plan, including a
segmented head (Balfour, 1878; Neal, 1914; Goodrich,
1930b; Gilland and Baker, 1993). This theory was formu-
lated not only because diverse vertebrates have segmented
heads as embryos, but also because amphioxus (cephalo-
chordata), the closest living relative of the vertebrates
(Wada and Satoh, 1994; Schaeffer, 1997), also has a seg-
mented head (Willey, 1894; Goodrich, 1930b). However, as
the molecular patterning mechanisms of head segmenta-
tion are elucidated, it will be important to make compari-
sons between amphioxus and vertebrates to be more certain
head segmentation did not arise convergently.

Hindbrain rhombomeres are a prominent example of
segmentation in the vertebrate head. Rhombomeres consist
of segmentally repeating units that include overt morpho-

logical boundaries, iterated cell types, and iterated gene
expression domains (reviewed in Lumsden and Krumlauf,
1996). Recent molecular studies have provided excellent
evidence that amphioxus has a homolog of the vertebrate
hindbrain (reviewed in Holland and Holland, 1998). How-
ever, the embryonic amphioxus hindbrain region lacks
overt boundaries, and the segmentation of gene expression
domains has not been demonstrated (Nieuwenhuys, 1998;
Williams and Holland, 1998). Serially iterated cell types are
present in the hindbrain region of late amphioxus larvae
and adults (Bone, 1959, 1960; Lacalli and Kelly, 1999), but it
is unclear whether these arise from a fundamentally seg-
mented embryonic hindbrain region.

In vertebrates, the early segmental arrangement of hind-
brain neurons has been disclosed by examining genes such
as islet1, which are expressed during neuronal develop-
ment. islet genes encode LIM-homeodomain transcription
factors involved in many aspects of embryogenesis
(Tsuchida et al., 1994; Tokumoto et al., 1995; Ahlgren et
al., 1997). islet1 is expressed in all developing vertebrate
motor neurons and has been shown to be required for their
specification in the mouse (Ericson et al., 1992). islet1
reveals the segmental patterning of cranial motor neurons

Amphioxus islet sequence data from this article have been
deposited with the GenBank Data Library under Accession No.
AF226616.
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in the hindbrain and posterior midbrain at a time when
rhombomere boundaries are present and rhombomere-
specific genes such as krox-20 and hoxb1 are expressed
(Chandrasekhar et al., 1997; Prince et al., 1998). It is the
coincident repetition of these serially iterated hindbrain
features that defines rhombomere segmentation (Bateson,
1894; Lumsden and Krumlauf, 1996).

To investigate possible cell-type segmentation in the
hindbrain homolog, we cloned a homolog of islet1 in the
amphioxus Branchiostoma floridae. We found a single islet
gene homolog which we refer to as amphioxus islet. islet is
expressed in several restricted domains of cells during
embryonic development, including segmental clusters of
ventral cells in the amphioxus hindbrain region. We hy-
pothesize that this islet expression reveals a form of seg-
mentation in the amphioxus hindbrain region homologous
to that in vertebrates. Furthermore, we suggest that the
more prominent, overt segmentation of vertebrate hind-
brain rhombomeres may have derived from serially repeat-
ing neurons present in the amphioxus/vertebrate ancestor.
Additionally, we consider what the other domains of islet
expression suggest about the homology of these expressing
tissues with several vertebrate organs including the pineal
gland, adenohypophysis, and endocrine pancreas.

MATERIALS AND METHODS

Collection

Amphioxus adults (B. floridae) were collected from Old Tampa
Bay, Florida, separated by sex, and induced to spawn in the lab by
electrical stimulation (Holland and Holland, 1993). Eggs were
fertilized in vitro and allowed to develop at 23°C.

cDNA Library Screening

For screening, we used a library constructed from mRNA iso-
lated from 6- to 20-h postfertilization (h) amphioxus embryos and
packaged in the Lambda ZAP II vector (Stratagene; Langeland et al.,
1998). Approximately 5 3 105 pfu were screened at low stringency
with 32P-labeled DNA probes made from two PstI restriction
fragments of zebrafish islet1 cDNA (Inoue et al., 1994). The first
fragment included the region encoding the LIM1 and LIM2 do-
mains, the second the homeodomain and islet-specific domain.
Five cDNAs were identified, cloned, and found to be of identical
sequence. Hybridization and wash conditions were identical to
those described in Langeland et al. (1998).

