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Abstract

We analyze the level-rank duality of untwisted and e-twisted D-branes of the SO(N) ¢ WZW model. Un-
twisted D-branes of SO(N) g are characterized by integrable tensor and spinor representations of SO(N) g .
Level-rank duality maps untwisted S0(N) g D-branes corresponding to (equivalence classes of ) tensor rep-
resentations onto those of S0(K) y. The e-twisted D-branes of $6(2n),; are characterized by (a subset of )
integrable tensor and spinor representations of $6(2n — 1)ox1. Level-rank duality maps spinor e-twisted
§0(2n)yy D-branes onto those of §0(2k);;,,. For both untwisted and e-twisted D-branes, we prove that the
spectrum of an open string ending on these D-branes is isomorphic to the spectrum of an open string ending
on the level-rank-dual D-branes.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

It has long been known that the modular transformation matrix and fusion algebra of the
Wess—Zumino—Witten (WZW) model with affine Lie algebra Su(N) g are closely related to those
of the WZW model with affine Lie algebra Su(K)y (level-rank duality) [1-3]. Similar dualities
have been shown for WZW models with affine Lie algebras related by sp(n); <> sp(k), and
SO(N)k < So(K)n [2,3], and also for ﬁ(N)K,N(K-i-N) <~ ﬁ(K)N,K(K-i-N) [4].

More recently, it has been shown [5—7] that the untwisted and twisted D-branes in the bound-
ary SU(N) g WZW model [8-25] respect level-rank duality; that is, there exists a one-to-one map
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between the (equivalence classes of) D-branes of Su(N)g and those of su(K)y. The open-string
spectra associated with level-rank-dual D-branes are isomorphic, and the charges of level-rank-
dual untwisted D-branes are equal (modulo sign), with a slightly more complicated relationship
holding between the charges of twisted D-branes. Level-rank duality also holds for the D-branes
of $p(n)x [6].

In this paper, we continue the story by establishing the level-rank duality of the untwisted
D-branes of SO(N)g and of the twisted D-branes of $6(21)y. In this case, level-rank duality is
partial and holds only for a subset of the D-branes of the theory. Moreover, in this case we find
no simple relation between the charges of level-rank-dual D-branes.

We begin by summarizing our results. Untwisted D-branes of S6(N) g correspond to untwisted
Cardy states |o))c (boundary states of the bulk WZW model), which are labelled by integrable
highest-weight representations « (both tensors and spinors) of the untwisted affine Lie algebra
S0(N) k. Only untwisted fensor D-branes exhibit level-rank duality,! and the duality is one-to-
one between equivalence classes [«] of integrable tensor representations generated by the Z;-
automorphisms o and (when N is even) ¢ of the SO(N)g algebra. (We denote by o the simple
current symmetry of S0(N)g that acts on the Dynkin indices of a representation by ag <> aj.
We denote by ¢ the “chirality-flip” symmetry of $0(2n)g that acts on the Dynkin indices of a
representation by a, <> a,—1. For $0(2n + 1)k, we define ¢ to be the identity.) The boundary
state corresponding to the equivalence class [«] may be written as

1

@)= wnl

e +[o@)e +[e@)e +[e(e @) ] (1)

where

1 ifa#e(w), 1 ifa=o0(a),

S(“)z{o if o =e(a), ’(“):{0 if o # o (). (1.2)

Equivalence classes [a] of integrable tensor representations of SO(N)g are characterized by
Young tableaux with <N /2 rows and <K /2 columns. Level-rank duality acts by transposing
these tableaux, inducing a one-to-one correspondence [«] — [&@] between equivalence classes
of SO(N)k and SO(K)y, and therefore between the untwisted D-branes that correspond to the
boundary states (1.1). We show that the spectrum of representations carried by an open string
stretched between untwisted S6(N)g D-branes corresponding to [«] and [B] is isomorphic to
that carried by an open string stretched between untwisted S0(K)y D-branes corresponding to
[] and [B].

The 50(2n) ¢ WZW model contains, in addition to untwisted D-branes, a class of D-branes
twisted by the symmetry ¢. These e-twisted D-branes can be characterized [20] by (a subset of)
the integrable highest-weight representations (both tensors and spinors) of the untwisted affine
Lie algebra $0(2n — 1) g+1. Only spinor e-twisted D-branes of $6(2n)y; exhibit level-rank dual-
ity, which involves a one-to-one map o — & between the spinor e-twisted D-branes of $0(2n)2
and the spinor e-twisted D-branes of S0(2k),,. We show that the spectrum of representations
carried by an open string stretched between e-twisted $6(2n)2; D-branes corresponding to o and
B is isomorphic to that carried by an open string stretched between s-twisted $0(2k)o,, D-branes
corresponding to & and B

1 Except for S0(2n + 1)px41, where a level-rank map can also be defined between equivalence classes of untwisted
spinor D-branes.
2 Except for $6(4) g, in which case o acts by ag <> min(ay, ap).
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This paper is organized as follows. Section 2 briefly reviews the Ishibashi and Cardy states of
the WZW model, and in Section 3, we characterize the integrable highest-weight representations
of SO(N) k. Section 4 describes the level-rank duality of the (equivalence classes of) untwisted
D-branes corresponding to tensor representations of SO(N)k and to spinor representations of
§0(2n + 1)x+1. The e-twisted Ishibashi and Cardy states of $0(2n) g are reviewed in Section 5,
and in Section 6 we describe the level-rank duality of spinor e-twisted D-branes of $6(2n)2.

