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Abstract

We analyze the level-rank duality of w.-twisted D-branes of SU(N)g (when N and K > 2). When N or
K is even, the duality map involves Zj-cominimal equivalence classes of twisted D-branes. We prove the
duality of the spectrum of an open string stretched between w.-twisted D-branes, and ascertain the relation
between the charges of level-rank-dual w.-twisted D-branes.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction

Level-rank duality is a relationship between various quantities in bulk Wess—Zumino—Witten
models with classical Lie groups [1-3]. It has recently been shown [4,5] that level-rank duality
also applies to untwisted and to certain twisted D-branes in the corresponding boundary WZW
models [6-31]. (For a review of D-branes on group manifolds, see Ref. [32].) In this paper, we
extend this work to include all charge-conjugation-twisted D-branes of the SU(N) ¢ WZW model.

Untwisted (i.e., symmetry-preserving) D-branes of WZW models are labelled by the inte-
grable highest-weight representations V; of the affine Lie algebra. For Su(N)g, these repre-
sentations belong to cominimal equivalence classes generated by the Zy simple current of the
WZW model, and therefore so do the untwisted D-branes of the model. Level-rank duality is
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a one-to-one correspondence between cominimal equivalence classes (or simple-current orbits)
of integrable representations of SU(N)g and Su(K)y, and therefore induces a map between co-
minimal equivalence classes of untwisted D-branes.

The spectrum of an open string stretched between D-branes labelled by « and B is specified
by the coefficients of the partition function

Zog" (0= Y np () (1.1
rePK

where x; (7) is the affine character of the integrable highest-weight representation V. For un-
twisted D-branes, the coefficients ng,* are equal to the fusion coefficients of the bulk WZW
theory [33], so the well-known level-rank duality of the fusion rules [1-3] implies the duality of
the open-string spectrum between untwisted branes.

Untwisted D-branes of SU(N)k possess a conserved DO-brane charge belonging to Zy, , :

0. = (dimA)gy(y) modxy g (1.2)
where [15,17]

N+K
XN, K = . (13)
gcd{N + K,lem{l,...,N — 1}}
The charges of cominimally-equivalent untwisted D-branes are equal up to sign [17]
0oy = (—DN'0; modxy k (1.4)

where o is the Zy simple current of SU(N)g. It was shown in Refs. [4,5] that the charges of
level-rank-dual untwisted D-branes of Su(N)g and Su(K)y are related by

_ { (—=1)"™Q; modx for N + K odd, (L5)

0
* Q; modx for N 4+ K even (except for N = K =2"),

where r(X) is the number of boxes in the Young tableau associated with the representation A,
where A is the level-rank-dual representation of Su(K)y associated with the transposed tableau,
and x = min{xy g, Xk, n}. For the remaining case, it was conjectured that

0; =

(=1)P/No, modx  when N | r(r)
Q; modx when N {7(})

} for N =K =2" (1.6)

on the basis of numerical evidence.

In addition to untwisted D-branes, most WZW models contain twisted D-branes, whose
charges also belong to Zy, , [23,34-36]. The coefficients ng,® of the partition function (1.1)
of an open string stretched between twisted D-branes « and B are given by

Z W&ku SinVpu

1.7
Son )

n B )Loz =
ne&e®
where /4, is the modular-transformation matrix of the associated twisted affine Lie algebra.

One such class of D-branes for Su(N)g are those twisted by the charge-conjugation symme-
try w,, which exist for all N > 2. This paper will analyze the level-rank duality of w,-twisted
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D-branes of su(N)g (for N and K > 2), and in particular, the relationship between the open-
string partition function coefficients (1.7), and between the D-brane charges. (In Ref. [5], level-
rank duality of w.-twisted D-branes was examined in the special case that N and K were both
odd.)

As shown in Ref. [21], and reviewed in Sections 4 and 5, the w.-twisted D-branes of Su(2n) ¢
(respectively su(2n + 1)) are labelled by a subset of integrable highest-weight representa-
tions of S0(2n + 1)k 41 (respectively $6(2n + 1) g42), or alternatively, by a subset of integrable
highest-weight representations of $p(n)g+,—1 (respectively Sp(n)x+n). In Section 4, we show
that, like untwisted D-branes, w,-twisted D-branes of Su(2n) g belong to cominimal equivalence
classes, but now generated by the Z, simple current of $6(2n + 1)g41. As shown in Sec-
tion 7, cominimally-equivalent w.-twisted D-branes of su(2n)x have equal and opposite charges
(mod Xon,K)-

In Section 6, we describe a one-to-one map o — & between the w.-twisted D-branes (or
cominimal equivalence classes of branes) of Su(N) g and the w,-twisted D-branes (or cominimal
equivalence classes of branes) of Su(K)y. The exact form of the level-rank map depends on
whether N and K are even or odd. We then show the equality of the open string partition function
coefficients (1.7) for level-rank-dual w.-twisted D-branes. Because the level-rank map involves
cominimal equivalence classes in the case of Su(2n)g, the natural quantity to consider in that
case is

1\ 2l @+ (B)1+1
s = (5) [n62% + 1”@ + 165" + 1o @] (1.8)
where o is the Z, simple-current symmetry of $6(2n + 1)k 41, and ¢ () is defined in Eq. (4.3).

In Section 7, we ascertain the relationship between the charges of level-rank-dual w.-twisted
D-branes.

Sections 2 and 3 contain some necessary background material on twisted states in WZW
models and on integrable representations of $0(2n + 1)k, and concluding remarks comprise
Section 8.

2. Twisted D-branes of WZW models

In this section, we review some aspects of twisted D-branes of WZW models and their re-
lation to the twisted Cardy and twisted Ishibashi states of the closed-string sector, drawing on
Refs. [7-9,19,21].

The WZW model, which describes strings propagating on a group manifold, is a rational
conformal field theory whose chiral algebra (for both left- and right-movers) is the (untwisted)
affine Lie algebra gk at level K. We only consider WZW theories with a diagonal closed-string
spectrum:

yclosed _ @ V, ® VA* 2.1)

K
AEPY

where V and V represent left- and right-moving states respectively, and A* denotes the repre-
sentation conjugate to A. V) € Pf are integrable highest-weight representations of gx, whose
highest weight A has non-negative Dynkin indices (ao, ai, ..., a,) satisfying Y i_ym;a; = K
(where n =rank g and (mq, my, ..., m,) are the dual Coxeter labels of gg).
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D-branes of the WZW model may be studied algebraically in terms of the possible boundary
conditions that can consistently be imposed on a WZW model with boundary. We label the
allowed boundary conditions (and therefore the D-branes) by «, g, ... ..