Sequence Analysis

An alignment and phylogenetic tree of the translated amino acid
sequences from representative islet cDNAs was constructed using
the Clustal X computer program (Thompson et al., 1997). This
program employs the neighbor-joining method (Saitou and Nei,
1987) and was adjusted to exclude positions containing gaps from
the analysis and correct for multiple substitution events. Confi-
dence values at branch nodes were determined by the program from
1000 replicate bootstrap resamplings of the alignment data. Gen-
Bank accession numbers of genes used in constructing the align-

ment and tree (Fig. 2) were Rattus rattus Islet-1, 57613; Gallus
gallus Islet-1, 1708560; Danio rerio islet1, 1708559; R. norvegicus
Islet-2, 1708563; G. gallus Islet-2, 1708562; D. rerio islet2,
1708561; D. rerio islet3, 1708564; Ciona intestinalis Ci-isl,
3150146; and Drosophila melanogaster islet, 1895062.

Southern Analysis
Genomic DNA was isolated from a single B. floridae adult and

cut separately with five restriction enzymes (BamHI, SacI, XhoI,
PstI, and XbaI), and a Southern blot of these digests was probed
with a 32P-labeled 826-bp HindIII amphioxus islet cDNA fragment
(Sambrook et al., 1989). The probe comprised the 59 end of the gene
including the LIM1, LIM2, and homeodomain, but excluding the
islet-specific domain. The blot was first washed at high stringency
(1 mM EDTA, 40 mM NaHPO4, pH 7.2, 5% SDS, 64°C) and
exposed to film. For lower stringency tests, the blot was reincu-
bated with probe, washed at lower temperatures (55 and 45°C), and
reexposed to film.

mRNA in Situ Hybridization
Embryos were fixed as described in Langeland et al. (1998),

except that they were stored in 100% methanol instead of ethanol
after fixation. A ribonucleotide probe was synthesized from the
826-bp HindIII 59 fragment of the cDNA and in situ hybridization
was performed as described (Langeland et al., 1998). To facilitate
probe penetration, embryos neurula stage and older (.11 h) were
digested in a 10 mg/ml solution of proteinase K in PBS 1 0.1%
Tween 20 for 10 min (12- to 15-h embryos) or for 30 min (.15 h).
The signal from the probe was somewhat weak, thus we allowed
the in situ reactions to develop for several days and examined
several hundred embryos from each stage to be sure we were seeing
the entire expression pattern. A sense probe was made from the
same restriction fragment as a control and found to have no
detectable expression. For sections, fully developed embryos were
embedded in Epon resin and cut in 3.5- (transverse sections) or
7.5-mm (horizontal section) slices (Langeland et al., 1998). Names
of developmental stages follow the convention established in
Holland et al. (1996).

RESULTS

Isolation and Characterization of Amphioxus islet
We screened an amphioxus embryonic cDNA library

with probes made from the zebrafish islet1 cDNA, indepen-
dently isolating five clones of a single amphioxus cDNA.
The cDNA identified contains the two LIM domains, the
homeodomain, and the islet-specific domain characteristic
of islet genes (Fig. 1). Figure 2 shows a phylogenetic tree
constructed from an alignment of the conserved regions of
the translated amino acid sequences of our cDNA and
representative islet cDNAs. The branching pattern of the
tree strongly suggests (98% bootstrap value) that the am-
phioxus cDNA is no more closely related to one or the other
of the two groups of vertebrate islet genes, thus we named
it simply islet. Amphioxus islet is more similar to verte-
brate islet genes than are either the Ciona (urochordate) or
Drosophila (arthropod) islet homologs, but the bootstrap
confidence value at this level of the tree is less robust.