2. Untwisted and twisted D-branes of WZW models

In this section, we briefly review some general aspects of untwisted and twisted D-branes of
the WZW model and their relation to the Cardy and Ishibashi states of the closed-string sector,
drawing on Refs. [9,10,18,20].

The WZW model, which describes strings propagating on a group manifold, is a rational
conformal field theory whose chiral algebra (for both left- and right-movers) is an untwisted
affine Lie algebra gx at level K. We only consider WZW theories with a diagonal closed-string
spectrum:

Hclosed _ @ V, ® VA*7 2.1

K
AEPL

where V and V represent left- and right-moving states respectively, A* denotes the representation
conjugate to A, and P f is the set of integrable highest-weight representations of g .

D-branes of the WZW model may be described algebraically in terms of the possible boundary
conditions that can consistently be imposed on a WZW model with boundary. We only consider
boundary conditions on the currents of the affine Lie algebra of the form

[V —0l*(D)]|._; =0 (2.2)

where w is an automorphism of the Lie algebra g. These boundary conditions leave unbroken the
gk symmetry, as well as the conformal symmetry, of the theory.

Twisted Ishibashi states

Open-closed string duality allows one to correlate the boundary conditions (2.2) of the bound-
ary WZW model with coherent states | B)® € 1% of the bulk WZW model satisfying

[J8 +wJ?,]IBY°=0, melZ, (23)

where J2 are the modes of the affine Lie algebra generators. Solutions of Eq. (2.3) that belong
to a single sector V,, ® V() of the bulk WZW model are known as w-twisted Ishibashi states
|1)§ [26]. As we are considering the diagonal closed-string theory (2.1), w-twisted Ishibashi
states only exist when = w (), and so are labelled by u € £, where £ is the subset of inte-
grable representations of gx that satisfy w(u) = w. Equivalently, u corresponds to an integrable
representation of g¢, the orbit Lie algebra associated with gg [27].

Twisted Cardy states

A coherent state |B))® that corresponds to an allowed boundary condition must also satisfy
additional (Cardy) conditions [28]. Solutions of Eq. (2.3) that satisfy the Cardy conditions are
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denoted w-twisted Cardy states |a))¢, where the labels « take values in B, the set of integrable
representations of the w-twisted affine Lie algebra g% [10]. The w-twisted Cardy states may be
expressed as linear combinations of w-twisted Ishibashi states

w wozu [0}
le)ye = —|uUNT, 2.4)
‘ ;L;‘" SO”‘ !

where S;,, is the modular transformation matrix of 8k, 0 denotes the identity representation, and
the coefficients v/, may be identified with the modular transformation matrices of the w-twisted
affine Lie algebra g% [10].

The w-twisted D-branes of gx correspond to the w-twisted Cardy states |))¢ and are there-
fore also labelled by o € B®. The spectrum of an open string stretched between w-twisted
D-branes labelled by « and 8 is encoded in the open-string partition function

Zop" (@)=Y npx(r), (2.5)
repPk

where x, (7) is the affine character of the integrable highest-weight representation A of gx. The
multiplicity ng;“ of the representation A carried by the open string may be expressed as [20]

* S
ng & = Z M (2.6)

Megw SOI'L
Untwisted Ishibashi and Cardy states

Untwisted Cardy states |«¢))c and untwisted Ishibashi states |u)); are solutions of Eq. (2.3)
with w = 1, and both are labelled by integrable representations of gx. The matrix 1, in
Eq. (2.4) relating the untwisted Cardy states to the untwisted Ishibashi states is given by the
modular transformation matrix Sy, of gx [28]. Consequently, by virtue of Eq. (2.6) and the
Verlinde formula for the fusion coefficients [29]

nlg)ha = Z

K
HEPL

SauSH Sk
PBuSr i Oan Ng,%, 2.7)
Sou

the multiplicities ng,® of the representations carried by an open string stretched between two
untwisted D-branes « and § are given by the fusion coefficients Ng,* of the WZW model.