We consider boundary conditions on the currents of the affine Lie algebra of the form

[V —0)'®]|,_;=0 (2.2)

where w is an automorphism of the Lie algebra g. These boundary conditions leave unbroken the
gk symmetry, as well as the conformal symmetry, of the theory. Untwisted D-branes correspond
to w = 1. Open-closed string duality allows one to correlate the boundary conditions (2.2) of the
boundary WZW model with coherent states | B))® € H¢1°%®d of the bulk WZW model satisfying

[J4+ 0], ]IBY =0, meZ (2.3)

where J¢ are the modes of the affine Lie algebra generators.

Solutions of Eq. (2.3) that belong to a single sector V,, ® \_/w(ﬂ)* of the bulk WZW theory are
known as w-twisted Ishibashi states |.))7. (Solutions corresponding to w = 1 are the ordinary
untwisted Ishibashi states [37].) Since we are considering the diagonal closed-string theory (2.1),
these states only exist when u = w(u), so the w-twisted Ishibashi states are labelled by u € £,
where £ C P f are the integrable highest-weight representations of gx that satisfy w(u) = u.
Equivalently, u corresponds to an integrable highest-weight representation of g, the orbit Lie
algebra [38] associated with gk .

A coherent state |B))® that corresponds to an allowed boundary condition must also satisfy
additional (Cardy) conditions [33]. Solutions of Eq. (2.3) that also satisfy the Cardy conditions
are denoted w-twisted Cardy states |a))¢, where the labels o take values in some set B“. The
w-twisted D-branes of gx correspond to |a))¢ and are therefore also labelled by o € B“. These
states correspond [9] to integrable highest-weight representations of the w-twisted affine Lie
algebra g% (but see Ref. [24]).

The w-twisted Cardy states may be expressed as linear combinations of w-twisted Ishibashi
states

w waﬂ w
la)e = —|u) (2.4)
‘ ugﬂ’ SO“ !

where S;,, is the modular transformation matrix of 8k, 0 denotes the identity representation, and
the coefficients ¥, may be identified [9] with the modular transformation matrices of characters
of the twisted affine Lie algebra g% [39], as may be seen, for example, by examining the partition
function of an open string stretched between an w-twisted and an untwisted D-brane [19,21].
Using arguments presented, e.g., in Ref. [21], the coefficients of the open string partition function
(1.1) may be expressed as

* S
ng = Z M (2.5)

HE (C/‘a) SO/"
3. Integrable representations of S6(2n + 1) g

This section presents details about integrable highest-weight representations of $6(2n + 1) g/
that will be needed for the discussion of w.-twisted states of the SU(N)x WZW model.
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Integrable representations of $6(2n + 1)k have Dynkin indices (ag, a1, ..., a,) that satisfy
Yoi_omia; = K’', where m; are the dual Coxeter labels of the extended Dynkin diagram for
so(2n + 1)

(with the dual Coxeter labels shown adjacent to each node), that is,3

aO+al+2(a2+"'+an—l)+an:K/- (3.1)

An even or odd value of a, corresponds to a tensor or spinor representation respectively. With
each tensor representation of so(2n + 1) may be associated a Young tableau whose row lengths
¢; are given by

%an+2’;;}q/ forl<i<n—1,
4= (3.2)
%an fori =n,
with total number of boxes r = Y"1, ¢;. We also formally use Eq. (3.2) to define row lengths
for a spinor representation. These row lengths are all half-integers, and correspond to a “Young
tableau” with a column of “half-boxes.” The integrability condition (3.1) corresponds to the
constraint £1 + £ < K’ on the row lengths of the tableau.

The extended Dynkin diagram of so(2n + 1) has a Z, symmetry that interchanges the Oth and
Ist nodes. This symmetry induces a simple-current symmetry (denoted by o) of the $6(2n + 1) g
WZW model that pairs integrable representations related by ag <> a, with the other Dynkin
indices unchanged. Their respective Young tableaux are related by £; — K’ —£;. Under o, tensor
representations are mapped to tensors, and spinor representations to spinors, and the modular
transformation matrix S’ of S0(2n + 1)+ obeys [3]

g tensor

@) = :i:S(;,M, for ' a { } representation. (3.3)

spinor

Representations related by o € Z; belong to a simple-current orbit, or cominimal equivalence
class.

In this paper, we will refer to representations of $0(2n + 1) g/ with £ < %K "l = %K ', and
{1 > %K " as being of types I, II, and III, respectively. Type II representations are cominimally
self-equivalent, and are tensors (respectively spinors) when K’ is even (respectively odd). Each
simple-current orbit of §6(2n + 1)k contains either a type I and type III representation, or a
single type II representation.

3 Note: throughout this paper, by $0(3) g/ we mean the affine Lie algebra Su(2), . Its integrable representations have
so(3) Young tableaux that obey £ < K'. Since £ = %al , this means that Eq. (3.1) is replaced with ag +a; = 2K’ when
n=1.
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4. Twisted states of the su(2r) x model

The invariance under reflection of the Dynkin diagram of the finite Lie algebra su(N) gives
rise (when N > 2) to an order-two automorphism w, of the Lie algebra, under which the Dynkin
indices a; (i =1, ..., N — 1) of an irreducible representation are mapped to ay—;, corresponding
to charge conjugation. This automorphism lifts to an automorphism of the affine Lie algebra
Su(N)g that leaves the zeroth node of the extended Dynkin diagram invariant. It gives rise (for
N > 2) to a set of w.-twisted Ishibashi states and w.-twisted Cardy states of the bulk Su(N)g
WZW model, and a corresponding class of w.-twisted D-branes of the boundary model. In this
section and the next, we review these twisted states for su(2n)g and su(2n + 1), respectively.
Much of this material is a summary of Ref. [21].