17Amphioxus islet
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Finding multiple islet-positive clones with the same
sequence led us to suspect that amphioxus may have only
one islet gene in its genome. To examine this idea more
closely, we probed a Southern blot of genomic DNA di-
gested separately with five restriction enzymes with a probe

made from the amphioxus islet cDNA (Fig. 3). The single
bands seen in lanes 1 and 2 suggest that islet is present at
only one genomic locus and there are no other genes closely
related to islet in the amphioxus genome. The multiple
bands in the other lanes may be the result of cutting within

FIG. 1. The sequence of amphioxus islet contains characteristics of the islet gene family. Nucleotide sequence is shown above the
putative amino acid translation. Boxes mark the LIM1 domain (108–285), LIM2 domain (294–471), homeodomain (609–792), islet-specific
domain (983–1077), and polyadenylation signal (2681–2687). Domains are from Thor and Thomas (1997), except the islet-specific domain,
which we have expanded based on our alignment information. Amino acid positions found to be identical between all of the islet genes
included in our phylogenetic analysis (Fig. 2) are highlighted in bold.

18 Jackman, Langeland, and Kimmel
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introns contained at this locus; however, a Southern blot
cannot rule out certain other possibilities (see Discussion).

islet Is Expressed Segmentally in the Neural Plate

We first detect islet mRNA expression in late gastrulae at
10 h in the anterior neurectoderm (arrow, Fig. 4A) and in the
underlying endoderm (arrow, Fig. 4B; see below for further
description of the endodermal expression pattern). By 11 h,
the neurectodermal expression has localized to two col-
umns of cells in the neural plate adjacent to the midline,
with the strongest expression in the posterior of each
column (arrow, Fig. 4C). After another hour (12 h), the
columns have resolved into serially iterated clusters (num-
bered in blue; Fig. 4D). The anterior four clusters contain a
small number of cells, perhaps two or three on each side of
the midline. Transverse sections reveal that these cells are
located in the ventral neural plate (arrow, Fig. 4E), except at
the level of cluster 5 (Fig. 4F; see below). By 14 h, six
somites have fully developed, and all but the anteriormost
segmental islet-expressing cells are positioned adjacent to
somite borders (arrowheads, Fig. 4G).

The anteriormost cluster (cluster 1) appears to be differ-
ent from the rest of the ventral islet-expressing clusters.
Unlike the others, cluster 1 is not located at a somite
border, being instead positioned at the level of the myocoele
of somite 1 (arrow, Fig. 4D). Also, cluster 1 is not bilaterally
symmetrical like the others, having more cells on the right
side than the left, and is more spread out along the anterior/
posterior axis (Fig. 4G).

Cluster 5 also appears different from those in the rest of
the neural tube (“5”, Fig. 4D). islet is expressed more

strongly at this level from 11 h (arrow, Fig. 4C) and
continues to be expressed more strongly until about 20 h.
Transverse sections through 12-h embryos at this level
reveal strong expression in the dorsolateral edges of the
neural plate (arrow, Fig. 4F) in addition to expression more
ventrally (arrowhead, Fig. 4F). The dorsal cells at this level
eventually develop a wedge-shaped morphology different
from the round morphology of the ventral islet-expressing
cells (arrow, Fig. 4I). Wedge-shaped, dorsal islet-expressing
cells also appear a few hours later one somite’s length back,
near the somite 5/6 boundary. These cells are not visible at
early neurula stages and begin to appear only at about 24 h
(data not shown).

By the late neurula/early larval stage of 21 h, islet is
expressed at its highest level in the neural tube, with seven
clusters visible (numbered in Fig. 4H). Soon after this stage
the organization of these clusters becomes more complex,
as some islet-expressing cells are now located away from
somite boundaries, and not all are in bilateral arrangements
(Fig. 4I). By 30 h, islet expression is more difficult to detect
in the neural tube (Fig. 4K; note switch to right-side view).
By 47 h, islet expression appears to have mostly faded from

FIG. 3. Southern analysis suggests amphioxus has a single islet
gene. Blot of genomic DNA digested with five restriction enzymes
was probed with an 826-bp 59 fragment of the amphioxus islet
cDNA. The single bands in lanes 1 and 2 suggest the presence of no
other genes closely related to islet (see Discussion). Shown for
clarity is a high-stringency blot, but blots of lower stringency
showed no additional bands (see Materials and Methods).

FIG. 2. Amphioxus islet is an outgroup of vertebrate islet genes.
Pictured is a neighbor-joining phylogenetic tree of translated amino
acid sequences from representative islet family genes. Numbers at
branch nodes indicate percentage confidence values based on 1000
replicate bootstrap resamplings of the alignment data. Vertebrate
islet genes fall into two categories with amphioxus islet no more
closely related to either group. This arrangement agrees with
theories of vertebrate-specific genome duplication (see Discussion).
See Materials and Methods for sequence references.