3. Integrable representations of S6(N) g

In this section, we review some details about the integrable representations of SO(N)k used
throughout this paper.® Integrable representations of an affine Lie algebra gx have non-negative
Dynkin indices (ao, a1, . . ., a,) that satisfy Z;ZO m;a; = K, where m; are the dual Coxeter labels
of the Dynkin diagram for gx, and » + 1 is the rank of gg.

3 Throughout this paper, N > 3 is understood.
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Integrable representations of S0(2n + 1)k
The Dynkin diagram for S6(2n + 1)k is

0

(J ) 3 ) ()____
1 2 3 4 5 6 n—2 n—1 n

and the dual Coxeter labels are (mqg,mi,my,...,m,_1,my) = (1,1,2,...,2, 1), where the la-
belling of nodes is indicated on the diagram. Integrable representations of §6(2n + 1) thus have
Dynkin indices that satisfy*

ao+ar+2(a+---+ap—1) +a, =K. 3.1

An even or odd value of a, corresponds, respectively, to a tensor or spinor representation of
so(2n + 1). With each irreducible tensor representation of so(2n 4 1) may be associated a Young
tableau whose row lengths ¢; are given by

1 ~1 .
B Ean—l—Z;’»:iaj, forl1 <i<n—1,

l‘_
%an, fori =n.

(3.2)

The integrability condition (3.1) is equivalent to the constraint £; + £, < K on the row lengths
of the tableau.

We may also formally use Eq. (3.2) to define row lengths for a spinor representation. These
row lengths are all half-integers, and correspond to a “Young tableau” containing a column of
“half-boxes”.

Integrable representations of S0(2n) g

The Dynkin diagram for S0(2n) g is
0

Fa et
O

1 2 3 4 5 6 n—3 n—2 n

and the dual Coxeter labels are (mqo, m{,mp, ..., my_2,m,_1,m,) =(1,1,2,...,2,1, 1), where
the labelling of nodes is indicated on the diagram. Integrable representations of $0(2n)g thus
have Dynkin indices that satisfy>

ap+ay +2(ax+---+ap-2) +ap-1+a, =K. (3.3)

An even or odd value of a, — a,—1 corresponds, respectively, to a tensor or spinor representation
of so(2n).

4 Throughout this paper, by $6(3) ¢ we mean the affine Lie algebra su(2), g . Its integrable representations have so(3)
Young tableaux that obey £1 < K. Since £| = %al, this means that Eq. (3.1) is replaced by ag + a; =2K whenn = 1.
5 For $0(4) g , we take the integrability condition to be ag + max(ay, ap) = K, which is equivalent to £; + |¢»| < K.
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The Dynkin diagram of so(2n) (and also S0(2n)g) is invariant under the exchange of the
(n — 1)th and nth nodes. This gives rise to a Zp-automorphism & of the so(2n) Lie algebra,
which exchanges representations with Dynkin indices (..., a,—1,a,) and (..., a,, a,—1). This
automorphism may be dubbed [20] “chirality flip” as it exchanges the two fundamental spinor
representations of opposite chirality.

For each representation of so(2n) we may define

%(an+an71)+2?;l~zaj, forl1 <i<n-—2,
USS %(an + an—1), fori =n—1, (3.4)
%(an_anfl), fori =n,

in terms of which the integrability condition (3.3) becomes £1 + €> < K. The absolute values of
¢; represent the row lengths of a Young tableau A with up to n rows. (For spinor representations,
these row lengths are all half-integer, and correspond to a Young tableau containing a column of
half-boxes.) When a,, = a,,_1, the Young tableau has n — 1 or fewer rows, and corresponds to a
unique irreducible so(2n) representation a, one which is invariant under ¢. When a,, # a,_1, the
Young tableau has precisely n rows and corresponds to two distinct representations, a and ¢(a).
Hence we may consider the Young tableau A as labelling either an irreducible (a) or a reducible
(a @ e(a)) representation of so(2n), depending respectively on whether the representation a is or
is not invariant under €. We thus write

A=2"a@e(a)], (3.5)
where

1, if¢, #0, thatis, a # &(a),

s(@) = {o, if ¢, =0, thatis, a = &(a). (3.6)

(For all representations of so(2n + 1), we define e(a) =a and s(a) =0.)
Let S, denote the (symmetric) modular transformation matrix of SO(N) g , an explicit formula
for which may be found, for example, in Ref. [3]. We define

Sab=2"""[Sab + Secap],

Sap =27 Sy + Sacr- (3.7)
Since the modular transformation matrix obeys

Ss(a)b = Sas(b)’ (3.8)
it follows that

Sab = Sasm),
Sap =284, (3.9)

Simple current orbits of SO(N) g
Both §0(2n + 1) ¢ and S0(2n) ¢ Dynkin diagrams have a Z,-symmetry that exchanges the Oth

and 1st nodes. This symmetry induces a simple-current symmetry (denoted by o) of the SO(N) g
WZW model that pairs integrable representations related by ag <> aj, with the other Dynkin
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indices unchanged.® Their respective Young tableaux are related by ¢; — K — ¢;. Under o,
tensor representations are mapped to tensors, and spinor representations to spinors.

