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1 Introduction

Over the past decade, there has been much interest in N = 4 supersymmetric SU(N)

Yang-Mills (SYM) theory, in part because of its relation to string theory via the AdS/CFT

correspondence, and because of the possibility that, in the large N (planar) limit, the

theory may be integrable and solvable.

Recent progress on the perturbative structure of the theory has been motivated by

the discovery of an iterative structure of the loop amplitudes [1] which together with an

analysis of IR divergences [2–5] led to the fruitful BDS conjecture [6] for the all-loop-orders

MHV planar n-gluon amplitude. This conjecture has been shown to be a consequence of

– 1 –
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dual conformal invariance1 for n = 4 and 5, but for n ≥ 6 must be modified [12–16], though

the exact form of the correction is not yet known. In refs. [8, 17, 18] the BDS ansatz for

the planar four-gluon amplitude was shown to imply exact Regge behavior, and the gluon

Regge trajectory (in the planar limit) was computed. The Regge behavior of higher-point

planar amplitudes has been explored in refs. [19–22].

While the leading-color (planar) amplitudes have been under intense investigation,

sub-leading-color amplitudes have received much less scrutiny. Two-loop subleading-color

four-gluon amplitudes [23] can be written explicitly [24, 25] through O(ǫ0) in a Laurent

expansion in the dimensional regulator ǫ = (4−D)/2, and three-loop subleading-color four-

gluon amplitudes are known in terms of a basis of scalar integrals [26], but no BDS-type

ansatz is known for general L-loop subleading-color amplitudes. In previous work [27],

we derived explicit expressions for the IR-divergent part of subleading-color four-gluon

amplitudes through three loops, and made several conjectures about the extension of these

expressions to arbitrary loop order. In the first part of this paper, we derive (using an

assumption explicitly stated below) an all-loop-orders expression for the IR-divergent part

of the four-gluon amplitude, confirming and extending the conjectures made in ref. [27].

The BDS ansatz was guided by an analysis of the IR divergences of loop amplitudes [2–

5]. In the planar limit, the IR divergences depend on two functions of the coupling: the

soft (cusp) anomalous dimension γ(a) and the collinear anomalous dimension G0(a). The

IR divergences of subleading-color amplitudes depend not only on γ(a) and G0(a) but also

on a soft anomalous dimension matrix Γ(a). It was shown [28, 29] that the two-loop soft

anomalous dimension matrix is proportional to the one-loop matrix

Γ(2) =
γ(2)

γ(1)
Γ(1) (1.1)

where Γ(a) =
∑∞

ℓ=1 a
ℓΓ(ℓ) and γ(a) =

∑∞
ℓ=1 a

ℓγ(ℓ). Dixon recently established the anal-

ogous proportionality for the matter-dependent part of the three-loop soft anomalous di-

mension matrix [30]. An all-orders form for Γ(a) has been conjectured [26, 31–33], which

in the case of N = 4 SYM theory reduces to

Γ(ℓ) =
γ(ℓ)

γ(1)
Γ(1) (1.2)

generalizing eq. (1.1). In this paper, we will assume that eq. (1.2) holds for all ℓ, and thus

that the Γ(ℓ) are mutually commuting, to derive a compact formula for the all-loop-order

IR divergences of the N = 4 SYM four-gluon amplitude

|A(ǫ)〉 = exp

[

∞
∑

ℓ=1

aℓ

N ℓ
G(ℓ)(ℓǫ)

]

|H(ǫ)〉 (1.3)

where |H(ǫ)〉 denotes the short-distance, IR-finite, contribution to the amplitude and

G(ℓ)(ǫ) =
N ℓ

2

(

µ2

Q2

)ǫ
[

−

(

γ(ℓ)

ǫ2
+

2G
(ℓ)
0

ǫ

)

1l +
γ(ℓ)

4ǫ
Γ(1)

]

(1.4)

1More precisely, anomalous dual conformal symmetry uniquely fixes the form of light-like Wilson loops

for n = 4 and n = 5 [7–9], and much evidence has accumulated for the equivalence of Wilson loops to MHV

planar amplitudes [8–14].

– 2 –
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where G0(a) =
∑∞

ℓ=1 a
ℓG

(ℓ)
0 , and µ and Q are the renormalization and factorization scales

respectively. We use this to derive expressions for specific subleading-color amplitudes, and

to confirm and extend some of the conjectures made in ref. [27].

In the second part of this paper, in an effort to see whether the iterative structures

that play such an important role in MHV planar amplitudes might also be present in

subleading-color amplitudes, we consider the Regge limit (s→ ∞ with t fixed) of the four-

gluon amplitude to all orders in perturbation theory. We present evidence that the planar

L-loop amplitude has logL(−s/t) leading log behavior, while subleading-color amplitudes

only go as logL−1(−s/t), using the IR-divergent contributions as a guide. (To fully prove

this behavior would require knowing the IR-finite parts of the amplitudes as well.)

The IR-divergent parts of the subleading-color amplitudes possess sufficient iterative

structure to enable us (partially) to sum them (neglecting terms of O(t/s)) to all orders

in perturbation theory. There are no subleading-color corrections to the gluon Regge

trajectory function through two loops, in agreement with the maximum transcendentality

contribution [34] of the QCD gluon Regge trajectory [35, 36], although the Regge residue

picks up a two-loop 1/N2 correction. We find Regge-type behavior for the IR-divergent

terms of the (subleading-color) double-trace amplitudes. It remains to be seen whether

these iterative structures extend beyond the Regge limit.

In section 2, we derive a compact all-loop-orders expression for the IR-divergent part

of the N = 4 SYM four-gluon amplitude, and in section 3 we use this to derive explicit

expressions for subleading-color amplitudes. Section 4 examines the leading logarithmic

behavior of leading- and subleading-color L-loop amplitudes in the Regge limit. In sec-

tion 5, the leading logarithms are summed to obtain Regge trajectories. Conclusions are

presented in section 6, and technical details are to be found in two appendices.

2 N = 4 SYM IR divergences to all loops

In this section, we derive a compact all-loop-orders expression for the IR-divergent part of

the N = 4 SYM four-gluon amplitude in terms of anomalous dimensions γ(ℓ) and G
(ℓ)
0 , soft

anomalous dimension matrices Γ(ℓ), and the IR-finite parts of lower-loop amplitudes. This

result relies on the assumption that the soft anomalous dimension matrices are mutually

commuting, which follows if they are all proportional to Γ(1), as has been recently conjec-

tured [26, 31–33]. We then show that our expression is consistent with previous results at

one, two, and three loops [4, 5, 27].

First, we decompose the four-gluon amplitude into a basis of traces of color generators

A4−gluon(1, 2, 3, 4) = g2
9
∑

i=1

A[i] C[i] (2.1)

where the color-ordered amplitudes A[i] depend on the momenta ki and helicities of the

– 3 –
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gluons, and we adopt the explicit basis of single and double traces [37]

C[1] = Tr(T a1T a2T a3T a4) , C[4] = Tr(T a1T a3T a2T a4) , C[7] = Tr(T a1T a2)Tr(T a3T a4)

C[2] = Tr(T a1T a2T a4T a3) , C[5] = Tr(T a1T a3T a4T a2) , C[8] = Tr(T a1T a3)Tr(T a2T a4)

C[3] = Tr(T a1T a4T a2T a3) , C[6] = Tr(T a1T a4T a3T a2) , C[9] = Tr(T a1T a4)Tr(T a2T a3).

(2.2)

Here T a are SU(N) generators in the fundamental representation, normalized according to

Tr(T aT b) = δab. It is convenient to organize the color-ordered amplitudes A[i] into a vector

in color space [3, 4]

|A〉 =
(

A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8], A[9]

)T
(2.3)

where (· · · )T denotes the transposed vector.

Next, we write the color-ordered amplitudes in a loop expansion

|A〉 =

∞
∑

L=0

aL|A(L)〉 (2.4)

where the natural ’t Hooft loop expansion parameter is [6]

a ≡
g2N

8π2

(

4πe−γ
)ǫ
. (2.5)

Here γ is Euler’s constant, and the loop amplitudes are evaluated using dimensional reg-

ularization in D = 4 − 2ǫ dimensions. Although N = 4 SYM theory is UV finite, the

dimensionally-regularized amplitudes contain poles in ǫ due to IR divergences. We follow

the approach of refs. [5, 29] to organize the IR divergences as

∣

∣

∣

∣

A

(

sij

µ2
, a, ǫ

)〉

= J

(

Q2

µ2
, a, ǫ

)

S

(

sij

Q2
,
Q2

µ2
, a, ǫ

) ∣

∣

∣

∣

H

(

sij

Q2
,
Q2

µ2
, a, ǫ

)〉

(2.6)

where the prefactors J and S characterize the long-distance IR-divergent behavior, and

|H〉, which is finite as ǫ → 0, characterizes the short-distance behavior of the amplitude.