19Amphioxus islet
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FIG. 4. islet mRNA expression reveals segmentation in the amphioxus neural plate. (A–D) Dorsal views, anterior to left. Expression is
initiated in the late gastrula. (A) 10-h gastrula showing islet expression in the anterior neurectoderm (arrow). (B) Deep focus of embryo from
(A) revealing expression in the anterior endoderm (arrow). (C) 11-h neurula. Expression in the neurectoderm is limited to two longitudinal
stripes in the neural plate (np). Boundaries between numbered somites (s) are shown with arrowheads as in (D) and (G). (D) At 12 h islet is
expressed in five bilateral pairs of clusters in the neural plate (numbered in blue). Vertical dashed lines indicate positions of sections in (E)
and (F). (E) Transverse section from a 12-h embryo near the somite 1/2 boundary revealing expression in the ventral neural plate (arrow) and
the left gut diverticulum (ld). Bracketed bar indicates width of neural plate. (F) 12-h transverse section through islet cluster 5. Expression
is in the dorsal (arrow) as well as the ventral (arrowhead) neural plate and in the cells lining the intestine (in). (G–J) Anterior to left. (G) 14-h
neurula, dorsal view. Neural expression is now localized adjacent to the borders of the first six somites. (H) 21-h late neurula, left-side view.

20 Jackman, Langeland, and Kimmel
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the neural tube except in the posterior cerebral vesicle
(open arrowhead, Fig. 4L), and by 63 h, neural tube expres-
sion was barely detectable (data not shown).

We were sometimes able to visualize a few small, weakly
expressing cells in the dorsal cerebral vesicle just posterior
to the neuropore (arrowhead, Fig. 4K). This domain was
present only in the later larvae we examined (.24 h) and
probably due to its low level of expression we were unable
to locate it in sectioned specimens.

We never saw islet expression in the neural plate poste-
rior to the somite 7/8 boundary. At 30 h, when larvae have
developed more than 15 somites and have begun moving via
their myotomal muscle (Stokes and Holland, 1994), we
were able to detect neural islet expression only anterior to
somite 8 (dashed line, Fig. 4K). This remained the case even
at 47 h (dashed line, Fig. 4L) up to the latest stages we
investigated (63 h; data not shown).

islet Is Also Expressed in Certain Nonneural
Tissues

The endodermal expression of islet seen in the late
gastrula is maintained in the intestine and parts of the
pharynx throughout the later stages which we examined. At
10 h, islet is expressed strongly in the anterior endoderm
lining the archenteron (arrow, Fig. 4A). A uniform level of
expression is maintained in the anterior endoderm from
this stage until later neurula stages (data not shown).

By 21 h, a more complex pattern of endodermal expres-
sion has developed (Fig. 4H). The most anterior endodermal
expression is in the forming left anterior gut diverticulum
(“ld”, Figs. 4E, 4H, 4J, and 4K). islet is also expressed in
much of the pharyngeal endoderm including the club-
shaped gland (“cg”, Figs. 4H and 4K). However, expression
seems to be excluded from the endostyle (“es”, Figs. 4H and
4K), the branchial anlage (“ba”, Figs. 4H and 4K), the mouth
(data not shown), and the gill slits after they have formed in
later larvae (data not shown). This pharyngeal expression
pattern is maintained in the oldest larvae we examined (63
h, data not shown).

More caudally, islet is expressed in the developing intes-
tine (“in”, Fig. 4F). It is initially expressed along much of

the length of the intestine (arrows, Figs. 4H and 4J). By 47 h,
intestinal expression is restricted to three domains: several
ventral cells in the anterior intestine (arrow, Fig. 4L), a
ventral patch of cells more posterior (double arrow, Fig. 4L),
and most caudally in three or four dorsal cells (triple arrow,
Fig. 4L).

Additionally, islet is expressed in cells in and just under-
lying the rostral epithelium (“ro”, Fig. 4K) and in isolated
cells in the epidermis located mostly on the lateral flanks of
later larvae (data not shown).