We will refer to representations of SO(N)g with £; < %K, 0 = %K, and 1 > %K as being
of types I, II, and III, respectively. Type II representations are invariant under o, and are tensors
(resp. spinors) when K is even (resp. odd). Each simple-current orbit of S0(N) g contains either
a type I and type III representation, or a single type II representation. We define

1, if¢; =1K (typeID), thatis, a = o (a),
t(a)= M6y =2K (typeID), thatis, a =o(a) (3.10)
0, if€;# 5K (typelorlll), thatis, a # o (a).
Finally, the modular transformation matrix of S6(N)g obeys
tensor X
So(@)p = E£Se@p, forba { . } representation. (3.11)
spinor

4. Level-rank duality of untwisted D-branes of S6(N) g

Having reviewed the characterization of integrable representations of SO(N)g in the previous
section, we now turn to the untwisted D-branes of the S0(N)x WZW model, which are labelled
by those representations. In this section, we will demonstrate a level-rank duality between the
untwisted D-branes of SO(N)g and those of $0(K)y .

Since the multiplicities of the representations carried by an open string stretched between
two untwisted D-branes are given by the fusion coefficients of the WZW model (2.7), level-rank
duality of the untwisted D-branes of the $6(N)g model is closely related to level-rank duality
of the fusion coefficients of this model, which was described in Ref. [3]. We recall two salient
aspects of this duality:

e The level-rank map is partial: it only relates the tensor representations’ of S0(N)x to those
of SO(K)n -

e The level-rank map is not one-to-one between integrable tensor representations a, but rather
between equivalence classes of representations,® denoted by [a]. These equivalence classes
are characterized by tensor Young tableaux with <N /2 rows and <K /2 columns (termed
“reduced and cominimally-reduced” in Ref. [3]). Level-rank duality acts by transposing
these tableaux, and maps the set of tensor Young tableaux with <N /2 rows and <K /2
columns one-to-one onto the set of tensor Young tableaux with <K /2 rows and <N /2
columns.

The equivalence classes of integrable tensor representations fall into several categories, which
we now describe, using the notation of the previous section.

(1) s(a) =0 and #(a) = 1: the equivalence class labelled by a tensor Young tableau with £; =
%K columns (only possible when K is even) and with fewer than %N rows corresponds to a

6 Except for $0(4) g, in which case o acts by ag <> min(ay, ap). Thus, if a has Dynkin indices (aq, a|, ap) then o (a)
has Dynkin indices (min(ay, a2), K —ap, K —ay).

7 For $0(2n + 1)1, a level-rank map between the spinor representations also exists [3], and thus a level-rank map
can be defined for all the untwisted D-branes of $0(2n + 1)244 1.

8 This is also the case for level-rank duality of SU(N) g .
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single (type II) irreducible representation a, whose Dynkin indices satisfy ap = a; and (for
N =2n) a, = a,—. This representation is invariant under both ¢ and ¢.

(2) s(a) =0 and t(a) = 0: the equivalence class labelled by a tensor Young tableau with
£ < %K columns and with fewer than %N rows corresponds to a pair of irreducible repre-
sentations a and o (a) (of type I and type III) whose Dynkin indices are related by ag <> a;.
When N = 2n, the Dynkin indices of these representations satisfy a, = a,_1, i.e., these
representations are invariant under ¢.

(3) s(a) =1 and t(a) = 1: the equivalence class labelled by a tensor Young tableau with £; =
%K columns (only possible when K is even) and with exactly %N rows (only possible when
N is even) corresponds to a pair of (type II) irreducible representations a and ¢(a), whose
Dynkin indices are related by a, <> a,—1 where N = 2n, and obey9 ap = ay, i.e., these
representations are invariant under o .

(4) s(a) =1 and ¢ (a) = 0: the equivalence class labelled by a tensor Young tableau with ¢ <
%K columns and with exactly %N rows (only possible when N is even) corresponds to four
irreducible representations: a, o (a), €(a), and &(o (a)) (two of type I and two of type III).

Let [a] denote the transpose of the Young tableau characterizing the equivalence class [a]. Then

t(@)=35@) and s(a)=7), A1)

where § and 7 are the quantities (3.6) and (3.10) defined for $0(K)y. Under level-rank duality,
equivalence classes [a] in categories (1), (2), (3), and (4) map into equivalence classes [a] in
categories (4), (2), (3), and (1), respectively.