Also sij = (ki + kj)
2, µ is a renormalization scale, and Q is an arbitrary factorization

scale which serves to separate the long- and short-distance behavior. Although Q was set

equal to µ in ref. [29] for simplicity, we will keep it arbitrary. When we consider the Regge

limit of the four-gluon amplitudes in sections 4 and 5, we will set Q2 equal to the fixed

momentum scale −t.

Because N = 4 SYM theory is conformally invariant, the product of jet functions J

may be explicitly evaluated as [6]

J

(

Q2

µ2
, a, ǫ

)

= exp

[

−
1

2

∞
∑

ℓ=1

aℓ

(

µ2

Q2

)ℓǫ
(

γ(ℓ)

(ℓǫ)2
+

2G
(ℓ)
0

ℓǫ

)]

(2.7)

– 4 –
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where γ(ℓ) and G
(ℓ)
0 are the coefficients of the soft (or Wilson line cusp) and collinear

anomalous dimensions of the gluon respectively

γ(a) =

∞
∑

ℓ=1

aℓγ(ℓ) = 4a− 4ζ2a
2 + 22ζ4a

3 + · · ·

G0(a) =

∞
∑

ℓ=1

aℓG
(ℓ)
0 = −ζ3a

2 +

(

4ζ5 +
10

3
ζ2ζ3

)

a3 + · · · (2.8)

The soft function S, written in boldface to indicate that it is a matrix acting on the vector

|H〉, is given by [5, 29]

S

(

sij

Q2
,
Q2

µ2
, a, ǫ

)

= P exp

[

−
1

2

∫ Q2

0

dµ̃2

µ̃2
Γ

(

sij

Q2
, ā

(

µ2

µ̃2
, a, ǫ

))

]

(2.9)

where2

Γ

(

sij

Q2
, a

)

=

∞
∑

ℓ=1

aℓΓ(ℓ), ā

(

µ2

µ̃2
, a, ǫ

)

=

(

µ2

µ̃2

)ǫ

a. (2.10)

The integral (2.9) is path-ordered, but this becomes irrelevant if the soft anomalous di-

mension matrices Γ(ℓ) all commute with one another. In ref. [28, 29] it was shown that

Γ(2) = 1
4γ

(2)Γ(1) , and in ref. [30] that Γ(3) = 1
4γ

(3)Γ(1) for the non pure gluon contributions.

If we assume that

Γ(ℓ) =
γ(ℓ)

4
Γ(1) (assumption) (2.11)

holds for all ℓ in N = 4 SYM theory,3 as has been conjectured in refs. [26, 31–33], then

the Γ(ℓ) indeed commute,4 and we can explicitly integrate eq. (2.9) to obtain

S

(

sij

Q2
,
Q2

µ2
, a, ǫ

)

= exp

[

1

2

∞
∑

ℓ=1

aℓ

(

µ2

Q2

)ℓǫ
Γ(ℓ)

ℓǫ

]

. (2.12)

Combining the exponents of the jet and soft functions into5 [5, 27]

G(ℓ)(ǫ) =
N ℓ

2

(

µ2

Q2

)ǫ
[

−

(

γ(ℓ)

ǫ2
+

2G
(ℓ)
0

ǫ

)

1l +
1

ǫ
Γ(ℓ)

]

(2.13)

we may express the four-gluon amplitude in the compact form6

|A(ǫ)〉 = exp

[

∞
∑

ℓ=1

aℓ

N ℓ
G(ℓ)(ℓǫ)

]

|H(ǫ)〉 (2.14)

2We suppress the explicit dependence of Γ
(ℓ) on sij/Q2 to lighten the notation.

3 Difficulties may arise at four loops, however, due to the possibility of quartic Casimir terms [30, 33, 38–

40].
4The assumption that Γ

(ℓ) commute was also used to simplify the IR divergences of QCD in ref. [32].
5In ref. [27], Q was set equal to µ.
6Henceforth we suppress sij , Q, µ, and a in the arguments of the amplitudes.

– 5 –
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which will be very useful in extracting the IR-divergent parts of subleading-color amplitudes

in section 3. The expression (2.14) is valid up to the number of loops L for which the set

of soft anomalous dimension matrices {Γ(ℓ) | ℓ ≤ L} mutually commute, at least L = 2

and possibly to all orders.

We now briefly show that eq. (2.14) is consistent with previous results at one, two,

and three loops [4, 5, 27]. Equations (3.13-3.15) of ref. [27] and their generalization to all

L are compactly written as

|Ã(f)(ǫ)〉 =
∞
∑

L=0

aL|Ã(Lf)(ǫ)〉 =

(

1l −
∞
∑

ℓ=1

aℓ

N ℓ
F(ℓ)(ǫ)

)

|A(ǫ)〉. (2.15)

The F(ℓ) are chosen so as to cancel all the IR divergences in |A(ǫ)〉, leaving an IR-finite

expression |Ã(f)(ǫ)〉. In view of eq. (2.14), this can be accomplished by requiring

(

1l −
∞
∑

ℓ=1

aℓ

N ℓ
F(ℓ)(ǫ)

)

exp

[

∞
∑

ℓ=1

aℓ

N ℓ
G(ℓ)(ℓǫ)

]

= 1l . (2.16)

The F(ℓ) defined by eq. (2.16) may be written more explicitly as follows. In ref. [6], the

functional X[M ] was defined via

1 +

∞
∑

ℓ=1

aℓM (ℓ) ≡ exp

[

∞
∑

ℓ=1

aℓ
(

M (ℓ) −X(ℓ)[M ]
)

]

(2.17)

thus, e.g., X(1)[M ] = 0, X(2)[M ] = 1
2

[

M (1)
]2

, X(3)[M ] = −1
3

[

M (1)
]3

+ M (1)M (2), etc.

This functional was defined for scalar functions M (ℓ), but we can also use it for commuting

matrices. We have assumed that Γ(ℓ) and therefore G(ℓ) all commute with one another,

and thus F(ℓ) do so as well as a consequence of eq. (2.16). Thus we can write

(

1l −
∞
∑

ℓ=1

aℓ

N ℓ
F(ℓ)(ǫ)

)

= exp

[

∞
∑

L=0

aℓ

N ℓ

(

−F(ℓ)(ǫ) −X(ℓ)[−F]
)

]

(2.18)

and so eq. (2.16) is equivalent to

F(ℓ)(ǫ) = −X(ℓ)[−F] + G(ℓ)(ℓǫ) (2.19)

which defines F(ℓ) recursively in terms of G(ℓ) and F(ℓ′) with ℓ′ < ℓ. Equation (2.19)

precisely agrees, in the case where the F(ℓ) commute with one another, with eqs. (3.16-3.18)

of ref. [27]7 for ℓ ≤ 3, and provides their all-orders generalization. Equations (2.14)–(2.16)

then imply

|Ã(f)(ǫ)〉 = |H(ǫ)〉 (2.20)

that is, the IR-finite function defined via eq. (2.15) is identical to the short-distance function

defined in eq. (2.6).

In appendix A, we show how eq. (2.14) may also be used to easily obtain the IR-

divergent part of the L-loop generalization [6] of the ABDK equation [1].

7 Based on the results of ref. [5].

– 6 –
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3 IR divergences in the 1/N expansion

The L-loop color-ordered amplitudes may be written in a 1/N expansion as

|A(L)(ǫ)〉 =
L
∑

k=0

1

Nk
|A(L,k)(ǫ)〉 (3.1)

where |A(L,0)〉 are the leading-color (planar) amplitudes and |A(L,k)〉, 1 ≤ k ≤ L, are the

subleading-color amplitudes. The L-loop planar amplitudes are predicted by the BDS

ansatz [6], but no general expression is known for the L-loop subleading-color amplitudes

(although exact expressions in terms of scalar integrals are known through three loops [26]).

In this section, we will use the result (2.14) derived in section 2 to extract explicit expres-

sions for the IR-divergent parts of subleading-color amplitudes. These will be useful in

discussing the Regge limits of these amplitudes in sections 4 and 5.

We begin by expanding eq. (2.14):

|A(ǫ)〉 =

∞
∑

L=0

L
∑

k=0

aL

Nk
|A(L,k)(ǫ)〉 =

∞
∏

ℓ=1

∑

{nℓ}

1

nℓ!

(

aℓG
(ℓ)(ℓǫ)

N ℓ

)nℓ ∞
∑

ℓ0=0

ℓ0
∑

k0=0

aℓ0

Nk0
|H(ℓ0,k0)(ǫ)〉.