Twisted Ishibashi states of Su(2n) g

Recall from Section 2 that the w,-twisted Ishibashi states Iu,))‘;" of the su(2n) x WZW model
(n > 1 is understood throughout this section) are labelled by self-conjugate integrable highest-
weight representations u € £ of Su(2n)g = (Aéln)fl) k- These representations have Dynkin
indices (o, L1, -« Bn—1, Mns Kn—1, - - -, (41) that satisfy

o +2(ur + -+ 1) + n = K. 4.1

Equivalently, the w.-twisted Ishibashi states of su(2n)x may be characterized [38] by the inte-

grable highest weight representations of the associated orbit Lie algebra g = (D,(l2+)

Dynkin diagram is

)k, whose

with the integers adjacent to each node indicating the dual Coxeter label m;. The representa-
tion u € £“¢ corresponds to the (Drgz )k Tepresentation with Dynkin indices (w0, i1, - - -, Un)s
whose integrability condition is precisely (4.1).

Each w,-twisted Ishibashi state p of Su(2n)x may be mapped [21] to an integrable highest-
weight representation p’ of the untwisted affine Lie algebra $6(2n + 1) ¢+ with Dynkin indices
(o + 1 + 1, py, ..., wy). The constraint (4.1) translates into the constraint £ (u') < %K on
the $0(2n + 1)k 41 Young tableaux. This means that w,-twisted Ishibashi states of Su(2n)g are
in one-to-one correspondence with the set of type I tensor and type I spinor representations of

§(\)(27’l + 1 )K+1 .
Twisted Cardy states of Su(2n) g

Recall that the w.-twisted Cardy states |oz))“c’" (and therefore the w.-twisted D-branes) of the
Su(2n) gk WZW model are labelled [9] by the integrable highest-weight representations a € B%¢

of the twisted affine Lie algebra g¢ = (Aéi)_l

[

12 2

)k, whose Dynkin diagram is

b
(]
]

'
T
]
[Sv]
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The Dynkin indices (ag, ai, . . ., a,) of the highest weights « thus satisfy

apg+ay+2@+---+a,) =K. 4.2)

(For n =2, the twisted affine Lie algebra is instead Dgz) with nodes 1 and 2 interchanged [21],
but the condition (4.2) remains valid.)

The w,-twisted Cardy state o € B of Su(2n)x may be associated [21] with an integrable
highest-weight spinor representation «’ of the untwisted affine Lie algebra S0(2n + 1)k
with Dynkin indices (ag, a1, ..., an—1, 2a, + 1). The constraint (4.2) is precisely the condition
on integrable representations of $0(2n + 1)k 1. (In terms of so(2n + 1) Young tableaux row
lengths, this constraint reads £1(a’) + £2(a’) < K + 1.) Therefore, there is a one-to-one corre-
spondence between the w.-twisted D-branes of SU(2n) g and integrable spinor representations of
S0Q2n + D g1 of type I, type II (when K is even), and type II1. For later convenience, we define

0, if¢;(@)#4(K+1) (typesIandIID),
t(a) = (4.3)
I, ifl@)=%K+1) (typelD.

Even though the w,-twisted Cardy states and the w.-twisted Ishibashi states of Su(2n)g are
characterized differently in terms of integrable representations of S0(2n + 1)k +1, they are equal
in number. The w.-twisted Cardy states & may be written as linear combinations of w,-twisted
Ishibashi states ., with the transformation coefficients 14, given by the modular transformation
matrix of (Agl)_l) k. In Ref. [21], it was shown that, for Su(2n)g, these coefficients are propor-
tional to matrix elements of the (real) modular transformation matrix S’ of the untwisted affine
Lie algebra $0(2n + 1) g 1:

Vau =28, =255, (4.4)

where o’ and p are the $6(2n + 1) x4 representations related to o and u as described above.
Since the finite Lie algebra associated with the twisted affine Lie algebra (Agi)fl) k is Cy,

the representations of (A;i)_l) x form C,-multiplets at each level. More specifically [21], each
w,-twisted Cardy state o € B%¢ of Su(2n) g may be associated with an integrable highest-weight
representation «” of the untwisted affine Lie algebra* §p(n) 4,1 with (finite) Dynkin indices
(a1, ...,ay). The row lengths of the sp(n) Young tableau associated with a” are equal to those
of the so(2n + 1) Young tableau associated with &’ reduced by one-half: ¢; (¢”) = £;(a’) — %
Therefore, an alternative characterization of the w.-twisted D-branes of Su(2n) is as the subset
of integrable representations of Sp(n)gy,—1 characterized by Young tableaux with row lengths
satisfying £1(a”) + £2(a”) < K.

Equivalence classes of w.-twisted D-branes of SU(2n) g

The Z; simple current symmetry o of $6(2n + 1) g+ relates type I and type III representations
in pairs. Using the 1-1 correspondence between integrable S6(2n + 1) 41 spinor representations
and w.-twisted Cardy states, we lift the map o to the twisted D-branes of Su(2n)g, and refer
to o (o) as cominimally equivalent to «. (In Section 7, we will show that o and o (o) have
equal and opposite DO-brane charges, modulo x7, x.) Therefore, the cominimal equivalence
classes of wc-twisted D-branes of Su(2n)g are in one-to-one correspondence with the set of

4 Throughout this paper, our convention is sp(n) = Cj,.
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type I spinor representations of $6(2n + 1) g 1| when K is odd, and with type I and type II spinor
representations of $0(2n + 1)k 1| when K is even.

Twisted open string partition function of SU(2n) g

The coefficients of the partition function of an open string stretched between w,-twisted
D-branes « and $ of su(2n) g are given by

/ /
ZS /#/Slusﬂ/u/

n,g;f" = Z “

s__[ tensors I
" _{ spinors I

4.5
Son 4.5

using Egs. (2.5) and (4.4). Since the w.-twisted D-branes of su(2n)g belong to Z;-cominimal
equivalence classes, we also define the linear combination

1\ zlt @+ (B)1+1
spit = (5) (1 + 1" +no(ei® +na@n”® ]
1 -2 / /
B (1)2[1‘(11)4‘1‘(5)] SW/M/SAMSﬁ,PL/ 46
_(L ow TP (4.6)
2 Sop

' =tensors I

where, as a result of Eq. (3.3), the sum over spinor representations drops out. (The normalization
is chosen so that 58, = ng,* when « and B are both type II, and therefore belong to single-
element cominimal equivalence classes.) The quantity sg3* is the more natural one to consider
in the context of level-rank duality.