We now elucidate the implications of level-rank duality for the untwisted tensor D-branes of
the SO(N)x WZW model. Consider the linear combination of untwisted Cardy states

1

)= 5l

e + o @) +|e@)e + (e @) ] 42)

which corresponds to an equivalence class [«] of integrable tensor representations. Using
Eqgs. (2.7) and (3.11), we find that the multiplicity ng[; [«] of the equivalence class of repre-
sentations [A] carried by an open string stretched between untwisted D-branes corresponding to
the states |[«])) and [B])) is given by

1
[o] _
MBI = et (B G—s@—s(B—s (M +3
Z (S/SM + SE(ﬂ)M)(S)\M + SS()\)M)(Séu + S:(a)u)
X

S
JL=tensor Ou
representations

, (4.3)

where only integrable tensor representations y remain in the sum as a consequence of Eq. (3.11).
Using Eqs. (3.7) and (3.9), we express njg);;1'%! in terms of Young tableaux A, B, A, M, related
to o, B, A, and u by Eq. (3.9),

9 For §0(4) ¢, they obey ag = min(aj, a3).
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1
o] _
MBI = @)+ (B (s (@) +5 (B +s (=3
1 SgmSamSt
x Y BM2AM2AM. (4.4)
2s(p) Som

M =tensor
tableaux I, II, IIT

Finally, since Ssom) = Sam, the sum may be restricted to tableaux of types I and II
(“cominimally-reduced” tableaux)

1
[o] _
g1l _ﬁt(oc)+t(/3)+t(k)+S(a)+S(ﬁ)+s(k)f3

(4.5)

Z 1 SgmSamSiy
s(u)+t(n)—1 ’
M =tensor 200 o SOM
tableaux I, IT
The multiplicities n[g)[] ] are closely related to X' 42 defined in Eq. (3.16) of Ref. [3].
Level-rank duality maps the state |[«])) of SO(N)g to the state |[@])) of SO(K)y. Let ﬁ[ﬁ][i] [a]
denote the quantity (4.3) defined for $6(K) . The form of Eq. (4.5) makes manifest the equality
of the multiplicities

nigia'™ = gy (4.6)

as a consequence of three facts: (1) the set of cominimally-reduced tableaux M of SO(N)g are
in one-to-one correspondence with those of S6(K )y, (2) Eq. (4.1) holds for all tensor represen-
tations, and (3) the quantities S4p, defined by Eq. (3.7), are level-rank dual (Sap = S ip) as was
proved in the appendix of Ref. [3]. Hence, the spectrum of representations carried by open strings
stretched between untwisted tensor D-branes of SO(N) g is level-rank dual.

We end this section by describing the level-rank duality of untwisted spinor D-branes of
§0(2n + 1)2x41. The equivalence classes [a] of spinor representations of $0(2n + 1)x41 are
characterized by type I and type II spinor tableaux, where a type I tableau represents a pair of
spinor representations « and o («), and a type II tableau represents a single irreducible spinor rep-
resentation « that obeys o («) = «. The level-rank map [] — [@] between equivalence classes
of spinor representations of $0(2n + 1)+ and $6(2k + 1)2,,+1 was presented in Ref. [3]:

reduce each of the row lengths by %, so that they all become integers,
transpose the resulting tableau,

take the complement with respect to a k x n rectangle and rotate 180 degrees,
add % to each of the row lengths.

This takes type I spinor tableaux of §6(2n + 1)2x+1 to type II spinor tableaux of $6(2k + 1)2,+1
and vice versa: ¢ («) = 1 — £(&). This procedure thus defines a map between an untwisted spinor
D-brane of $0(2n + 1)2x+1 corresponding to the boundary state

la]) = [la)c + |o(@),] 4.7

1
V21 @+l

and an untwisted spinor D-brane |[@])) of $0(2k + 1)2,,11. The multiplicity of the (equiva-
lence class of) representations [A] carried by an open string stretched between untwisted spinor
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D-branes [«] and [B] of S0(2n + 1)2x41 Obeys

SpuSinS,

%k
LS (4.8)

1 _
- 2PuhuOap
So. (1]

1
[
Lav:ies| ﬁf(a)+f(ﬁ)—5 Z

pn=tensor
tableau I

using Eq. (3.25) of Ref. [3]. Hence, the spectrum of representations carried by open strings
stretched between untwisted spinor D-branes of $6(2n + 1)2441 is also level-rank dual.

5. The e-twisted D-branes of the $0(2n) x model

In the previous section, we proved the level-rank duality of untwisted D-branes of $0(N)g . In
this section, we will describe a class of twisted D-branes of s0(2n) g, and in the next section, we
will prove the level-rank duality of a subset of these twisted D-branes.