(3.2)

Assuming that the proportionality (2.11) holds, we use eq. (2.13) to write

G(ℓ)(ℓǫ)

N ℓ
=

1

2

(

µ2

Q2

)ℓǫ
[

−

(

γ(ℓ)

(ℓǫ)2
+

2G
(ℓ)
0

ℓǫ

)

1l +
γ(ℓ)

4ℓǫ
Γ(1)

]

. (3.3)

The one-loop soft anomalous dimension matrix, defined by eq. (B.2), takes the form

Γ(1) = 2

(

α 0

0 δ

)

+
2

N

(

0 β

γ 0

)

(3.4)

where explicit expressions for the momentum-dependent matrices α, β, γ, and δ are given

in appendix B. Due to the assumption (2.11), the 1/N expansion of G(ℓ)(ℓǫ)/N ℓ has only

two terms
G(ℓ)(ℓǫ)

N ℓ
= gℓ +

1

N
fℓ (3.5)

where gℓ and fℓ can be read from eqs. (3.3) and (3.4). We rewrite eq. (3.2) as

|A(ǫ)〉 =
∞
∑

L=0

L
∑

k=0

aL

Nk
|A(L,k)(ǫ)〉 =

∞
∏

ℓ=1

∑

{nℓ}

1

nℓ!

(

aℓgℓ +
aℓ

N
fℓ

)nℓ ∞
∑

ℓ0=0

ℓ0
∑

k0=0

aℓ0

Nk0
|H(ℓ0,k0)(ǫ)〉

(3.6)

so that all N dependence is explicit.

Now consider an individual term on the r.h.s. of eq. (3.6). By counting powers of a

and 1/N , one sees that this term contributes to |A(L,k)(ǫ)〉, with

L = ℓ0 +

∞
∑

ℓ=1

ℓnℓ, k = k0 + k1 (3.7)
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where k1 is the number of factors fℓ present in the term. From eqs. (3.3) and (3.4), it is

apparent that gℓ has a double pole in ǫ, but fℓ only has a single pole. The leading IR pole

in the term under consideration is therefore 1/ǫp, where

p = 2

∞
∑

ℓ=1

nℓ − k1 . (3.8)

Combining eqs. (3.7) and (3.8), we find

p = 2L− k −

[

2

∞
∑

ℓ=1

(ℓ− 1)nℓ + 2ℓ0 − k0

]

. (3.9)

Since k0 ≤ ℓ0, the term in square brackets is non-negative, so the leading IR pole of

|A(L,k)(ǫ)〉 is

|A(L,k)(ǫ)〉 ∼ O

(

1

ǫ2L−k

)

. (3.10)

This behavior was previously established in ref. [27] for amplitudes through L = 3.

3.1 Leading IR divergence of A(L,k)

We now derive the coefficient of the leading IR pole of |A(L,k)(ǫ)〉. Terms in eq. (3.6)

contribute to the leading IR pole only when the expression in square brackets in eq. (3.9)

vanishes, which occurs when nℓ = 0 for ℓ ≥ 2, and ℓ0 = k0 = 0 (with n1 unconstrained).

In other words, the leading IR divergences are given by

|A(ǫ)〉 ∼ exp

[

a
G(1)(ǫ)

N

]

|A(0)〉 (leading IR divergence) (3.11)

where |H(0,0)〉 = |A(0)〉. This confirms a conjecture8 made in ref. [27]. Recalling that

G(1)(ǫ)

N
=

(

µ2

Q2

)ǫ
[

−
2

ǫ2
1l +

1

ǫ

(

α 0

0 δ

)

+
1

Nǫ

(

0 β

γ 0

)]

(3.12)

we use eq. (3.11) to obtain the coefficient of the leading IR pole

|A(L,k)(ǫ)〉 =
(−2)L−k

k!(L− k)!

1

ǫ2L−k

(

0 β

γ 0

)k

|A(0)〉 + O

(

1

ǫ2L−k−1

)

. (3.13)

The leading IR pole of the planar amplitude is simply

|A(L,0)(ǫ)〉 =
(−2)L

L! ǫ2L
|A(0)〉 + O

(

1

ǫ2L−1

)

(3.14)

8 In that paper we expressed this in terms of I
(1), the operator introduced in ref. [3, 4], but as we showed

there I
(1) and G

(1) only differ by terms subleading in ǫ.
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with the rest of the IR divergences given by the (generalized) ABDK equation (see ap-

pendix A). The leading IR poles of the subleading-color amplitudes may be written ex-

plicitly using eqs. (B.4)–(B.7),

|A(L,2m+1)(ǫ)〉 (3.15)

=

(

−4iK

stu

)

(−1)L−12L−m
(

X2 + Y 2 + Z2
)m

(sY − tX)

(2m+ 1)!(L − 2m− 1)! ǫ2L−2m−1

































0

0

0

0

0

0

1

1

1

































+ O

(

1

ǫ2L−2m−2

)

and

|A(L,2m+2)(ǫ)〉 (3.16)

=

(

−4iK

stu

)

(−1)L2L−m−1
(

X2 + Y 2 + Z2
)m

(sY − tX)

(2m+ 2)!(L − 2m− 2)!ǫ2L−2m−2

































X − Y

Z −X

Y − Z

Y − Z

Z −X

X − Y

0

0

0

































+ O

(

1

ǫ2L−2m−3

)

where s, t, and u are the Mandelstam invariants, K depends on the momenta and helicity

of the gluons, and is totally symmetric under permutations of the external legs, and

X = log

(

t

u

)

, Y = log
(u

s

)

, Z = log
(s

t

)

. (3.17)

The results (3.15) and (3.16) are generalizations of the expressions derived in ref. [27].

3.2 IR divergences of A(L,L)

In the previous section, we derived the coefficient of the leading IR pole of the leading- and

subleading-color amplitudes |A(L,k)〉. It is also possible to use eq. (3.6) to derive further

terms in the Laurent expansion.

In this section, we derive an expression for the IR divergences of the most subleading-

color amplitude |A(L,L)〉. The only terms in eq. (3.6) that contribute to |A(L,L)〉 are those

with as many factors of 1/N as of a. Thus, only f1 and |H(ℓ0,ℓ0)〉 can contribute, giving

|A(L,L)(ǫ)〉 =
L
∑

ℓ0=0

1

(L− ℓ0)!
fL−ℓ0
1 |H(ℓ0,ℓ0)(ǫ)〉, where f1 =

1

ǫ

(

µ2

Q2

)ǫ
(

0 β

γ 0

)

(3.18)
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exact to all orders in the ǫ expansion. Keeping just the first two terms in the Laurent

expansion, we find

|A(L,L)(ǫ)〉 =
1

(L− 1)!
fL−1
1

[

1

L
f1|A

(0)〉 + |H(1,1)(ǫ)〉

]

+ O

(

1

ǫL−2

)

=
1

(L− 1)!

1

ǫL−1

(

0 β

γ 0

)L−1

|A(1,1)(Lǫ)〉 + O

(

1

ǫL−2

)

. (3.19)

This confirms the conjecture made in eqs. (4.45) and (4.46) of ref. [27].

3.3 IR divergences of A(L,1)

In this section, we consider the subleading-color amplitude |A(L,1)〉, and derive the first

three9 terms in the Laurent expansion. Consider all terms in eq. (3.6) for which the

expression in square brackets in eq. (3.9) is ≤ 2:

|A(L)(ǫ)〉 =
1

L!

(

g1 +
1

N
f1

)L

|A(0)〉 +
1

N(L− 1)!

(

g1 +
1

N
f1

)L−1

|H(1,1)(ǫ)〉 (3.20)

+
1

(L− 2)!

(

g1 +
1

N
f1

)L−2(

g2 +
1

N
f2

)

|A(0)〉

+
1

(L− 1)!

(

g1 +
1

N
f1

)L−1

|H(1,0)(ǫ)〉

+
1

N2(L− 2)!

(

g1 +
1

N
f1

)L−2

|H(2,2)(ǫ)〉 + · · · (three leading IR poles)

where we use eqs. (3.3) and (3.4) to write

g1 =

(

µ2

Q2

)ǫ
[

−
2

ǫ2
1l +

1

ǫ

(

α 0

0 δ

)]

, f1 =
1

ǫ

(

µ2

Q2

)ǫ
(

0 β

γ 0

)

,

g2 =

(

µ2

Q2

)2ǫ
[

−

(

γ(2)

8ǫ2
+

G
(2)
0

2ǫ

)

1l +
γ(2)

8ǫ

(

α 0

0 δ

)]

, f2 =
γ(2)

8ǫ

(

µ2

Q2

)2ǫ
(

0 β

γ 0

)

. (3.21)

To extract the |A(L,1)〉 amplitude, we employ the identity

(

g1 +
1

N
f1

)L
∣

∣

∣

∣

∣

1/N piece

(3.22)

= LgL−1
1 f1 +

(

L

2

)

gL−2
1 [f1, g1] +

(

L

3

)

gL−3
1 [[f1, g1], g1] + [· · · [[[f1, g1], g1], g1] · · · ]

in which the first term on the r.h.s. has an expansion that starts with 1/ǫ2L−1, the second

term has an expansion that starts with 1/ǫ2L−2, and so forth. Thus, keeping only the terms

proportional to 1/N in eq. (3.20), and only the first three terms in the Laurent expansion,