DISCUSSION

islet Gene Evolution
Our screening efforts have identified a single am-

phioxus islet gene. In contrast, more than one islet gene
has been found in several vertebrate species (Gong et al.,
1995). To investigate the possible presence of other
amphioxus islet gene homologs, we screened a genomic
Southern blot with a probe made from an 826-bp, 59
fragment of the islet cDNA (Fig. 3). The single bands in
lanes 1 and 2 of the Southern suggest the presence of a
single amphioxus islet gene, with the multiple bands in
lanes 3–5 the result of the cutting of this single gene
within intron sequences. However, a Southern blot can-
not distinguish between the presence of a single gene
copy and the following two scenarios: that there are
multiple islet genes within approximately 15 kb on the
same chromosome (the size of the band in lane 1) or that
both lanes 1 and 2 contain more than one band of the
same size cut from multiple islet genes. We feel that the
Southern results can best be explained by the presence of
a single amphioxus islet gene, but acknowledge that
questions of gene copy cannot be truly resolved until the
entire genome of the organism in question has been
sequenced (e.g., Caenorhabditis elegans; Chervitz et al.,
1998).

However, we have no reason to suspect the presence of
more than a single amphioxus islet gene. Only one islet
homolog has been found in the urochordate C. intestinalis
(Giuliano et al., 1998) and in the arthropod D. melanogaster

The seven neural islet clusters are numbered. Cluster 1 is located in the posterior cerebral vesicle (cv). In the gut, the left diverticulum,
club-shaped gland (cg), and intestine also express. Dashed lines indicate position of horizontal section in (J). (I) 21 h, dorsal view. Dorsal cells
in cluster 5 adopt a wedge-shaped morphology (arrow). Ventral structures were cut away to allow light through to the neural plate. (J)
Horizontal section of the dorsal gut cavity, 21 h. Expression is strongest in the intestine (arrow) and left diverticulum. (K) 30 h. Larva is
shown in right-side view to correctly display the asymmetrical, right-side pharyngeal structures. Neural expression is only seen anterior to
somite 8 (dashed line, see line in (L) also). The posterior somites are smaller than the anterior ones at this stage, thus the somite 7/8
boundary is located in the posterior part of the animal. Dorsal posterior spot is in the epidermis (arrow). Gut expression is similar to (H):
noticeably absent in the endostyle (en) and branchial anlage (ba). Expression is also visible in the rostrum (ro) and faintly in the dorsal
cerebral vesicle (arrowhead). (L) 47-h larva, right-side view. Neural tube expression is largely faded except in the posterior cerebral vesicle
(open arrowhead). Intestinal expression has become localized to anterior ventral (arrow), more posterior ventral (double arrow), and posterior
dorsal (triple arrow) clusters of cells. Other labels: ar, archenteron; bp, blastopore; lt, left; nc, notochord; ps, pigment spot; rt, right. Scale
bars, 50 mm.
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(Thor and Thomas, 1997), suggesting that ancestrally islet
was present only in a single copy. Additionally, the analysis
of many gene sequences and conserved syntenic arrange-
ments between amphioxus and vertebrates has led several
researchers to hypothesize that the genome of early verte-
brates duplicated after the vertebrate and amphioxus lin-
eages diverged (Holland and Garcia-Fernàndez, 1996;
Amores et al., 1998; Patton et al., 1998).

Our phylogenetic tree of islet genes places vertebrate islet
genes into two groups, with amphioxus islet no more
closely related to either group (Fig. 2). This tree is consis-
tent with islet representing an unduplicated copy of a gene
which in vertebrates has been duplicated. Sequence com-
parisons of many other amphioxus genes also support this
model: several genes which have multiple copies in verte-
brates appear to have only one copy in amphioxus (N.
Holland et al., 1996; L. Holland et al., 1997; Patton et al.,
1998; Langeland et al., 1998) and when amphioxus is found
to have more than one copy, these duplicates appear to have
stemmed from an independent, single-gene duplication
event not shared with vertebrates (P. Holland et al., 1995;
Araki et al., 1996; Shimeld, 1997).

islet Reveals Embryonic Hindbrain Segmentation

Recent gene expression studies suggest that amphioxus
has a homolog of the vertebrate hindbrain. The amphi-
oxus genes AmphiOtx (Williams and Holland, 1996),
AmphiHox-1 (N. Holland et al., 1995), AmphiHox-3 (Hol-
land et al., 1992), and AmphiHox-4 (Wada et al., 1999) are
expressed in an anterior-to-posterior arrangement similar to
their vertebrate homologs, suggesting regional homology
between the vertebrate hindbrain and the amphioxus neural
tube approximately adjacent to somites 2–8 (Fig. 5).