Recall from in Section 3 that the finite Lie algebra so(2n) possesses (when n > 2) a Z»-
automorphism ¢ (chirality flip), under which the Dynkin indices a,—1 and a, of an irreducible
representation are exchanged. This automorphism lifts to an automorphism of the affine Lie
algebra S0(2n) g, and gives rise to a set of -twisted Ishibashi states and e-twisted Cardy states of
the bulk $6(2n) x WZW model, and a corresponding class of e-twisted D-branes of the boundary
model. In this section we characterize these twisted states, relying heavily on Ref. [20].

g-twisted Ishibashi states of S0(2n)

The e-twisted Ishibashi states 1)) of the s0(2n)x WZW model are labelled by integrable

representations u € £¢ of S0(2n)x = (D,(,l)) k that obey e(u) = u (i.e., integrable representa-
tions characterized by so(2n) tensor Young tableaux with no more than n — 1 rows). These
representations have Dynkin indices

(MO, M17'~-7Mn729l'l'7171’/~"‘n71)5 (5‘1)
that satisfy!”

o+ 1 +2(u2 + -+ pup—1) =K. (5.2)

Equivalently, the e-twisted Ishibashi states of §0(2n)x may be characterized by the integrable
representations of the associated orbit Lie algebra g¢ = (Aéi)%) k [20] whose Dynkin diagram

18

(]I
o O O O O O-----0——0==0
1 2 3 4 5} 6 n—3 n—2 n—1

and whose dual Coxeter numbers are (mq, mi,mo,...,my—1) = (1,1,2,...,2), where the la-
belling of nodes is indicated on the diagram. The (D,(,l)) k representation with Dynkin indices
(5.1) corresponds to the (Aéi)_3)1( representation with Dynkin indices (o, 1, - - -, hn—2, Un—1),
whose integrability condition is precisely (5.2).

10 For §0(4) k , the Dynkin indices (g, 41, 1) satisfy g+ = K.
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It was shown in Ref. [20] that each e-twisted Ishibashi state u of S0(2n)x may be mapped
to a spinor representation u’ of the untwisted affine Lie algebra $6(2n — 1) g+ with Dynkin
indices!!

wi=pi O<i<n—2) and wu,_;=2pup—1+1. (5.3)

The constraint (5.2) on u is precisely equivalent to the integrability constraint (3.1) on the rep-
resentation u’ of $0(2n — 1) k1. Hence, s-twisted Ishibashi states of $0(2n) g are in one-to-one
correspondence with the set of integrable spinor representations of $6(2n — 1)k 11 of type I, type
II (when K is even), and type III.

g-twisted Cardy states of SO(2n) g

The e-twisted Cardy states |a))¢- (and therefore the e-twisted D-branes) of the so(2n)x WZW
model'? are labelled by the integrable representations @ € B of the e-twisted affine Lie algebra
8% = (D,(lz)) k [20], whose Dynkin diagram is

o=£=0 O C C - -O——O==0
0 1 2 3 4 52 n—3 n—2 n-—1

?

and whose dual Coxeter numbers are (mq,mi,...,m,—2,m,—1) = (1,2,...,2,1), where the
labelling of nodes is indicated on the diagram. The Dynkin indices (g, @1, ..., ®,—2, 0¢y—1) of
o thus satisfy!3

oo+ 201+ -+ op—2)+a,—1 =K. 5.4

It was shown in Ref. [20] that each e-twisted Cardy state a of S6(2n) g may be mapped to a
representation «’ of the untwisted affine Lie algebra $0(2n — 1)k with Dynkin indices'*

ay=ap+ai+1 and o =0; (1<i<n-—1). (5.5)

The constraint (5.4) on « implies that o’ is an integrable representation of S6(2n — 1)kt 1, and the
constraint ag > 0 further implies that o’ is a type I representation of $0(2n — 1)k 1 (i.e., corre-
sponds to a Young tableau whose first row length obeys £ < %K ). Therefore, e-twisted D-branes
of S0(2n) g are in one-to-one correspondence with the set of integrable type I representations of
$0(2n — 1)k 41, of both tensor and spinor types.

Although the e-twisted Ishibashi states and the e-twisted Cardy states of $0(2n)g are char-
acterized differently in terms of integrable representations of $0(2n — 1)k 41, they are equal in

number. (For K even, the number of each is (" 7,1:{( / 2) +(" fff / 2), while for K odd, the number

of each is 2("7]:(5 . b/ 2).) Thus, the e-twisted Cardy states & may be written as linear combi-
nations (2.4) of e-twisted Ishibashi states p, with the transformation coefficients v, given by

the modular transformation matrix of (D,(Zz)) k - In Ref. [20], it was shown that these coefficients
are proportional to the (real) matrix elements S(; " of the modular transformation matrix of the

1 Except for $0(4) g, in which case “,0 =2pp+1and ”,1 =2u1 + 1. Also, recall footnote 4.
12, > 2 is understood.
13 For §0(4)  , the condition is g + o] = K.

14 Except for $0(4) k , in which case o) =200 + a1 +2 and @] = ay. Also, recall footnote 4.
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untwisted affine Lie algebra S0(2n — 1) g +1:
W(xu, = \/ES(;//L/ = \/ES(;TM/ (56)

where o’ and p are the $6(2n — 1) g+ representations related to « and u by Egs. (5.5) and (5.3),
respectively.