9It is straightforward to obtain further terms in the Laurent expansion as needed.
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we obtain

|A(L,1)〉 =
1

(L− 1)!
gL−1
1 f1|A

(0)〉 +
1

2(L− 2)!
gL−2
1 [f1, g1]|A

(0)〉 +
1

(L− 1)!
gL−1
1 |H(1,1)(ǫ)〉

+
1

6(L− 3)!
gL−3
1 [[f1, g1], g1]|A

(0)〉 +
1

(L− 2)!
gL−2
1 f2|A

(0)〉

+
1

(L− 3)!
gL−3
1 f1g2|A

(0)〉 +
1

(L− 2)!
gL−2
1 f1|H

(1,0)(ǫ)〉 + O

(

1

ǫ2L−4

)

. (3.23)

In section 5.3, we will study the subleading-color amplitude |A(L,1)〉 in the Regge limit

s ≫ −t, with t < 0 held fixed. In anticipation of that, we now compute the Regge limit

of the IR-divergent expression (3.23), neglecting terms suppressed by powers of t/s. It

is convenient in the Regge limit to choose the factorization scale Q2 equal to the (fixed)

momentum scale −t. Thus, using eq. (3.21) together with eqs. (B.1) and (B.8) we obtain

|A(L,1)(ǫ)〉 =

(

−4iK

st

)(

µ2

−t

)Lǫ
(−2)L

(L− 1)!

Y

ǫ2L−1

[







1

1

1






+

3(L− 1)

4
ǫ







−Z

X

0






(3.24)

+
(L− 1)(L− 2)

24
ǫ2







7Z2

7X2

XZ






+

(L2−17L+12)ζ2
8

ǫ2







1

1

1






+ O(ǫ3) + O (t/s)

]

where we have suppressed the first six (vanishing) entries of the vector. To obtain eq. (3.24),

we also needed to use terms through O(ǫ) in

|H(1,1)(ǫ)〉 =

(

−4iK

st

)

[

ζ2Y ǫ+ O(ǫ2) + O (t/s)
]







1

1

1






(3.25)

as well as the ǫ→ 0 limit of |H(1,0)(ǫ)〉, namely

|H(1,0)(0)〉 =

(

−4iK

st

)

[

4ζ2 (1, 0,−1,−1, 0, 1, 0, 0, 0)T + O (t/s)
]

(3.26)

which are obtained from the Laurent expansions of the exact expressions (4.9) and (4.18).

(Note that terms suppressed by powers of t/s have been omitted in both eqs. (3.25)

and (3.26).)

4 Regge limit of N = 4 SYM four-gluon amplitudes

In this section, we consider the leading logarithmic behavior of L-loop planar and

subleading-color N = 4 SYM four-gluon amplitudes in the Regge limit s ≫ −t, with

t < 0 held fixed. In section 5, we sum the leading logs to obtain the Regge trajectories.

– 11 –



J
H
E
P
1
0
(
2
0
0
9
)
0
4
8

4.1 Expectations from transcendentality

The L-loop planar and subleading-color amplitudes may be written as

|A(L,k)(ǫ)〉 =

(

−4iK

st

)(

µ2

−t

)Lǫ ∞
∑

m=−2L+k

ǫm |a(L,k)
m (s/t)〉 (4.1)

where |a
(L,k)
m (s/t)〉 is generally a complicated function of logarithms and polylogarithms.

(We consider the amplitude in the physical region s > 0 and t, u < 0, with s+ t+ u = 0.)

All N = 4 SYM amplitudes have been observed to have uniform transcendentality [27, 34,

41]. This means that |a
(L,k)
m (s/t)〉 is a function of s/t whose degree of transcendentality10

is 2L+m.

Now we consider |a
(L,k)
m (s/t)〉 in the Regge limit s ≫ −t, with t < 0 held fixed.

Dropping any terms suppressed by at least one power of t/s, we are left with a polynomial

in log(−s/t). Since logarithms have unit transcendentality, the degree of the polynomial

can be no greater than 2L+m. In the Regge limit, |a
(L,k)
m (s/t)〉 will be dominated by the

leading term in the polynomial. A priori we might expect this term to be the maximum

allowed by transcendentality, so that

|a(L,k)
m (s/t)〉 −→

s≫−t
const

[

log
(

−
s

t

)]2L+m
+subleading (a priori expectation) (4.2)

where “subleading” indicates that we have dropped lower powers of log(−s/t) as well as

terms suppressed by powers of t/s.

The expectation (4.2), however, is incorrect; the leading power of log(−s/t) is almost

always less than the maximum allowed by transcendentality. The evidence suggests that

the Regge limit of the planar L-loop amplitude is given by11

|a(L,0)
m (s/t)〉 −→

s≫−t
cL+m

[

log
(

−
s

t

)]L
+ subleading (conjecture) (4.3)

where cL+m is a constant with degree of transcendentality L+m (and vanishes for m < −L,

in which case the lower powers of log(−s/t) cannot be neglected). The leading logarithmic

growth of subleading-color amplitudes in the Regge limit appears to be even weaker than

that for planar amplitudes, and we conjecture that

|a(L,k)
m (s/t)〉 −→

s≫−t
c′L+m+1

[

log
(

−
s

t

)]L−1
+ subleading, for k ≥ 1 (conjecture)

(4.4)

where c′L+m+1 is a constant with degree of transcendentality L+m+1 (and vanishes when

m < −L− 1). We will discuss the evidence for the claims (4.3) and (4.4) in the remainder

of this section.

10Each factor of ζk, πk, logk(−s/t), or any polylogarithm of total degree k has transcendentality k, and

the transcendentality of a product of factors is additive.
11Terms suppressed by powers of t/s, however, can, and do, contain powers of log(−s/t) higher than L.
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4.2 Regge limit of planar amplitudes

In this section, we review the Regge limit of the BDS ansatz for the planar four-gluon

amplitude, which was explored in refs. [8, 17, 18].

The BDS ansatz for A
(L,0)
[1] is [6]

A
(L,0)
[1] = M (L)(s, t; ǫ) A

(0)
[1] , (4.5)

A
(0)
[1] = −

4iK

st
, (4.6)

1 +

∞
∑

L=1

aLM (L)(s, t; ǫ) = exp

{

∞
∑

ℓ=1

aℓ
[

f (ℓ)(ǫ)M (1)(s, t; ℓǫ) + h(ℓ)(s, t; ǫ)
]

}

(4.7)

where

f (ℓ)(ǫ) =
1

4
γ(ℓ) +

1

2
ǫ ℓ G

(ℓ)
0 + ǫ2f

(ℓ)
2 (4.8)

with γ(ℓ) and G
(ℓ)
0 defined in eq. (2.8), and h(ℓ)(s, t; ǫ), which is finite as ǫ → 0, contains

information about the short-distance behavior of the amplitude. The ratio of the one-loop

amplitude to the tree amplitude is

M (1)(s, t; ǫ) = −
1

2
st I

(1)
4 (s, t) (4.9)

where the scalar box integral

I
(1)
4 (s, t) = −iµ2ǫeǫγπ−D/2

∫

dDp

p2(p− k1)2(p− k1 − k2)2(p + k4)2
(4.10)

may be evaluated exactly in terms of the hypergeometric function [42]. The BDS conjec-

ture (4.7) for the four-gluon amplitude is wholly consistent with the IR-divergence structure

as reviewed in section 2 and appendix A, but goes beyond it to assert that h(ℓ)(s, t; ǫ) is

independent of s and t in the limit ǫ→ 0.

In the Regge limit s≫ −t, one finds [18, 43], neglecting terms suppressed by O(t/s),

M (1)(s, t; ǫ) =

(

µ2

−t

)ǫ
r(ǫ)

ǫ

[

log
(

−
s

t

)

− iπ + ψ(1 + ǫ) − 2ψ(−ǫ) + ψ(1)
]

+ O (t/s)

=

(

µ2

−t

)ǫ

r(ǫ)

[

−
2

ǫ2
+

1

ǫ
log
(

−
s

t

)

−
iπ

ǫ
+

∞
∑

m=0

[2 + (−1)m]ζm+2ǫ
m

]

+ O (t/s)

(4.11)

where

r(ǫ) =
Γ(1 + ǫ)Γ(1 − ǫ)2

Γ(1 − 2ǫ)
eγǫ = 1 −

1

2
ζ2ǫ

2 −
7

3
ζ3ǫ

3 −
47

16
ζ4ǫ

4 + · · · (4.12)

If the h(ℓ)(s, t; ǫ) term were absent from eq. (4.7), then eq. (4.11) would suffice to establish

that A(L,0) goes as logL(−s/t) in the Regge limit, as claimed in eq. (4.3). This claim would

still be valid, even with the h(ℓ)(s, t; ǫ) term present, provided that h(ℓ)(s, t; ǫ) grows no
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faster than logℓ(−s/t) in the Regge limit.12 In fact, the situation may be better than this.