However, is this amphioxus hindbrain region segmented?
We define segmentation using a widely known and long-
standing definition put forth by Bateson (1894). He defined
it as: “. . . a more or less coincident repetition of elements
belonging to most of the chief systems of organs along an
axis which corresponds to the long axis of the body.” The
vertebrate hindbrain includes at least three kinds of repeat-
ing elements: morphological boundaries between adjacent
rhombomeres (Fraser et al., 1990), segmentally arranged cell
types such as motor neurons (Lumsden and Keynes, 1989),
and segmental gene expression patterns (reviewed in Lums-

FIG. 5. Vertebrate (A) hindbrain segmentation may have derived from cell-type segmentation, like that revealed by amphioxus islet (B).
We hypothesize that amphioxus islet (red, B) marks amphioxus homologs of islet1-expressing vertebrate cranial motor neurons (red, A) and
reveals segmentation in the amphioxus hindbrain homolog. A left-side view of a 21-h zebrafish head (A) is sketched above an 18-h
amphioxus embryo (B). Only neural tube gene expression is shown. The vertebrate hindbrain is located posterior to the expression of Otx
genes (Li et al., 1994), with Hox1 and Hox3 genes expressed in its caudal half (Prince et al., 1998). The expression of homologs of these genes
suggests that the amphioxus neural tube posterior to the cerebral vesicle back to about the level of somite 8 is homologous to the hindbrain
(Holland et al., 1992; Holland and Garcia-Fernàndez, 1996; Williams and Holland, 1996). Zebrafish cranial motor neurons are drawn as they
are revealed by islet1 expression (Chandrasekar et al., 1997 and our own observations (data not shown)). Scale of zebrafish is approximately
twice that of the amphioxus. Amphioxus sketch is modified from Hatschek (1892), the zebrafish after Kimmel et al. (1995). Labels: cv,
cerebral vesicle; fb, forebrain; md, midbrain; r, rhombomere; s, somite; sc, spinal cord. Region of AmphiHox-1 and AmphiHox-3 overlap is
indicated by vertical stripes.
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den and Krumlauf, 1996). Because the repetition of these
elements are coincident, together they define the segmental
units of the hindbrain: the rhombomeres.

Neither morphological boundaries nor segmental gene
expression domains have been reported in the developing
amphioxus hindbrain region (reviewed in Nieuwenhuys,
1998; Williams and Holland, 1998), but serially arranged
motor neurons have been shown to be present in this region
in late larvae (Lacalli and Kelly, 1999). However, perhaps
due to the late stage examined, the arrangements of these
cells are complex and it is unclear whether they are seg-
mental with respect to the myotomes and the body plan in
general. Earlier, at the peak of the neural expression of islet,
there are six serially iterated, labeled clusters in the am-
phioxus hindbrain region (clusters 2–7; Figs. 4H and 5B).
During neurulation, these clusters line up next to somite
boundaries, demonstrating a coincidence of repetition that
fits Bateson’s definition of segmentation. We therefore
hypothesize that islet expression reveals a form of segmen-
tation in the amphioxus hindbrain homolog in the same
way that islet1 expression in cranial motor neurons reveals
vertebrate hindbrain segmentation. The apparent absence
of segmental morphological boundaries and regional gene
expression patterns in the amphioxus hindbrain region
raises the possibility that the overt segmentation of the
vertebrate hindbrain may derive from the segmentally re-
peating neurons of an invertebrate ancestor. Segmental
neurons may have laid the groundwork onto which gene
expression and morphological boundaries were added later
to make bona fide rhombomeres.