Twisted open string partition function of $0(2n) g

Combining Egs. (2.6) and (5.6), we may write the multiplicities of the representations carried
by an open string stretched between e-twisted D-branes « and 8 of §6(2n) g as

28 SauSh
nﬁka: Z o' W UM

' =spinors LILIII

: (5.7)
Sou

where S, and S(;/u’ are modular transformation matrix elements of $0(2n)x and s6(2n — 1) g4 |
respectively, and the sum is over all ¢-twisted Ishibashi states v of $6(2n) ¢, or equivalently, over
all integrable spinor representations u’ of $6(2n — 1)k +1. (Type II spinors of $6(2n — 1)k 41 are
present only when K is even.)

Although the e-twisted D-branes correspond to both tensor and spinor representations of
§0(2n — 1) g 41, for the remainder of this section we will restrict o and 8 to correspond to spinor
representations o’ and B’ of S0(2n — 1)k 11, which allows us to simplify Eq. (5.7) considerably.
Recall from Eq. (3.11) that the modular transformation matrix elements of S0(2n — 1)k 11 obey

S/

o) T T

S,

o> fora’ = spinor. (5.8)

As a consequence, type I and III representations u’, which are related by o, may be combined in
Eq. (5.7)

nﬁ;f" = Z

u'=spinors I

25(;,,“/ Sau S}}/w N 25(;/#/ Sho (1) S//[J’/M/

], for o/, B/ both spinors (5.9)
Sou S0 (1)

and type II representations, which obey o (') =/, drop out of the sum since S, w =0.(We
have also used the fact that the s0(2n — 1)k representation o (1), related to u' by €} —
K+1-— Z’l, corresponds via the map (5.3) to the e-twisted Ishibashi state o () of $6(2n)k,
related to u by £1 — K — £;.) Finally, recalling that the modular transformation matrix elements
of $6(2n) g obey

tensor

Sro(u) =ESieu), foria { } representation (5.10)

spinor

and that e-twisted Ishibashi states obey (i) = w, we finally obtain

45, S S
ng® = Z — for o', B’ both spinors and A = tensor, (5.11)
' =spinors I O
and
ng* =0, fora’, B’ both spinors and A = spinor. (5.12)

This result will allow us to demonstrate in the next section the level-rank duality of the spectrum
of an open string stretched between spinor e-twisted D-branes of §0(2n)2.
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6. Level-rank duality of e-twisted D-branes of $0(21);

As we saw in the previous section, the $0(2n)x WZW model possesses twisted D-branes
corresponding to the chirality-flip symmetry ¢ of the so(2n) Dynkin diagram, and these
e-twisted D-branes are characterized by integrable type I tensor and spinor representations of
§0(2n — 1)k +1. We will refer to these as tensor and spinor s-twisted D-branes, respectively.

In this section, we will exhibit a level-rank duality15 between the e-twisted D-branes of
§0(2n)2 and those of S0(2k)7,. This duality is partial, and only holds between spinor e-twisted
D-branes (just as the level-rank duality of untwisted D-branes only holds between tensor
D-branes). The restriction to spinor e-twisted D-branes can be anticipated by observing that the
number of tensor e-twisted D-branes of 50(2n)yy is (" :ffl) and the number of spinor e-twisted
D-branes is (":f 72), and only the latter is invariant under n <> k.

First we define an explicit one-to-one map o — & between the spinor e-twisted D-branes of
§0(2n)2; and §0(2k)2,,. The map @ — & is defined by specifying its action'® on the corresponding
$0(2n — 1)2x+1 and S6(2k — 1)2,41 representations o’ and &'

e reduce each of the row lengths of o’ by %, so that they all become integers,
e transpose the resulting tableau,
e add % to each of the row lengths.

The same procedure defines a one-to-one map u’ — i’ between type I spinor representations
of $6(2n — 1)x+1 and S0(2k — 1)2,41 corresponding to e-twisted Ishibashi states. By virtue of
Eq. (5.3), this map lifts to a map u — [ between (a subset of) the e-twisted Ishibashi states. As
suggested by the notation, this map is simply transposition of the type I §0(2n)2; Young tableau
corresponding to .