Using the explicit expressions in ref. [6] together with the help of the Mathematica package

HPL [44] we find that

h(2)(s, t; ǫ) = −
π4

72
+

(

−
11π4

360

[

log
(

−
s

t

)

− iπ
]

−
39

2
ζ5 +

23π2

12
ζ3

)

ǫ (4.13)

+

([

41

2
ζ5 +

π2

4
ζ3

]

[

log
(

−
s

t

)

− iπ
]

− 15ζ2
3 −

1789π6

30240

)

ǫ2 + O(ǫ3) + O(t/s)

so that h(2)(s, t; ǫ) only grows as log(−s/t), at least to O(ǫ2). If we make the assumption

that h(ℓ)(s, t; ǫ) grows less strongly than logℓ(−s/t) in the Regge limit for all ℓ, then it

would make no contribution to the leading log behavior of the planar L-loop amplitude,

and we could conclude that13

A
(L,0)
[1] −→

s≫−t

1

L!

(

−4iK

st

)(

µ2

−t

)Lǫ(
r(ǫ)

ǫ

)L [

log
(

−
s

t

)]L
+ subleading (4.14)

This behavior is precisely in accord with eq. (4.3), with (r(ǫ)/ǫ)L yielding constants cL+m

with the expected degree of transcendentality.

Now we consider the Regge limits of the other color-ordered amplitudes14

A
(L,0)
[2] = M (L)(s, u; ǫ) A

(0)
[2] , A

(L,0)
[3] = M (L)(t, u; ǫ) A

(0)
[3] . (4.15)

These are also given by the BDS ansatz. To obtain A
(L,0)
[3] we replace log(−s/t) − iπ with

log(u/t) = log(−s/t) + O(t/s) in eq. (4.11) to obtain15

M (1)(t, u; ǫ) =

(

µ2

−t

)ǫ

r(ǫ)

[

−
2

ǫ2
+

1

ǫ
log
(

−
s

t

)

+

∞
∑

m=0

[2 + (−1)m]ζm+2ǫ
m

]

+ O (t/s)

(4.16)

Then, again subject to the assumption about h(ℓ)(s, t; ǫ) made above, A
(L,0)
[3] also has leading

log behavior in the Regge limit given by eq. (4.14).

On the other hand, M (1)(s, u; ǫ) grows faster than log(−s/t) in the Regge limit,

M (1)(s, u; ǫ) =

(

µ2

−t

)ǫ [

−
2

ǫ2
+

2

ǫ
log
(

−
s

t

)

−
iπ

ǫ
−log2

(

−
s

t

)

+iπ log
(

−
s

t

)

+4ζ2 + O(ǫ)

]

+O (t/s) , (4.17)

12The h(ℓ)(s, t; ǫ) can affect the coefficients of nonpositive powers of ǫ in A(L,0) through interference with

the IR-divergent terms in M (1)(s, t; ℓǫ).
13Interestingly, the individual scalar L-loop diagrams that contribute to the planar L-loop amplitude

generically behave as eq. (4.2) in the Regge limit, but all powers of log(−s/t) higher than L cancel when

they are added up.
14Also, recall that A

(L,0)
[4] = A

(L,0)
[3] , A

(L,0)
[5] = A

(L,0)
[2] , and A

(L,0)
[6] = A

(L,0)
[1] .

15Terms which are subleading in t/s can in principle lead to subleading Regge trajectories and/or cuts,

which we do not examine in this paper. The terms of O(t/s) relative to the terms we keep could in principle

lead to Regge trajectories passing through j = 0 at t = 0. This possibility is investigated in ref. [45].
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and so M (L)(s, u; ǫ) grows faster than logL(−s/t). This apparent contradiction to eq. (4.3)

is resolved by recognizing that A
(L,0)
[2] is suppressed by t/s relative to A

(L,0)
[1] and A

(L,0)
[3] ,

because A
(0)
[2] = −4iK/su, and is therefore entirely contained in the “subleading” term. In

addition, the − log2(−s/t) dependence in eq. (4.17) will lead to exponential suppression of

the Regge trajectory associated with this amplitude, as we will see in section 5.

4.3 Regge limit of A(1,1)

In this paper, we are particularly interested in the Regge behavior of subleading-color

amplitudes. The simplest case is the one-loop subleading-color amplitude, which is given

by [46]

A
(1,1)
[7] = A

(1,1)
[8] = A

(1,1)
[9] = 2

(

A
(1,0)
[1] +A

(1,0)
[2] +A

(1,0)
[3]

)

. (4.18)

We use eqs. (4.7), (4.11), (4.15), and (4.16), and recall that A
(1,0)
[2] is suppressed by t/s, to

obtain, in the Regge limit,

A
(1,1)
[7] =

(

−4iK

st

)(

µ2

−t

)ǫ [

−
2πir(ǫ)

ǫ
+ O (t/s)

]

(4.19)

=

(

−4iK

st

)(

µ2

−t

)ǫ [

−
2πi

ǫ
+ iπζ2ǫ+

14πi

3
ζ3ǫ

2 +
47πi

8
ζ4ǫ

3 + · · · + O (t/s)

]

.

This confirms the conjectured behavior (4.4) in the case L = k = 1. It was previously

shown in eq. (40) of ref. [47] that the real part of A
(1,1)
[7] vanishes to O(t/s).

4.4 Regge limits of A(2,1) and A(2,2)

The two-loop subleading-color amplitudes |A(2,1)〉 and |A(2,2)〉 are known exactly [23]. The

former is given by

A
(2,1)
[7] = −2iK

[

s
(

3I
(2)P
4 (s, t) + 2I

(2)NP
4 (s, t) + 3I

(2)P
4 (s, u) + 2I

(2)NP
4 (s, u)

)

(4.20)

−t
(

I
(2)NP
4 (t, s) + I

(2)NP
4 (t, u)

)

− u
(

I
(2)NP
4 (u, s) + I

(2)NP
4 (u, t)

)]

where A
(2,1)
[8] and A

(2,1)
[9] may be obtained via cyclic permutations of s, t, and u. The two-loop

planar and non-planar scalar integrals appearing in eq. (4.20) are

I
(2)P
4 (s, t) =

(

−iµ2ǫeǫγπ−D/2
)2

× (4.21)

×

∫

dDp dDq

p2 (p+ q)2q2 (p − k1)2 (p− k1 − k2)2 (q − k4)2 (q − k3 − k4)2

I
(2)NP
4 (s, t) =

(

−iµ2ǫeǫγπ−D/2
)2

×

×

∫

dDp dDq

p2 (p+ q)2 q2 (p − k2)2 (p + q + k1)2 (q − k3)2 (q − k3 − k4)2
.

Explicit expressions for these integrals are given in refs. [6] and [25] respectively. Continuing

these expressions to the physical region s > 0, t, u < 0, and dropping terms suppressed by
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t/s in the Regge limit, we obtain

A
(2,1)
[7] =

(

−4iK

st

)(

µ2

−t

)2ǫ
{

4iπ

ǫ3
−

3iπ
[

log(−s/t) − iπ
]

ǫ2
−

3iπ3

2ǫ

+
iπ

6

[

3π2 log(−s/t) − 82ζ3 − 3iπ3
]

+ O (ǫ) + O (t/s)

}

A
(2,1)
[8] =

(

−4iK

st

)(

µ2

−t

)2ǫ
{

4iπ

ǫ3
−

3iπ log(−s/t)

ǫ2
−

3iπ3

2ǫ

+
iπ

6

[

3π2 log(−s/t) − 82ζ3
]

+ O (ǫ) + O (t/s)

}

A
(2,1)
[9] =

(

−4iK

st

)(

µ2

−t

)2ǫ
{

4iπ

ǫ3
−

3iπ3

2ǫ
−

95

3
iπζ3 + O (ǫ) + O (t/s)

}

. (4.22)

By using eq. (B.9), one may easily verify that that IR-divergent parts of this expression

agree with the general expression (3.24) derived in the last section.

The most-subleading-color two-loop amplitudes are given by [23].

A
(2,2)
[1] = −2iK

[

s
(

I
(2)P
4 (s, t) + I

(2)NP
4 (s, t) + I

(2)P
4 (s, u) + I

(2)NP
4 (s, u)

)

+t
(

I
(2)P
4 (t, s) + I

(2)NP
4 (t, s) + I

(2)P
4 (t, u) + I

(2)NP
4 (t, u)

)

(4.23)

−2u
(

I
(2)P
4 (u, s) + I

(2)NP
4 (u, s) + I

(2)P
4 (u, t) + I

(2)NP
4 (u, t)

)]

.