5. Twisted states of the Su(2n + 1) ¢ model
Twisted Ishibashi states of Su(2n + 1) g

Recall from Section 2 that the w.-twisted Ishibashi states |u))(;’” of the SU(2n + 1) gk WZW
model are labelled by self-conjugate integrable highest-weight representations u € £%¢ of
Sun+ g = (A;L))K. The Dynkin indices (o, 415 - - hn—1> ns Kns> Un—1, - - - » 1) Of these
representations satisfy

wo+2(ur + -+ un) =K. (5.1

Equivalently, the w.-twisted Ishibashi states of su(2n + 1)x may be characterized [38] by the
integrable highest weight representations of the associated orbit Lie algebra ¢ = (Agl)) K> Whose
Dynkin diagram is (the right-hand diagram is for n = 1)

2792 2 2 2 2 2 271 2 1

The representation u € £“¢ corresponds to the (Agl))K representation with Dynkin in-
dices (1o, 1, ..., Un). Consistency with Eq. (5.1) requires that the dual Coxeter labels be
(mgo,my,...,my)=(1,2,2,...,2), and hence we must choose as the zeroth node the right-most
node of the Dynkin diagrams above (consistent with Ref. [21], but differing from Refs. [40,41]).
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Each w.-twisted Ishibashi state w of Su(2n + 1)k may be mapped [21] to an integrable
highest-weight spinor representation ” of the untwisted affine Lie algebra® §0(2n + 1) g 2 with
Dynkin indices® (mo+ w1+ 1,01, ...y hn—1, 24 + 1). The constraint (5.1) translates into the
constraint £; (1) < %(K + 1) on the $6(2n + 1) g +» Young tableau. This means that w,-twisted
Ishibashi states of SU(2n + 1)k are in one-to-one correspondence with the set of type I spinor
representations of S0O(2n + 1)k 12.

Twisted Cardy states of SU(2n + 1)k

Recall that the w.-twisted Cardy states |oz))g" (and therefore the w.-twisted D-branes) of
the Su(2n + 1)k WZW model are labelled [9] by the integrable highest-weight representations

«a € B of the twisted affine Lie algebra 32 = (AS))k (but see Ref. [24]). We adopt the same

convention as above for the labelling of the nodes of the Dynkin diagram of (Ag,)) k - Thus the
Dynkin indices (ag, a1, - . ., a,) of the highest weights o must satisfy

ag+2(a; +---+a,) =K. 5.2)

The w,-twisted Cardy state o« € B“< of su(2n + 1)x may be associated [21] with an inte-
grable highest-weight spinor representation o’ of the untwisted affine Lie algebra s0(2n + 1) g 12
with Dynkin indices’ (ag +aj; + 1,4y, ..., an—1,2a, + 1). The constraint (5.2) translates into
the constraint £ () < %(K + 1) on the $6(2n + 1)k +2 Young tableaux. This means that w,-
twisted D-branes of SU(2n + 1) g are in one-to-one correspondence with the set of type I spinor
representations of S0(2n + 1)k 12.

Since w,-twisted Cardy states of Su(2n + 1) g correspond only to type I spinor representations
of $0(2n + 1) g 42, there is no notion of cominimal equivalence of w.-twisted Cardy states in this
case.

In the case of su(2n + 1) g, the total number of w.-twisted Cardy states is manifestly equal to
the total number of w.-twisted Ishibashi states. The coefficients y/,, relating w.-twisted Cardy
states « to w.-twisted Ishibashi states p are given by the modular transformation matrix of
(Aéi)) k. In Ref. [21], it was shown that, for Su(2n + 1)k, these coefficients are proportional
to matrix elements of the modular transformation matrix S’ of the untwisted affine Lie algebra
$0(2n + Dk 42:

1/jOl/L == ZS(;/M/ (53)

where o’ and p are the $6(2n + 1) g 1o representations related to o and p as described above.
Since the finite Lie algebra associated with the twisted affine Lie algebra (Aéz)) k is Cp, the
representations of (A;i)) x form C,-multiplets at each level. More specifically [21], each w,-
twisted Cardy state @ € B of Su(2n + 1) may be associated with an integrable highest-weight
representation o” of the untwisted affine Lie algebra Sp(n)g ., with (finite) Dynkin indices
(a1, ...,ay). The row lengths of the sp(n) Young tableau associated with o” are equal to those
of the so(2n + 1) Young tableau associated with &’ reduced by one-half: ¢; (¢”) = £;(a’) — %

n

5 See the note regarding $0(3) g+ in footnote 3.
6 For n =1, u’ has Dynkin indices (2ug + 211 + 3, 211 + 1).
7 For n =1, o’ has Dynkin indices (2aq + 2a; + 3, 2a; + 1).
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Therefore, an alternative characterization of the w,-twisted D-branes of su(2n + 1)k is as the sub-
set of integrable representations of Sp(n) g1, characterized by Young tableaux with row lengths
satisfying £ (o) < %K

Twisted open string partition function of SU(2n + 1) g

The coefficients of the partition function of an open string stretched between w,-twisted
D-branes « and 8 of su(2n + 1)k are given by

4S// /S)\ S// ’
npl= Y Y - (5.4)
1/ =spinors I

using Egs. (2.5) and (5.3).

Sou

Special case of Su(2n + 1)ax11

Note that in the special case of odd level, the w,.-twisted Cardy states o and w.-twisted
Ishibashi states w of Su(2n + 1)2¢+1 are in one-to-one correspondence with the integrable rep-
resentations o’ and u” of Sp(n); with finite Dynkin indices (ay,...,a,) and (i1,..., iy)
respectively. Moreover, it was observed [20,21,38] in this case that the Cardy/Ishibashi coef-
ficients may be expressed as

Vap = Senr (5.5)

where SL;’,,M,, are elements of the modular transformation matrix of Sp(n)y.
6. Level-rank duality of the twisted D-branes of su(N) g

This section is the heart of the paper, in which we present the level-rank map between the
wc-twisted D-branes of su(N)g and Su(K)y. We use this to show the level-rank duality of the
spectrum of an open string stretched between w,-twisted D-branes.

As in the case of untwisted D-branes, the level-rank correspondence involves cominimal
equivalence classes (unless N and K are both odd). The details of the correspondence dif-
fer markedly depending on whether N and K are even or odd, so we must treat three cases
separately. In Refs. [4,5], the tilde (7) notation was used to denote the level-rank dual of an
untwisted state, because the duality map was given by transposition of the associated Young
tableaux. Here, in all cases, we will use the hat (") notation to denote the level-rank dual of
an w.-twisted state, but the specific form of the duality map depends on whether N and K
are even or odd, and on whether we are considering w.-twisted Cardy or w,-twisted Ishibashi
states.