This hypothesis predicts that if there are other segmental
parts to the amphioxus hindbrain region, they should con-
sist of coincidentally repeating cell types and not morpho-
logical boundaries or gene expression domains. This idea
can be tested by investigating amphioxus homologs of three
types of vertebrate genes: other genes expressed in segmen-
tal cell types (i.e., tag1, Chandrasekar et al., 1997), genes
expressed at rhombomere boundaries (i.e., FGF-3, Mah-
mood et al., 1995), and genes which are expressed in
domains of one or a subset of rhombomeres (i.e., krox-20,
Wilkinson et al., 1989). There are many genes in each
category which have yet to be investigated in amphioxus
(for more examples, see Lumsden and Krumlauf, 1996).

islet May Reveal Motor Neuron Patterning

We do not know the identity of the segmentally arranged
islet-expressing cells, but suspect they are motor neurons.
In Drosophila, the single islet homolog is expressed in a
subset of its motor neurons (Thor and Thomas, 1997).
Closer to vertebrates, a Ciona islet homolog has been
cloned, but its possible expression in motor neurons has yet
to be investigated (Giuliano et al., 1998). However, in
vertebrates, islet1 is expressed in all developing motor
neurons and has been shown to be required for motor
neuron development in mouse knockout studies (Ericson et
al., 1992). Amphioxus islet, as a likely unduplicated, close

homolog of vertebrate islet genes (see above), may perform
many of the same developmental functions which have
been parceled out in vertebrate islet duplicates (Force et al.,
1999), including expression in developing motor neurons.
Thus phylogenetic comparisons currently support the idea
that islet may be marking some or all developing motor
neurons in amphioxus.

In the amphioxus posterior cerebral vesicle and hindbrain
region, two classes of somatic motor neurons and a few
visceral motor neurons have been identified in 8- to 12-day
larvae (Lacalli and Kelly, 1999). Similar to the segmental
islet-expressing cells, these motor neurons are located ven-
trally in the neural tube. The late arrangements of these
motor neurons seem similar enough to the early pattern of
islet-expressing cells for the former to have possibly arisen
from the latter. However, we were barely able to detect
neural islet expression in 63-h larvae and not at all past this
stage (data not shown), making it impossible to follow the
early islet-expressing cells to their later larval phenotype.
Establishing the connection between early amphioxus gene
expression and late phenotype will have to wait until
techniques to culture amphioxus embryos in the laboratory
and trace the lineage of cells during development are
developed (Stokes and Holland, 1994; Zhang et al., 1997).

We were never able to detect islet expression in the
posterior neural tube even after many more somites have
formed caudal to somite 7 and expression is still detectable
anterior to this level (dashed line, Figs. 4K and 4L). This is
surprising because vertebrates have islet1-expressing motor
neurons along much of the neural tube, from the midbrain
back through to the posterior end of the spinal cord (Korzh
et al., 1993). It is also surprising because motor neurons
were tentatively identified in the posterior neural tube of
the larval and adult amphioxus (Bone, 1959, 1960). Unfor-
tunately, the detailed work of Lacalli and Kelly does not
extend caudal to somite 6, leaving the presence of more
posterior larval amphioxus motor neurons in question. As
stated above, the arthropod D. melanogaster has been
shown to express its sole islet homolog in only a subset of
its motor neurons (Thor and Thomas, 1997). This provides
an example of an invertebrate in which islet marks only a
subset of its motor neurons, raising the possibility that the
situation may be similar in amphioxus. However, the
amphioxus larval somatic motor neurons have large axons
which descend caudally down the neural tube, allowing for
the possibility that the posterior somites are innervated by
anterior motor neurons which express islet in their devel-
opment (Lacalli and Kelly, 1999). Thus it remains uncertain
whether the lack of posterior islet expression is indicative
of an absence of posterior motor neurons, the late develop-
ment of such neurons, or examples of chordate motor
neurons which do not express islet in their patterning.