The other single-trace amplitudes A
(2,2)
[i] are obtained by making the appropriate permuta-

tions of s, t, and u in this expression. Again extracting the Regge limit of these amplitudes,

we find

A
(2,2)
[1] = A

(2,2)
[6] =

(

−4iK

st

)(

µ2

−t

)2ǫ

(4.24)

×

{

iπ
[

log(−s/t) + iπ
]

ǫ2
−
iπ

6

[

π2 log(−s/t) + iπ3 + 36ζ3
]

+ O (ǫ) + O (t/s)

}

A
(2,2)
[2] = A

(2,2)
[5] =

(

−4iK

st

)(

µ2

−t

)2ǫ

×

{

iπ
[

−2 log(−s/t) + iπ
]

ǫ2
+
iπ

6

[

2π2 log(−s/t) − iπ3 + 72ζ3
]

+ O (ǫ) + O (t/s)

}

A
(2,2)
[3] = A

(2,2)
[4] =

(

−4iK

st

)(

µ2

−t

)2ǫ

×

{

iπ
[

log(−s/t) − 2πi
]

ǫ2
−
iπ

6

[

π2 log(−s/t) − 2iπ3 + 36ζ3
]

+ O (ǫ) + O (t/s)

}

.

We see that both subleading-color amplitudes |A(2,1)〉 and |A(2,2)〉 go as log(−s/t) in

the Regge limit (at least through O(ǫ0)), thus adding support to our conjecture (4.4).
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4.5 Regge limit of IR-divergences of higher-loop amplitudes

In section 4.3, we saw that the one-loop subleading-color amplitude goes as log0(−s/t)

to all orders in ǫ, and in section 4.4 that all two-loop subleading-color amplitudes go as

log1(−s/t), at least through O(ǫ0). Thus suggests that, while the L-loop planar amplitude

(probably) goes as logL(−s/t) in the Regge limit, the L-loop subleading-color amplitudes

only go as logL−1(−s/t) in the Regge limit, as conjectured in eq. (4.4).

Because the IR-finite parts of the subleading-color amplitudes beyond two loops are

not known explicitly, we cannot prove this conjecture, but in this section we will perform

an important consistency check. We will prove that the IR-divergent contributions to the

L-loop subleading-color amplitudes grow no faster than logL−1(−s/t) in the Regge limit,

provided that ℓ0-loop subleading-color amplitudes (both IR-divergent and finite parts)

grow no faster than logℓ0−1(−s/t) for all ℓ0 < L. Thus, with this inductive argument, it is

sufficient to prove that the IR-finite contribution to the L-loop subleading-color amplitudes

goes as logL−1(−s/t) to establish it for the full amplitude.

Our first step is to prove a weaker result, namely that the IR-divergent part of any

L-loop amplitude (planar or subleading) grows no faster than logL(−s/t), provided that

no ℓ0-loop amplitude (planar or subleading) with ℓ0 < L grows faster than logℓ0(−s/t).

Consider G(ℓ)/N ℓ defined by eqs. (3.3) and (3.4), with Q2 = −t, and α through δ given

by eq. (B.8). In eq. (B.10), we show that α through δ, and therefore G(ℓ)/N ℓ, go as

log(−s/t) in the Regge limit. Consequently, the strongest growth of any (IR-divergent)

term in eq. (3.2) is logq(−s/t) where q = ℓ0 +
∑∞

ℓ=1 nℓ. Since q ≤ L by eq. (3.7), we have

established our result.

Now we prove a stronger result, namely that the logL(−s/t) terms are actually absent

from the IR-divergent contributions to L-loop subleading-color amplitudes. The only terms

in eq. (3.6) that could yield logL(−s/t) growth are those with nℓ = 0 for ℓ > 1 (so that

the inequality q ≤ L is saturated) and containing |H(ℓ0,0)〉 (since we assume that ℓ0-loop

subleading-color amplitudes grow no faster than logℓ0−1(−s/t)), namely, terms of the form

(

g1 +
1

N
f1

)L−ℓ0

|H(ℓ0,0)(ǫ)〉. (4.25)

First we consider the ℓ0 = 0 term

(

g1 +
1

N
f1

)L

|A(0)〉 (4.26)

with |A(0)〉 given in the Regge limit by

|A(0)〉 −→
s≫−t

−
4iK

st
(1, 0,−1,−1, 0, 1, 0, 0, 0)T . (4.27)

Since any subleading-color amplitude contains at least one factor of f1, we can see that

the structure · · · γαn|A(0)〉 for some n ≥ 0 will always appear. By virtue of eqs. (4.27)

and (B.10), one can see that the leading log term in · · · γαn|A(0)〉 vanishes since α doesn’t

change the structure of |A(0)〉 and γ annihilates it.
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Essentially the same argument works for the ℓ0 6= 0 terms as well. By the BDS ansatz,

the leading-color amplitudes |A(ℓ0,0)(ǫ)〉 are given by

A
(ℓ0,0)
[1] = M (ℓ0)(s, t)A

(0)
[1] , A

(ℓ0,0)
[3] = M (ℓ0)(u, t)A

(0)
[3] . (4.28)

But the leading log terms of M (ℓ0)(u, t) and M (ℓ0)(s, t) are equal in the Regge limit, so the

leading log piece of |A(ℓ0,0)(ǫ)〉 (and therefore of the IR-finite contribution |H(ℓ0,0)(ǫ)〉) is

proportional to |A(0)〉. Thus the putative logL(−s/t) terms of · · · γαn|H(ℓ0,0)〉 also vanish.

Hence, we conclude that the IR-divergent terms of the L-loop subleading-color am-

plitudes go as logL−1(−s/t), provided that the same holds for all lower-loop subleading-

color amplitudes.

5 Regge trajectories

In section 4, we discussed the leading log behavior of the L-loop planar and subleading-

color amplitudes in the Regge limit. In this section, we will sum the loop amplitudes to

obtain Regge trajectories.

5.1 Planar gluon Regge trajectory

We first focus on the planar color-ordered amplitude A[3], which is real in the region s > 0,

t, u < 0, and whose Regge behavior was explored in refs. [8, 17, 18]. The logL(−s/t)

behavior of the Regge limit of the planar L-loop amplitude A
(L,0)
[3]

conjectured in section 4

suggests that the all-orders planar amplitude exhibits Regge behavior
∞
∑

L=0

aLA
(L,0)
[3] −→

s≫−t
β0(t)

(

−
s

t

)α0(t)
(5.1)

where α0(t) is the Regge trajectory function, and β0(t) the Regge residue. Indeed, using

eqs. (4.7), (4.15), and (4.16), one obtains the following expression for the Regge trajectory

function [18]

α0(t) = 1 +

∞
∑

ℓ=1

f (ℓ)(ǫ)
r(ℓǫ)

ℓǫ
aℓ

(

µ2

−t

)ℓǫ

+ O(ǫ) . (5.2)

where O(ǫ) corrections come from the h(ℓ)(s, t; ǫ) terms16 in eq. (4.7). For example, the

log(−s/t) dependent terms in eq. (4.13) contribute to the two-loop Regge trajectory [18]

at O(ǫ) and O(ǫ2). The leading 1 comes from the tree amplitude A
(0)
[3] = −4iK/ut since

− 4iK −→
s≫−t

ks2 (5.3)

where k depends on the helicities of the gluons, and is finite as s → ∞. We can rewrite

eq. (5.2) as [8, 17]

α0(t) = 1 +
1

4ǫ

∞
∑

ℓ=1

aℓ γ
(ℓ)

ℓ

(

µ2

−t

)ℓǫ

+
1

2

∞
∑

ℓ=1

aℓG
(ℓ)
0 + O(ǫ)

= 1 +
1

4ǫ
γ(−1)(a) −

1

4
γ(a) log

(

−t

µ2

)

+
1

2
G0(a) + O(ǫ). (5.4)

16 In fact, Regge behavior (5.1) will hold to all orders in ǫ only if h(ℓ)(s, t; ǫ) grows no faster than log(−s/t)

for all ℓ.
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The residue is given by [17]

β0(t) = k exp

{

−
1

2ǫ2
γ(−2)

(

µ2ǫa

(−t)ǫ

)

−
1

ǫ
G

(−1)
0

(

µ2ǫa

(−t)ǫ

)

+ζ2γ(a)−2f
(−2)
2 (a)+h(a)+O(ǫ)

}

(5.5)

where the functions in eqs. (5.4) and (5.5) are defined by

γ(−1)(a) =

∞
∑

ℓ=1

aℓ

ℓ
γ(ℓ), γ(−2)(a) =

∞
∑

ℓ=1

aℓ

ℓ2
γ(ℓ), (5.6)

G
(−1)
0 (a) =

∞
∑

ℓ=1

aℓ

ℓ
G

(ℓ)
0 , f

(−2)
2 (a) =

∞
∑

ℓ=1

aℓ

ℓ2
f

(ℓ)
2 , h(a) =

∞
∑

ℓ=1

aℓh(ℓ)(0),

Explicitly, we have [6]

ζ2γ(a) − 2f
(−2)
2 (a) + h(a) = 4ζ2a−

43

4
ζ4a

2 +

(

8657

216
ζ6 −

17

9
ζ2
3

)

a3 + · · · (5.7)

and γ(ℓ) and G
(ℓ)
0 are given in eq. (2.8).