Duality of twisted states of SU(2n)o; <— su(2k),

As we saw in Section 4, the cominimal equivalence classes of w.-twisted Cardy states (and
therefore of w.-twisted D-branes «) of Su(2n)y; correspond to type I and type II spinor rep-
resentations ' of $0(2n + 1)2¢+1. The number of equivalence classes of w.-twisted D-branes
of Su(2n)y is equal to the number of equivalence classes of w,-twisted D-branes of $u(2k)2,,
and there is a natural map o« — & between them (when n, k > 1). This map is defined in terms
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of the map o’ — &' between the corresponding spinor representations of $6(2n + 1)2x+1 and
S0(2k + 1)2,,41, as follows:

reduce each of the row lengths of @’ by %, so that they all become integers,
transpose the resulting tableau,

take the complement with respect to a k x n rectangle,

add % to each of the row lengths.

(The map a” — a&” between the corresponding representations of Sp(n)2x1,—1 and Sp(k)2n1x—1
is given by the middle two steps above.) The map &’ — &’ was first described in the appendix
of Ref. [3] in the context of level-rank duality of SO(N)x WZW models. It takes type I (respec-
tively type II) spinor representations of $0(2n + 1)2x+1 to type II (respectively type 1) spinor
representations of S0(2k + 1)2,41. Hence,

to)+1@) =1 6.1)

for all w-twisted Cardy states « of St(2n)y, where ¢ («) is defined in Eq. (4.3), and (&) is the
corresponding quantity in Su(2k),,. The map ' — &’ lifts to a one-to-one map a — & between
cominimal equivalence classes of w.-twisted D-branes of $u(2n),; and cominimal equivalence
classes of w.-twisted D-branes of Su(2k),;,.

Next, we turn to the level-rank map for w,.-twisted Ishibashi states of Su(2k);,. As we saw
in Section 4, w.-twisted Ishibashi states 1 of su(2n)y correspond to type I tensor and type I
spinor representations p’ of $0(2n + 1)2x41. The level-rank map pu — i between w.-twisted
Ishibashi states of Su(2n),; and those of su(2k)y, is defined only for states that correspond to
type I tensor representations. The map between ' and [/, the corresponding S0(2n + 1)ox41
and S0(2k + 1)2,+1 representations, is simply given by transposition of the tensor tableaux; that
is, i’ = (@’). There is no level-rank map between w.-twisted Ishibashi states that correspond to
type I spinor representations, for the simple reason that these sets of representations are not equal
in number. (Moreover, the map described above for w,-twisted Cardy states maps type I spinor
representations of S0(2n + 1)24.4 to type II spinor representations of S6(2k + 1),4.1, which do
not correspond to w.-twisted Ishibashi states of su(2k)2,.)

Having defined the level-rank map between w and [ in terms of the corresponding tensor
representations of §6(2n + 1)1, one may show that

o= U—F(M)/(zﬂ)(ﬁ) 6.2)

that is, [ is in the same Su(2n),; cominimal equivalence class (simple-current orbit) as ji, where
fi is the transpose® of the Young tableau of the self-conjugate representation . of §u(2n)a,
and r(u) is the number of boxes of this Su(2n)y; tableau. (Note that /& is, in general, not self-
conjugate, while & necessarily is.) The proof of Eq. (6.2) is very similar to one given in section
6 of Ref. [5]. A consequence of Eq. (6.2) is that the $u(2n)2; modular transformation matrix S is
related to the Su(2k),, modular transformation matrix S by

S5, = \/;% (6.3)

8 If w has €1 =2k, [i is obtained by stripping off leading columns of length 2k from the transpose of .
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which follows from [2,3]

k , ~
S;tu — \/262mr(k)r(u)/(4nk) Sill’

S‘X[L — e—2nir(k)r(u)/(4nk) Siﬁ 6.4)

Having defined level-rank maps for the w.-twisted Cardy and Ishibashi states of Su(2n)a, we
now turn to the duality of the open-string spectrum between w.-twisted D-branes. The coeffi-
cients of the partition function of an open string stretched between w.-twisted D-branes « and 8
are real numbers so we may write (4.6) as

. (l)g[zmm(ﬂ)lz St S Sy
Sga = _—

- - (6.5)
Se.

2

' =tensors I
In Ref. [3], the spinor—tensor components Sl/x W of the modular transformation matrix of

S0(2n + 1)1 1 were shown to be related to the spinor-tensor components S’(; g of S0k + 12,11
by

Y =2t(a)—%(_1)r(u’)§i _Zz[t(a) t(a)]( l)r(“)SA R (6.6)
o &' i o .
where we have used Eq. (6.1). Using Egs. (6.3) and (6.6), we find
I .
1\ 2 [F(@)+(B)1— S qusﬂ/ .
g% = (5) Z T =557 (6.7)
fi/=tensors I 07z

Thus the (linear combination of) coefficients (4.6) of the open-string partition function of w,-
twisted D-branes of Su(2n)y; are equal to those of Su(2k)y, under the level-rank duality map
acting on w,-twisted D-branes.

Duality of twisted states of SUQ2n + 1)1 <—> SUQk + 1)2, 11

As we saw in Section 5, the w,-twisted Cardy states (and therefore the w.-twisted D-branes «)
of Su(2n + 1)1 map one-to-one to type I spinor integrable representations o’ of $6(2n+ 1)2443,
and also to integrable representations o’ of $p(n),. We define the level-rank duality map o — &
for w,-twisted Cardy states by transposition of the associated Sp(n); tableaux: that is, @” = (@”).
(In Ref. [5], we therefore denoted this map simply by « — «.) Exactly similar statements hold
for the w,-twisted Ishibashi states 1 of Su(2n + 1)44 .

The equality of the Cardy/Ishibashi coefficients of Su(2n + 1)1 and Su(2k + 1)2,41

1/’04;1 = 1/7&;1 (6.8)
follows immediately from Eq. (5.5) together with level-rank duality of the Sp(n); WZW
model [3]

SOt”pL” = SA//M// (69)

where S” and S” are the modular transformation matrices of §p(n); and sp(k), respectively.
Moreover, by Eq. (5.3), we have

, (6.10)
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where S’ and §’ are the modular transformation matrices of $6(2n + 1)2¢43 and $6(2k + 1)2,43
respectively, and the map ' — &’ from S0(2n + 1)243 to $0(2k + 1)2,43 (induced from the
transposition map «” — @”) is:

o reduce each of the row lengths of &’ by %, so that they all become integers,
e transpose the resulting tableau,
e add % to each of the row lengths

and equivalently for 1’ — [i’. (Note that this map differs from spinor map defined in the last sub-
section by the omission of the complement map.) Note that Eq. (6.10) differs from the standard
level-rank duality of WZW models [3], which relates SO(N) g to S0(K)y.