Next, we turn to the level-rank duality of the spectrum of an open string stretched between
e-twisted D-branes. In the previous section, it was shown that the multiplicity of the representa-
tion A carried by an open string stretched between spinor e-twisted D-branes o and 8 of §0(2n)2
is given by

nmo‘ = Z

1/ =spinors I

4S// /SA S// ’
M, for A = tensor, 6.1)
Sou

with ng,® vanishing for A = spinor. As in Section 4, however, we consider the multiplicity cor-
responding to the equivalence class of tensor representations [A]:

1
np’ = W["m" +1pen) +1goG)® +npe )] (6.2)

Using Eqgs. (6.1), (3.11), and (3.7), we find
45&’;/ (S)tl/« + SS(),)[L)S/ W

Sou

1
o __
0 J210)=s()+1 Z

' =spinors I

15 Clearly the &-twisted D-branes of $0(2n)2x41 have no level-rank duals, since S0(2k + 1), has no e-twisted D-branes.
16 Note that the “hat” map defined here differs from that defined in Section 4 between spinor representations of
$0(2n + 1)k and $6(2k + 1)2,,41. The map defined here also characterizes the map between w,-twisted D-branes
of SU(2n + 1)2441 and SUk + )2, 41 [7].
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1 Z 4S‘;/M/ SAMSI/BIM/
T 21501 Som '

' =spinors I

(6.3)

where A =2M~1[x @ e(1)] and M = p since £(i) = p. The form of Eq. (6.3) makes manifest
the equality of the multiplicities

: /
npn® = ﬁr(x)lﬂ(x)—l > 4SQ/M/S§MMS/3W (6.4)
' =spinors I
_ 3 484 S it Sz 65)
V2 SR+ ()—1 s T 501\71 ’
=i (6.0

where we have used Eq. (4.1) and the facts that:

(1) type I spinors p’ of $6(2n — 1)2x4 1 map one-to-one to type I spinors i’ of S6(2k — 1)2,41,

2) Sam = S im 3], where S and S are the modular transformation matrices of §0(2n)7x and
§0(2k)2, respectively, and

3) Sr;’u’ = S’é/ﬁ, for &’ and p’ both type I spinor representations (Eq. (6.10) of Ref. [7]), where
S’ and §' are the modular transformation matrices of $0(2n — 1)or41 and S0(2k — 1)2,41
respectively. Since by Eq. (5.12) only tensor representations A appear in the e-twisted open-
string partition function (2.5), we have established that the spectrum of representations
carried by open strings stretched between e-twisted D-branes of §0(2n)yy is level-rank dual.

7. Conclusions

We have analyzed the level-rank duality of the untwisted D-branes of SO(N)k and of the
e-twisted D-branes of $0(2n)2¢. In each case, only a subset of the D-branes are mapped onto
those of the level-rank-dual theory.

Untwisted D-branes of S6(N)g are characterized by integrable tensor and spinor repre-
sentations of §0(N)x. Only the untwisted fensor D-branes participate in level-rank duality.!”
The tensor representations a of SO(N)k fall into equivalence classes [a] generated by the
Z»-isomorphisms o and ¢ (the latter non-trivial only for N even), and characterized by Young
tableaux with <N /2 rows and <K /2 columns. Level-rank duality acts by transposing these
tableaux, and thus maps the equivalence classes [a] of untwisted tensor D-branes of S0(N) g onto
[@] of $6(K ) x. We showed that the multiplicity n; ,g]m[“] of the (equivalence class of) representa-
tions [A] carried by an open string stretched between untwisted SO(N) g D-branes corresponding
to [«] and [B] is equal to ﬁ[ 5][;][5‘], the multiplicity of the (equivalence class of) representations

[A] carried by an open string stretched between untwisted S0(K)y D-branes corresponding to
[¢] and [,3]. A similar result was shown for untwisted spinor D-branes of $6(2n + 1)2441.

The e-twisted D-branes of $6(2n)y, associated with the chirality-flip symmetry & of the
so(2n) Dynkin diagram, are characterized by type I integrable tensor and spinor representa-
tions of §6(2n — 1)ox+1. Only the spinor e-twisted D-branes participate in level-rank duality.

17 Except for $0(2n + 1)241, where the untwisted spinor D-branes also respect level-rank duality.
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We defined a one-to-one map o — & between the spinor e-twisted D-branes of $6(2n)y; and
the spinor e-twisted D-branes of §0(2k)2,. We then showed that the multiplicity ngp;)* of the
(equivalence class of) representations [A] carried by an open string stretched between e-twisted

§0(2n)ox D-branes corresponding to « and B is equal to 7 Al Xla’ the multiplicity of the (equiva-

lence class of) representations [A] carried by an open string stretched between e-twisted $0(2k)2,
D-branes corresponding to & and 3

Hence, for both untwisted and e-twisted D-branes, we have established an isomorphism be-
tween the spectrum of an open string ending on these D-branes and the spectrum of an open
string ending on the level-rank-dual D-branes.

In both the SU(N)x and $p(n)y WZW theories, the charges of level-rank-dual untwisted
D-branes are equal (modulo sign) [5,6], with a slightly more complicated relationship holding
between the charges of twisted D-branes [7]. In the case of SO(N) g, however, the charges of the
D-branes do not exhibit any simple relationship under level-rank duality.
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