We now consider the other color-ordered amplitudes A[1] and A[2]. Using eq. (4.11),

one can see that the planar contribution to A[1] goes in the Regge limit to

∞
∑

L=0

aLA
(L,0)
[1] −→

s≫−t
β0(t)e

−iπα0(t)
(

−
s

t

)α0(t)
. (5.8)

The presence of the − log2(−s/t) term in eq. (4.17), however, results in the exponential

suppression of A[2] in the Regge limit, viz., (−s/t)− log(−s/t) → 0.

We now rewrite the full planar four-gluon amplitude (2.1) as

Aplanar
4−gluon = g2

∞
∑

L=0

aL
[(

A
(L,0)
[1] −A

(L,0)
[3]

)

fa1a4bfa2a3b (5.9)

+
(

A
(L,0)
[1] +A

(L,0)
[3]

)

da1a4bda2a3b +A
(L,0)
[2]

(

C[2] + C[5]

)

]

where

fa1a4bfa2a3b =
1

2

(

C[1] − C[3] − C[4] + C[6]

)

, da1a4bda2a3b =
1

2

(

C[1] + C[3] + C[4] + C[6]

)

.

(5.10)

The coefficient of the fa1a4bfa2a3b term in eq. (5.9) corresponds to the exchange of a tra-

jectory in the t channel with the quantum numbers of the gluon, and so the planar gluon

Regge trajectory is given by

∞
∑

L=0

aL
(

A
(L,0)
[1] −A

(L,0)
[3]

)

−→
s≫−t

B0(t)
(

−
s

t

)α0(t)
(5.11)

where α0(t), given in eq. (5.4), represents the planar gluon Regge trajectory, and B0(t),

given by β0(t)
(

e−iπα0(t) − 1
)

, is the Regge residue, including the signature factor. The

coefficient of da1a4bda2a3b in eq. (5.9) gives a wrong signature trajectory, and the A[2] term

is exponentially damped in the Regge limit.
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5.2 1/N2 corrections

As seen in the previous section, the planar amplitudes sum up to give the planar gluon

Regge trajectory (5.11). It might be expected that the full amplitude would give rise

to subleading-color corrections to the gluon trajectory. Let us characterize the first

subleading-color corrections to the gluon trajectory as

A[1] −A[3] −→
s≫−t

[

B0(t) +
1

N2
B2(t) + · · ·

]

(

−
s

t

)α0(t)+(1/N2)α2(t)+···
(5.12)

The 1/N2 corrections to the amplitude may be (at least partially) summed to give

∞
∑

L=2

aL

N2
A

(L,2)
[1]

→ exp

[

−
2a

ǫ2
+ · · ·

]

a2

N2

(

µ2

−t

)2ǫ
iπks

t
× (5.13)

×

(

log(−s/t) + iπ

ǫ2
−
π2

6
log(−s/t) −

iπ3

6
− 6ζ3

)

∞
∑

L=2

aL

N2
A

(L,2)
[3] → exp

[

−
2a

ǫ2
+ · · ·

]

a2

N2

(

µ2

−t

)2ǫ
iπks

t
× (5.14)

×

(

log(−s/t) − 2πi

ǫ2
−
π2

6
log(−s/t) +

iπ3

3
− 6ζ3

)

where the IR-finite terms are obtained from the two-loop subleading-color amplitude (4.24),

and the exponential prefactor results from summing the leading IR-divergent term (3.16)

to all orders in L. All the log(−s/t) terms cancel from the combination of amplitudes that

contributes to the gluon Regge trajectory

∞
∑

L=2

aL

N2

(

A
(L,2)
[1] −A

(L,2)
[3]

)

→
a2

N2

(

µ2

−t

)2ǫ
ks

t

(

−
3π2

ǫ2
+
π4

2

)

+ O(a3) (5.15)

and consequently, the gluon Regge trajectory function α0(t) remains uncorrected through

O(a2), as might be anticipated from the corresponding two-loop result for QCD [35, 36].

The expression (5.15) corresponds to a 1/N2 correction

B2(t) = ka2

(

µ2

−t

)2ǫ
(

3π2

ǫ2
−
π4

2

)

+ O(a3) (5.16)

to the Regge residue starting at two loops [36].

5.3 Regge trajectory for double-trace amplitudes

In section 4, we presented evidence that the L-loop subleading-color amplitudes go as

logL−1(−s/t) in the Regge limit. This suggests that the double-trace amplitudes may also

exhibit Regge behavior

∞
∑

L=1

aL−1|A(L,1)〉 −→
s≫−t

β1(t)
(

−
s

t

)α1(t)
. (5.17)
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We will now see how far this expectation is borne out.

In section 3.3, we calculated the first three IR-divergent terms of the subleading-color

amplitude |A(L,1)〉. For the moment, let us focus on only one component

A
(L,1)
[8] =

(

−4iK

st

)

Y ǫ

(L− 1)!

[

−2

ǫ2

(

µ2

−t

)ǫ]L
{

1 +
3

4
(L− 1)Xǫ

+
7

24
(L− 1)(L− 2)X2ǫ2 +

1

8
(L2 − 17L+ 12)ζ2ǫ

2 + O(ǫ3) + O (t/s)

}

=

(

−4iK

st

)

−2Y

ǫ

(

µ2

−t

)ǫ
1

(L− 1)!

[(

µ2

−t

)ǫ(

−
2

ǫ2
−

3X

2ǫ

)]L−1

(5.18)

×

{

1 +
1

96
(L− 1)(L− 2)X2ǫ2 +

1

8
(L2 − 17L+ 12)ζ2ǫ

2 + O(ǫ3) + O (t/s)

}

.

Since, by eq. (B.9), X2 ≫ 1 in the Regge limit, we can drop the ζ2-dependent term in the

curly braces in eq. (5.18). The series can be summed to obtain

∞
∑

L=1

aL−1A
(L,1)
[8] =

(

−4iK

st

)

−2Y

ǫ

(

µ2

−t

)ǫ

exp

[(

µ2

−t

)ǫ(

−
2a

ǫ2
−

3aX

2ǫ

)][

1 +
a2X2

24ǫ2
+ · · ·

]

=

(

−4iK

st

)

−2Y

ǫ

(

µ2

−t

)ǫ

exp

[(

µ2

−t

)ǫ(

−
2a

ǫ2
−

3aX

2ǫ

)

+
a2X2

24ǫ2
+ · · ·

]

=
2πik

ǫ

(

µ2

−t

)ǫ

exp

[

−
2a

ǫ2

(

µ2

−t

)ǫ](
s

−t

)α1(t) + (a2/24ǫ2) log(−s/t)

(5.19)

where in the last line of eq. (5.19) we used eqs. (5.3) and (B.9). The Regge trajectory

function in eq. (5.19) is given by

α1(t) = 1 +
3a

2ǫ

(

µ2

−t

)ǫ

= 1 +
3a

2ǫ
−

3a

2
log

(

−t

µ2

)

+ · · · (5.20)

Equation (5.20) suggests a massless spin-1 state with Regge slope 3/2 that of the planar

(gluon) trajectory. However, since eq. (5.19) cannot lead to a physical massless particle,

we speculate that this is a trajectory which is nonsense-choosing17 at j = 1. By contrast,

the gluon lies on a trajectory which chooses sense at j = 1. The a2 log(−s/t) term in the

exponent in eq. (5.19) can be interpreted as a Regge cut.

Starting from eq. (3.24), we obtain similar results in the Regge limit for A
(L,1)
[7] :

∞
∑

L=1

aL−1A
(L,1)
[7] =

2πik

ǫ

(

µ2

−t

)ǫ

exp

[(

µ2

−t

)ǫ(

−
2a

ǫ2
−

3πia

2ǫ

)

−
π2a2

24ǫ2

]

×

(

s

−t

)α1(t)−(iπa2/12ǫ2) + (a2/24ǫ2) log(−s/t)

(5.21)

17 See section 5 of ref. [45] for a discussion of possible nonsense-choosing states in N = 4 SYM with gauge

group SU(2). In that reference, trajectories with possible massless scalar bound states are also discussed,

but not considered here, as these are O(t/s), and suppressed in the limits we consider.
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while

∞
∑

L=1

aL−1A
(L,1)
[9] =

2πik

ǫ

(

µ2

−t

)ǫ

exp

[

−
2a

ǫ2

(

µ2

−t

)ǫ](
s

−t

)1+ (iπa2/6ǫ2) − (a2/6ǫ2) log(−s/t)

(5.22)

has a fixed pole together with a Regge cut, which leads to exponential damping.