Finally, we turn to the duality of the open-string spectrum between w,-twisted D-branes of
SU(2n + 1)2x41 and SU(2k + 1)2,41. In Ref. [5], Sp(n) level-rank duality (6.9) was used to show
the level-rank duality of the coefficients of the open string partition function. We can equivalently
use Egs. (5.4) and (6.10) to show the same result

</ ~~A”/A
. S ShuSpur _ S5 Sp
R D>

o

u'=spinors I [i'=spinors |

. =i g5 (6.11)
X

Sop B

since u’ — i’ maps type I spinor representations of $0(2n + 1)ox+3 to type I spinors of

S0(2k + 1)2,,43, and we have also used

2k +1 -
Sy =\ 21 (6.12)

which was proved in Ref. [5].
Duality of twisted states of Su(2n + 1) <—> SU(2k)25+1

Recall that the w.-twisted D-branes a of su(2n + 1)y correspond to type I spinor representa-
tions o’ of $0(2n + 1)242, and the equivalence classes of w.-twisted D-branes & of Su(2k)2,41
correspond to type I spinor representations &’ of S6(2k + 1)2,42. The number of such spinor rep-
resentations is equal, and we define the one-to-one level-rank map o’ — &' from $6(2n + 1)2x42
to S0(2k + 1)2,,42 (for k > 1) as follows:

o reduce each of the row lengths of &’ by %, so that they all become integers,
e transpose the resulting tableau,

o take the complement with respect to a k x n rectangle,

e add % to each of the row lengths.

(By comparison, the definition of &’ — &’ from $0(2n + 1)2441 to S0(2k + 1)2,+1 is the same,
but in that case type I spinors are mapped to type II spinors and vice versa.) The map o’ — &’
lifts to a one-to-one map o — & between w.-twisted D-branes of su(2n + 1) and equivalence
classes of w.-twisted D-branes of Su(2k)s,+1. (The map o” — @” between the corresponding
representations of Sp(1)2x, and Sp(k)2,4« is given by the middle two steps above.)

Next, we turn to the level-rank map between w,-twisted Ishibashi states. The w.-twisted
Ishibashi states u of St(2n + 1) correspond to type I spinor representations w’ of $6(21 + 1)2x42.
The w-twisted Ishibashi states @ of Su(2k)2,11 correspond to type I tensor and type I spinor
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representations i’ of $0(2k + 1)2,+2. The number of such representations on each side is not
equal, and the level-rank map u' — [’ takes type I spinor representations of S0(2n + 1)2x42
to only the type I tensor representations of $0(2k + 1)2,,42. (Just as for su(2k),,, there is no
level-rank correspondence for the spinor Ishibashi states of Su(2k)2;,+1.) The map u' — /i’ from
S0(2n + 1)ox42 t0 $0(2k + 1)2,42 is defined as follows:

e reduce each of the row lengths of u’ by % so that they all become integers, and
e transpose the resulting tableau.

The map u' — [/ then lifts to a map u — (i between w,-twisted Ishibashi states of su(2n +
1)2 and a subset of w,-twisted Ishibashi states of Su(2k)7,+1. One may show that

A= a_r(”)/(2n+1)(ﬁ) (6.13)

where /i is the transpose’ of the Young tableau of the self-conjugate representation y of su(2n +
)2, and r (1) is the number of boxes of this Su(2n + 1)y tableau. The proof of Eq. (6.13) is very
similar to one given in Section 6 of Ref. [5]. Consequently, the modular transformation matrices
S of §u(2n + 1) and S of §U(2k)2,41 are related by

. 2k -
S = —2n+1siﬁ (6.14)

which follows from [2,3]

- | 2k e2ﬂir(k)r(p,)/(2n+1)(2k)SX~’
® 2n 4+ 1 =

Siﬂ — o 2mir(Wr()/n+1)(2k) Si;l' (6.15)
Finally, in Appendix A of this paper, we show that
St = (=)L (6.16)

where S, , and Sé,ﬂ, are modular transformation matrices of S0(2n + 1)2+2 and $6(2k + 1)2,42
respectively. As before, we observe that Eq. (6.16) is not the standard S6(N) g <> $0(K )y duality
of WZW models.

Egs. (6.14) and (6.16) may be used to establish the level-rank duality of the coefficients of the
partition functions (5.4) and (4.6) of an open string stretched between w,-twisted D-branes of
su(2n + 1) and Su(2k)2n+1

’ / / o
WSSy o BBt 617

Sgu Al S();l p
' =tensors |

nm“ = Z

' =spinors I

where the last equality follows because & and B are both type I spinor representations of
§0(2k + 1)2,,42, so that 7(&) = £(B) = 0.

9 1f 1 has €1 =2k, i is obtained by stripping off leading columns of length 2k from the transpose of 1.
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7. Level-rank duality of twisted D-brane charges

In this section, we ascertain the relationship between the charges of level-rank-dual w,-
twisted D-branes of Su(N)g and Su(K)y. Recall from Ref. [22] that the DO-brane charge of
the w,-twisted D-brane of Su(N)g labelled by « is given by

Qf;)” = (dima”)sp(n) modxy g for Su(N)g (7.1

where «” is the sp(n) representation corresponding to the w.-twisted Cardy state o of Su(2n)g
or Su(2n + 1)k, as described in Sections 4 and 5.

Since the charges of Su(N)kg D-branes (both untwisted and twisted) are defined only modulo
XN .k, and those of su(K)y D-branes modulo xg y, comparison of charges of level-rank-dual
D-branes is only possible modulo x = ged{xy g, xx, n} = min{xy k, xg n}. In Refs. [4,5], the
charges of untwisted D-branes of the Su(N)g model and those of the level-rank-dual Su(K)y
model were shown to be equal modulo x, up to a (known) sign (1.5), (1.6). In Ref. [5], the
charges of w.-twisted D-branes of the Su(2n + 1)744; model and those of the level-rank-dual
Su(2k + 1)2,4+1 model were also shown to be equal, modulo x. As we will see below, the rela-
tionship between charges of level-rank-dual w.-twisted D-branes of Su(N) g and Su(K)y is more
complicated when N and K are not both odd.