The limited anterior/posterior extent of the segmental
islet-expressing cells within the neural tube suggests that
they may be homologs of a subset of vertebrate motor
neurons: the cranial motor neurons. Cranial motor neurons
are located in the hindbrain and posterior midbrain of
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vertebrates (Gilland and Baker, 1993). As described above,
gene expression has suggested that amphioxus has a hind-
brain homolog, but has been inconclusive regarding the
presence of an amphioxus midbrain homolog (L. Holland et
al., 1997; Williams and Holland, 1998). However, neuroana-
tomical work has suggested that amphioxus possess part of
a midbrain, including a tectum and midbrain motor neu-
rons (Lacalli, 1996). If islet indeed identifies the early
development of amphioxus midbrain motor neurons, this
suggests that the islet-expressing cells in the posterior
cerebral vesicle may be homologs of vertebrate midbrain
cranial motor neurons and that the more posterior islet-
expressing cells may be homologs of vertebrate hindbrain
cranial motor neurons. Future investigations of other ver-
tebrate genes expressed in motor neurons in general (i.e.,
Lim-3, Tsuchida et al., 1994) and cranial motor neurons
more specifically (i.e., phox2a, Pattyn et al., 1997) will test
this hypothesis.

Other Homologies

islet has a complex expression pattern and is probably
involved in several aspects of developmental patterning in
addition to those described above. We outline below how
these additional domains of islet expression contribute to
arguments concerning the homology between several am-
phioxus and vertebrate structures.

Rohon-Beard cells are islet1-expressing dorsal sensory
neurons in the posterior hindbrain and spinal cord of
anamniote vertebrates (Korzh et al., 1993; Kollros and
Bovbjerg, 1997). Morphological studies have been inconclu-
sive regarding the presence of Rohon-Beard homologs in
amphioxus (Bone, 1960). The dorsal, islet-expressing cells at
the level of somites 5 and 6 (Fig. 4I) may conceivably
represent Rohon-Beard homologs. However, if this is the
case, their limited anterior–posterior extent in the neural
tube would indicate that they were homologous to posterior
hindbrain and not spinal Rohon-Beard neurons.

The vertebrate epiphysis, which develops into the pineal
gland, also expresses islet1 (Inoue et al., 1994). The faint
spot of islet expression we detect in the dorsal cerebral
vesicle of older larval stages (arrowhead, Fig. 4L) may be
present in the developing lamellar body, lending strength to
a morphological argument for homology of this structure
with the vertebrate epiphysis (Lacalli, 1996).

islet is also expressed strongly in the left gut diverticu-
lum and more weakly in the club-shaped gland of the
pharynx (Fig. 4H). Whereas the homology of the club-
shaped gland has remained difficult to assess (Goodrich,
1930a), the left diverticulum contributes to Hatschek’s pit
in the adult, a structure thought homologous to the verte-
brate adenohypophysis (Whittaker, 1997; Gorbman et al.,
1999). islet1 is expressed in the adenohypophysis of the rat
(Thor et al., 1991), strengthening the Hatschek’s pit/
adenohypophysis link.

islet1 has also been shown to be expressed in, and
required for, the development of the endocrine islet cells of

the mouse pancreas (Ahlgren et al., 1997). Amphioxus does
not have a discrete endocrine pancreas, but along with
hagfish and lamprey, has several types of endocrine cells
incorporated into the gut epithelium, some of which are
possibly homologous to the pancreas-islet cells of mam-
mals (Reinecke, 1981; P. Holland et al., 1997). It is therefore
possible that the intestinal expression of amphioxus islet is
revealing the early development of these pancreas-islet
homologs. The islet-expressing cells in the anterior intes-
tine may be good candidates for such cells (arrow, Fig. 4L).

Finally, an area of islet expression is found in and perhaps
just internal to the ectoderm at the tip of the head (rostrum,
Fig. 4K). Vertebrate islet1 is expressed in anterior, nonecto-
dermal cells that appear to give rise to the hatching gland in
the zebrafish embryo (Ericson et al., 1992; Inoue et al.,
1994), but this expression quickly fades and no other
vertebrate islet gene has been reported to be expressed
rostrally outside of the neural tube during development.

CONCLUSION

The expression of a single gene cannot demonstrate
homology, but it can be used as a character which, when
considered along with others both molecular and morpho-
logical, can paint a picture of how animals are related and
what their ancestors were like. The expression of islet
strengthens links between the hindbrain region of verte-
brates and amphioxus and suggests how part of rhom-
bomere segmentation may have evolved, i.e., that segmen-
tal neurons likely appeared before boundaries. Further
comparisons of developmental gene expression between
amphioxus and vertebrates will no doubt greatly advance
our understanding of the homology between the body plans
of these animals and allow us to model more precisely what
our ancestors were like before our lineages diverged so long
ago.
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