6 Conclusions

Beginning with the assumption that all soft anomalous dimension matrices Γ(ℓ) are propor-

tional to Γ(1), and therefore commute with each other, we derived all-loop-order expressions

for the IR-divergent parts of the planar and all subleading-color contributions to the N = 4

SYM four-gluon amplitude. Explicit expressions for the leading IR divergences are pre-

sented in eqs. (3.15) and (3.16), confirming a conjecture of ref. [27]. The first two terms

in the Laurent expansion in the IR regulator ǫ are presented for the most-subleading-color

amplitude A(L,L) in eq. (3.19), also confirming a conjecture of ref. [27]. The three leading

terms in the Laurent expansion in ǫ for A(L,1) are given in eq. (3.23), and their Regge limit

in eq. (3.24); further terms in the Laurent expansion could be computed as needed.

The iterative structure of planar amplitudes was exploited in ref. [6] to formulate the

BDS conjecture. No analogous results are known for subleading-color amplitudes. A weaker

possibility is that the amplitude obtained by summing subleading-color amplitudes over all

loops has Regge behavior in the limit s → ∞, t fixed. (It is weaker because O(t/s) terms

are neglected in this limit. In contrast, the planar four-gluon amplitude is Regge exact [8];

i.e., Regge behavior is manifest without taking any limit.) We first considered the Regge

limit of four-gluon amplitudes, and presented evidence that the leading logarithmic growth

of the subleading-color L-loop amplitudes is less severe than that of the planar amplitudes,

going as logL−1(−s/t) rather than logL(−s/t). We then investigated 1/N2 corrections to

the gluon Regge trajectory as well as Regge behavior of the subleading-color double-trace

amplitudes by summing over the IR-divergent parts of the L-loop amplitudes, neglecting

terms of O(t/s). The subleading-color double-trace amplitudes exhibit Regge behavior:

that is, there is a Regge trajectory as well as a Regge cut which emerges at three loops.

Thus, in the weaker sense described in this paper, there is sufficient iterative structure to

produce leading Regge behavior in the subleading-color amplitudes.
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A Generalized ABDK equation

In this appendix we show that the IR-divergent part of the L-loop generalization [6] of the

ABDK relation [1] for the planar four-gluon amplitude may easily be obtained from the
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expression (2.14) for the four-gluon amplitude

∞
∑

L=0

aL|A(L)(ǫ)〉 = exp

[

∞
∑

ℓ=1

aℓ

N ℓ
G(ℓ)(ℓǫ)

](

∞
∑

L=0

aL|H(L)(ǫ)〉

)

(A.1)

Consider the planar (leading-color) L-loop amplitude |A(L,0)〉, and its IR-finite part

|H(L,0)〉, which are proportional to the tree-level amplitude:

A
(L,0)
[1] (ǫ) = M (L)(ǫ)A

(0)
[1] , H

(L,0)
[1] (ǫ) = M̃ (Lf)(ǫ)A

(0)
[1] (A.2)

From the expressions (3.3), (3.4), and (B.4), we observe that the leading-color term of G(ℓ)

is a diagonal matrix, and moreover that all subleading corrections are off-diagonal. Thus,

retaining only the leading-color terms of eq. (A.1), we have

1 +
∞
∑

ℓ=1

aℓM (ℓ)(ǫ) = exp

[

∞
∑

ℓ=1

aℓ

N ℓ
G

(ℓ)
[11](ℓǫ)

](

1 +
∞
∑

ℓ=1

aℓM̃ (ℓf)(ǫ)

)

(A.3)

where G
(ℓ)
[11] denotes the 11 matrix element of G(ℓ). Using eq. (2.17), we may rewrite this as

M (ℓ)(ǫ) −X(ℓ)[M ] =
G

(ℓ)
[11](ℓǫ)

N ℓ
+ M̃ (ℓf)(ǫ) −X(ℓ)[M̃ (f)] (A.4)

which is valid to all orders in the ǫ expansion. Using eq. (3.3) we observe that

G
(ℓ)
[11](ℓǫ)

N ℓ
=

1

2

(

µ2

Q2

)ℓǫ
[

−
γ(ℓ)

(ℓǫ)2
−

2G
(ℓ)
0

ℓǫ
+
γ(ℓ)

4ℓǫ
Γ

(1)
[11]

]

=

[

γ(ℓ)

4
+
ℓ

2
G

(ℓ)
0 ǫ

]

(

µ2

Q2

)ℓǫ


−
2

(ℓǫ)2
+

Γ
(1)
[11]

2ℓǫ



+ O(ǫ0)

= f (ℓ)(ǫ)
G

(1)
[11](ℓǫ)

N
+ O(ǫ0)

= f (ℓ)(ǫ)M (1)(ℓǫ) + O(ǫ0) (A.5)

where f (ℓ)(ǫ) is defined in eq. (4.8). Hence we obtain

M (ℓ)(ǫ) = X(ℓ)[M ] + f (ℓ)(ǫ)M (1)(ℓǫ) + O(ǫ0) (A.6)

which is precisely the IR-divergent part of the generalized ABDK relation for the four-gluon

amplitude, eq. (4.13) of ref. [6].

B Explicit expressions for the four-gluon amplitude

In this appendix we collect various explicit expressions for four-gluon amplitudes needed

in the paper.
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The tree-level amplitudes are

|A(0)〉 = −
4iK

stu
(u, t, s, s, t, u, 0, 0, 0)T (B.1)

where s, t, and u are the Mandelstam invariants s12, s14, and s13, where sij = (ki + kj)
2,

with s + t + u = 0 for massless external gluons. The factor K, defined in eq. (7.4.42)

of ref. [49], depends on the momenta and helicity of the external gluons, and is totally

symmetric under permutations of the external legs.

The one-loop soft anomalous dimension matrix is given by [29]

Γ(1) = −
1

N

4
∑

i=1

4
∑

j 6=i

Ti ·Tj log

(

−sij

Q2

)

(B.2)

where Ti ·Tj = T a
i T

a
j with T a

i the SU(N) generators in the adjoint representation. In the

basis (2.2), it has the explicit form [37]

Γ(1) = 2

(

α β/N

γ/N δ

)

(B.3)

where

α =



















S + T 0 0 0 0 0

0 S + U 0 0 0 0

0 0 T + U 0 0 0

0 0 0 T + U 0 0

0 0 0 0 S + U 0

0 0 0 0 0 S + T



















, β =



















T − U 0 S − U

U − T S − T 0

0 T − S U − S

0 T − S U − S

U − T S − T 0

T − U 0 S − U



















γ =







S − U S − T 0 0 S − T S − U

0 U − T U − S U − S U − T 0

T − U 0 T − S T − S 0 T − U






, δ =







2S 0 0

0 2U 0

0 0 2T






(B.4)

with

S = log

(

−
s

Q2

)

, T = log

(

−
t

Q2

)

, U = log

(

−
u

Q2

)

. (B.5)

We use eqs. (B.1) and (B.4) to show

γ|A(0)〉 =

(

−
4iK

stu

)

2(sY − tX)







1

1

1






, and γβ







1

1

1






= 2

(

X2 + Y 2 + Z2
)







1

1

1






(B.6)

where

X = log

(

t

u

)

, Y = log
(u

s

)

, Z = log
(s

t

)

. (B.7)
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For consideration of the Regge limit s ≫ −t, with t < 0 held fixed, it is convenient to set

the arbitrary factorization scale Q2 equal to −t, in which case the elements of the one-loop

anomalous dimension matrix (B.4) take the form

α =



















Z 0 0 0 0 0

0 Z −X 0 0 0 0

0 0 −X 0 0 0

0 0 0 −X 0 0

0 0 0 0 Z −X 0

0 0 0 0 0 Z



















, β =



















X 0 −Y

−X Z 0

0 −Z Y

0 −Z Y

−X Z 0

X 0 −Y



















γ =







−Y Z 0 0 Z −Y

0 −X Y Y −X 0

X 0 −Z −Z 0 X






, δ =







2Z 0 0

0 −2X 0

0 0 0






(B.8)

Finally, we analytically continue the variables X, Y , and Z to the physical region s > 0,

u,t < 0, and then take s≫ −t to obtain

X → − log(−s/t) + O(t/s)

Y → iπ + O(t/s) (B.9)

Z → log(−s/t) − iπ + O(t/s)

From this, we see that the leading log behavior of the matrices (B.8) in the limit s≫ −t is

α→



















1 0 0 0 0 0

0 2 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 2 0

0 0 0 0 0 1



















log(−s/t), β →



















−1 0 0

1 1 0

0 −1 0

0 −1 0

1 1 0

−1 0 0



















log(−s/t)

γ →







0 1 0 0 1 0

0 1 0 0 1 0

−1 0 −1 −1 0 −1






log(−s/t), δ →







2 0 0

0 2 0

0 0 0






log(−s/t) (B.10)
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