Charges of cominimally-equivalent twisted D-branes of SU(2n) g

Since level-rank duality is a correspondence between Z;-cominimal equivalence classes of
wc-twisted D-branes when either N or K is even, we must first demonstrate that cominimally-
equivalent w,-twisted D-branes of Su(2n)g have the same charge (modulo sign and modulo
Xon.k)- The sp(n) representation «” is related to the so(2n + 1) representation o’ by reducing
each row length of the tableau for the latter by one-half. As demonstrated in Appendix A of
Ref. [22] (see also Ref. [42]), the respective dimensions of these representation are related by the
“miraculous dimension formula”

(dim Ol/)so(2n+l) =2"(dim Ol”)sp(n)~ (7.2)
Next, in Appendix B of Ref. [22], it is shown that

(dimo (1)) —(dim A)son+1) mod X2,k (7.3)

so2n+1) —

where o (4) is the §0(2n + 1)k 41 representation cominimally-equivalent to A. Using conjecture
BSP™ of Ref. [22], and the facts that the dimensions of all spinor representations of so(2n + 1) are
multiples of 2" and that (dim o (0))so24+1) = —1 modx2,, ¢ [22], Eq. (7.3) may be strengthened
to

(dimo () —(dima)so2n+1) mod 2" x2, (7.4)

so(2n+1) —
for o’ a spinor representation of $0(2n + 1)k 11. Together with Eq. (7.2), this implies that the
charges of cominimally-equivalent w.-twisted D-branes of Su(2n)k are related by

Q:Ea) = —st mod x2p, k (7.5)

analogous to Eq. (1.4) for untwisted D-branes.
Finally, we turn to the relationship between the charges of level-rank-dual w.-twisted D-
branes.
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Duality of twisted D-brane charges under Su(2n + 1)1 <—> Su(2k + 1)2,11

Let x = ged{x2,+1,2k+1, X2k+1,2n+1}. In Ref. [5], it was shown that

(dima”)sp(n) = (dim &”)sp(k) mod x (7.6)

where &” is obtained from «” by tableau transposition. Since &” is the sp(k) representation
corresponding to the level-rank-dual w.-twisted D-brane & of Su(2k + 1)2,41, it immediately
follows from Eq. (7.1) that the charges of level-rank-dual w.-twisted D-branes are equal

Q4 = 0% modux. (7.7)

This was previously presented in Ref. [5] and is included here for completeness.
Duality of twisted D-brane charges under Su(2n + 1) <—> Su(2k)2,11
Let x = ged{x2,+1,2k, X2k 2n+1}- We begin with the relationship
(dim Ag)sp(n) = (dim Ag)su@n+1) — (dim Ag—)su@n+1) (7.8)

where Ag is the completely antisymmetric representation with Young tableau E}‘? Next, as
shown in Ref. [4],

(dim Ag)sun+1) = (=1)° (dim Ag)su(ax) mod x (7.9)
where Ay is the completely symmetric representation with Young tableau ™. Finally,

(dim Ay )so(2k+1) = (dim Ag)suap) + (dim As—1sucap)- (7.10)
Combining these three equations, we obtain

(dim Ag)sp@ny = (—1)* (dim Ay)so(2k+1) mod x. (7.11)

This result can be used in the determinantal formulas (A.44) and (A.60) of Ref. [43], following
the approach of Ref. [5], to establish a relationship between arbitrary representations of sp(n)
and so(2k + 1),

(dima”)spny = (— 1" @) (dim &) 5002+ 1) mod x (7.12)

where o” is the transpose of the tableau of o”. ~

Now, from the level-rank map of Section 6, the representation «” is related to the representa-
tion &' that corresponds to the level-rank dual w,-twisted D-brane by taking the complement of
the tableau with respect to a k x (n + %) rectangle. This maps a type I tensor representation of
§0(2k + 1)2,42 to a type I spinor representation. We conjecture a relationship'”

(dima”)sokr1) = (= DFEFD2(dim &) g2k 1) modxok 241 (conjecture) (7.13)

10" After v1 of this paper appeared, we learned that an equivalent version of this relationship has been independently
conjectured by Stefan Fredenhagen and collaborators [44].
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between the dimensions of and &'. To justify this, consider the expression for the dimension
of the so(2k + 1) representation o’

121 o) Tz @i — 6)) (@i + 6))
[T @k + 1= — Dk +1—i—j)

where ¢; = ¢; (07’) — % + k — i. All the factors in parentheses are integers. The row lengths of &’

(dima”)soks1) = (7.14)

are related to those of o by £; (@) =n+ % — Lr4+1-i(a”). Hence

[Ty (X = 201 TTicj Brr1—j — B =) (X — i1 —i — Prs1— )

(dim @ )so2k+1) = : — —
[T @k +1 DTG~ D@k +1—i—j)
(7.15)
where X =2n + 2k + 1. Then
(dima” )o@k 1) — (=D 2(dim & )soe41) = X R (7.16)

where R is a rational number with denominator ]_[le(Zk +1-1) ]_[i<j G—DQRk+1—i—j).
If X is prime, then none of the factors in the denominator of R (which are all less than 2k + 1)
divide X, and since the left-hand side is an integer, R must also be an integer, in which case the
left-hand side is a multiple of X. This establishes Eq. (7.13) when X is prime, since xpx 2,+1 = X
in that case. When X is not prime, some of the factors in the denominator of R may divide X, but
we believe (proved for k = 2, and based on strong numerical evidence for k = 3, 4, and 5, with
arbitrary ) that the right-hand side of Eq. (7.16) is always a multiple of x2 2,41, and therefore
that the conjecture (7.13) holds.
Finally, from Eq. (7.2), we have

(dim & )sok+1) = 2K (dim & )spir)- (7.17)

Putting together Egs. (7.12), (7.13), and (7.17), we obtain the relationship between the charge
of the w,-twisted D-brane « of Su(2n + 1)2; and the level-rank-dual w,-twisted D-brane & of
SU(2k)2n+1

QZ)C — zk(_l)r(a/’)+k(k+l)/2 Qgc modx (718)

whose validity is subject only to the conjectured relation (7.13).
Duality of twisted D-brane charges under Su(2n)y; <— Su(2k)a,

Let x = ged{x2, 2k, X2k,2n}. As shown in Ref. [5], if n = k, then x =4 if n = 2™, otherwise
x=1.1fn#k,thenx =2 if n + k =2", otherwise x = 1.

We saw above that the charges of level-rank dual w,-twisted D-branes of SU(N)g and Su(K)y
are equal (modulo x) when both N and K are odd. This equality (modulo x) no longer holds if
either N or K is even. When both N and K are even, the charges are again not equal (even
modulo x and modulo sign), as may be checked in a specific case (e.g., Su(4)4, with &” =f and
@” = m, since 5 # +10 mod4). On the basis of Eq. (7.18), one might expect a relationship such
as

2" QY = £2* 0% modux. (7.19)

However, any such relationship is trivially satisfied, since w.-twisted branes exist only when 7,
k > 1, and x is either 1, 2, or 4.
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8. Conclusions

In this paper, we have considered D-branes of the Su(N)x WZW model twisted by the charge-
conjugation symmetry .. Such D-branes exist for all N > 2, and possess integer DO-brane
charge, defined modulo xy k.

For Su(2n)k and su(2n + 1)k, the w.-twisted D-branes are labelled by a subset of the inte-
grable representations of S0(2n + 1) g+ and $0(2n + 1) x 1 respectively. In the former case, the
D-branes belong to cominimal equivalence classes generated by the Z; simple current symmetry
of S0(2n + 1) g +1. We showed that the DO-brane charges of cominimally equivalent D-branes are
equal and opposite modulo x2, g.

We then showed that level-rank-duality of Su(N)x WZW models extends to the w.-twisted
D-branes of the theory when both N and K are greater than two. In particular, we demonstrated
a one-to-one mapping @ — & between the w,-twisted D-branes for N odd (or cominimal equiv-
alence classes of D-branes for N even) of Su(N)x and the w.-twisted D-branes for K odd (or
cominimal equivalence classes of D-branes for K even) of Su(K)y.

We then showed that the spectrum of an open string stretched between w,-twisted D-branes
is invariant under level-rank duality. More precisely, we showed that the coefficients ng,* of
the open-string partition function (or sg,*, the appropriate linear combination (1.8) of those
coefficients correspondlng to cominimal equlvalence classes of w.-twisted D-branes of su(2n)g)
are invariant under @« — &, B — ,3 and A — A. The proof of this required the existence of a
partial level-rank mapping between the w.-twisted Ishibashi states of each theory. (That is, the
map only involved a subset of the w,-twisted Ishibashi states of su(2n).)

Finally, we analyzed the relation between the DO-brane charges of level-rank-dual w,-twisted
D-branes (or cominimal equivalence classes thereof), modulo x = ged{xy x,xx ~}. When N
and K are both odd, the charges are equal mod x (as previously demonstrated in Ref. [5]), but
in other cases this simple relationship does not hold. For N =2n + 1 and K = 2k, the relation
between the charges of level-rank-dual w,-twisted D-branes is

Q(CXU{‘ _ Zk(_l)r(a//)+k(k+l)/2 Qg)z‘ mod x (81)

subject to the validity of a certain conjecture (7.13) stated in Section 7.
It would interesting to know whether level-rank duality extends to any of the other twisted
D-branes of the su(N)x WZW model [23].
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Appendix A

In this appendix, we establish the relationship between certain matrix elements of the mod-
ular transformation matrices of S0(2n + 1)2442 and §6(2k + 1)2,, 15 through the use of Jacobi’s
theorem, following the approach of Ref. [3]. Note that this is not the usual level-rank duality
between SO(N)x and SO(K)y.

Let o’ (u”) be an integrable type I spinor representation of $0(2n + 1)1 corresponding to a
wc-twisted Cardy (Ishibashi) state of Su(2n + 1)5. The S0(2n + 1)2412 modular transformation
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matrix has the matrix element [45]
Sty = (D" 0k 420 + 1) 72 detM (A.1)
where M is an n x n matrix with matrix elements
I /
M;j = sin(w), di@)=ti@)+n+~—i, i=1,....n. (A2)
k+n+ 5 2

Let @ (/1) be the integrable type I spinor (tensor) representation of S0(2k + 1), related to o’
(1) by the level-rank duality map described in Section 6. The $6(2k + 1)2,42 modular transfor-
mation matrix has matrix element

Sty = (=MD 0k 4 on 4 1) 7TH2 detM (A.3)
where M is a k x k matrix with matrix elements
T AN L A
- . . - 1
M;ij = sin(iw’(a M”ﬂ“ )>, $i@)=t:@)+k+=-—i,i=1,... .k (A.4)
k+n+ 3 2

Next, define the index sets for the w,-twisted Cardy states
I={¢i(@), i=1,....n}
I={¢:@), i=1,... k}. (A.5)

Using the level-rank duality map o’ — @’ given in Section 6, one may establish that / and I are
complementary sets of integers:

TUT={1,2,....,n+k}, INI=0. (A.6)

Also, define the index sets for the w,.-twisted Ishibashi states
J={¢;), j=1,....n},
_ 1 - _
J={n+k+§—¢j(,u’), j=1,...,k}. (A.7)

Using the level-rank duality map u' — [’ given in Section 6, one may also establish that J and
J are complementary sets of integers:

JUJ={1,2,....,n+k}, JNJ=0. (A.8)

Now, define the L x L matrix £ with matrix elements
. Tij o
£2;j =sin ) i,j=1,...,L (A9)
L+ 5
where L = n + k. This matrix has determinant
2L 4+ 1\1/?
detQ = (—1)L(L1>/2<T+> (A.10)

and obeys

srl=( 4 )sz (A.11)
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Define (£2);; to be the n x n submatrix obtained from the larger 2 by considering only those
rows indexed by the elements of / and those columns indexed by the elements of J. Jacobi’s
theorem [46] states that

det[(R7")"],, = (O F+¥ [det @)~ det(R) 7, (A.12)
where
Ty=)i and ¥;=) ] (A.13)
iel jelJ

One may observe that
detM = det(R);, det M = (— k2T HRE=D/2 qey(@) 7 7 (A.14)

where the last contribution to the sign results from reversing the ordering of the rows of M.
Assembling Egs. (A.1), (A.3), (A.10)—-(A.12), and (A.14), and using

(_1)21-‘1-2]4-2[’ — (_I)Ej — (_l)nk+k(k—1)/2+r(ﬁ’) (AIS)
one concludes that
Sl = (=1 TR (A.16)

which is used in proving the level-rank duality of the open string spectrum in the last subsection
of Section 6.
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