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ABSTRACT: The infrared singularities of gravitational amplitudes are one-loop exact, in
that higher-loop divergences are characterized by the exponential of the one-loop diver-
gence. We show that the contributions to SU(/V) gauge-theory amplitudes that are most-
subleading in the 1/N expansion are also one-loop exact, provided that the dipole conjec-
ture holds. Possible corrections to the dipole conjecture, beginning at three loops, could
violate one-loop-exactness, though would still maintain the absence of collinear divergences.
We also demonstrate a relation between L-loop four-point N = 8 supergravity and most-
subleading-color N = 4 SYM amplitudes that holds for the two leading IR divergences,
O(1/€*) and O(1/eX~1), but breaks down at O(1/eF~2).
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1 Introduction

The structure of infrared divergences in scattering amplitudes of massless particles has
been an object of much study over past decades. The IR behavior of gravity amplitudes, in
particular, has a remarkable simplicity [1], traceable to the absence of collinear divergences,
and also to the fact that divergences only arise from soft graviton exchange between external
particles; non-abelian-like interactions among virtual gravitons ultimately do not contribute
to the IR-divergent behavior. As a result, in dimensional regularization (in D = 4 — 2¢
dimensions), the leading IR divergence at L loops [2, 3] goes as 1/€%, and further, the IR
behavior is one-loop exact; that is, all L-loop divergences arise from the exponential of the
one-loop divergence [1-6].

By contrast, the structure of IR divergences of non-abelian gauge theories is a richer
subject; both collinear and soft divergences appear. The IR divergences of a gauge theory
amplitude can be factored into a product of jet functions and a soft function acting on an
IR-finite hard function [7, 8]. The soft function depends on a soft anomalous dimension
matrix T'X) at each loop level. Recently, strong constraints on the form of T'") were
derived using soft collinear effective theory [9] and Sudakov factorization and momentum
rescaling [10]. The simplest solution to these constraints is the sum-over-color-dipoles
formula [9-11], which essentially states that T'X) is proportional to T'™™) for all L. (This
proportionality had previously been established at two loops in ref. [8], and conjectured to



be true for all L in ref. [12].) Although departures from the dipole formula are not ruled
out at three loops and beyond, the kinematical dependence of such corrections is highly
constrained [9-11, 13-15].

One can organize the scattering amplitudes of an SU(N) gauge theory in a combined
loop and 1/N expansion. The leading-color (planar) L-loop n-point amplitude A0 §s pro-
portional to g"2(g?>N)%, while the subleading-color amplitudes A% with k=1,--- L,
are down by 1/N¥ relative to the planar amplitude. The most-subleading-color amplitudes
AL) are independent of N. While the leading divergence of L-loop planar gauge theory
amplitudes goes as O(1/e?F), the subleading-color amplitudes ALF) are less divergent,
with a leading divergence of O(1/€2£=F) [16-19]. Consequences of the dipole formula for
the IR behavior of subleading-color amplitudes were derived in ref. [17, 19].

The fact that the most-subleading-color amplitudes A%) only go as O(1/€") sug-
gests that they, like gravity amplitudes, have no collinear IR divergences, only soft IR
divergences. In this paper we will explore whether the IR divergences of most-subleading-
color amplitudes also have the property of being one-loop exact, as are gravity amplitudes.
We will show that, provided the soft anomalous dimension matrices obey the dipole for-
mula, this is indeed the case. That is, in a given trace basis, the IR divergences can be
written in terms of the exponential of a matrix that describes the one-loop divergence.
We also provide explicit expressions for the IR divergences of the most-subleading-color
four-point amplitude for arbitrary L.

Corrections to the dipole formula, if present, begin at three loops. We compute the
1/N expansion of a possible three-loop correction term to the dipole formula and show
that it would affect the most-subleading-color three-loop four-point amplitude A®3) at
O(1/e), spoiling the one-loop exactness of its IR behavior, although collinear IR divergences
remain absent.

Finally, the similarity between gravity and most-subleading-color gauge-theory ampli-
tudes can be used to deduce a relation between L-loop four-point N' = 8 supergravity and
most-subleading-color N/ = 4 SYM amplitudes that holds for the two leading IR diver-
gences, O(1/el) and O(1/eF~1), but breaks down at O(1/el=2).

In section 2, we review the one-loop exactness of gravity amplitudes. In section. 3,
we demonstrate that most-subleading-color SU(N) gauge theory amplitudes are similarly
one-loop exact, provided the dipole conjecture holds. In section 4, we derive an expression
for the full IR divergences of the L-loop four-point most-subleading-color amplitude in
terms of lower-loop amplitudes. In section 5, we examine the effect of a possible three-loop
correction to the dipole conjecture. In section 6 we deduce a relation between four-point
N = 8 supergravity and most-subleading-color A’ = 4 SYM amplitudes. Various technical
details may be found in three appendices.

2 Infrared divergences of gravity amplitudes

The pioneering study of the IR singularities of gravitational theories by Weinberg [1] showed
that these are one-loop exact in the sense that all IR divergences are characterized by the
exponential of the one-loop divergence. Dunbar and Norridge later revisited this issue in



the context of string theory [2]. Recently two of us [4] reformulated this problem in analogy
with the modern treatment of IR singularities in gauge theories, and several other authors
have studied and extended the subject from this point of view [5, 6, 20, 21].

In ref. [4] it was proposed that the n-graviton scattering amplitude can be written as

A, =S, - H, (2.1)

where S, is the gravitational soft function, an IR-divergent factor describing the effects
of soft graviton exchange between the n external particles, and H, is the IR-finite hard
function. Contrary to gauge theories, there are no jet functions, as collinear singularities
are absent after summing over diagrams. We expand each of the quantities in eq. (2.1) in
a loop expansion in powers of A\ = (k/2)%(4we7)¢, where k% = 327G:

Ay => AP, Sp=1+Y 58", H,=> HM". (2.2)
L=0 L=1 L=0

IR divergences are regulated using dimensional regularization in D = 4 — 2¢, with € < 0.
Then, due to the fact that all IR singularities are associated with single graviton exchanges
between pairs of external particles, the soft function is given by the exponential of the
one-loop IR divergence [1-6]

On A - —S8iq
Sp = exp |:?]7 Op = 1672 ZZSU log ( ]) , Sij = (ki + k‘j)Q‘ (2.3)

2
Jj=11<j H

(Any IR-finite contributions from these exchanges can be absorbed into H,.) Hence the
IR divergences of the gravitational amplitude are one-loop exact

A, =exp [&} H, (2.4)
€

and the L-loop amplitude can be expressed as

AL) — - 1 In L_ZH(K)() (2.5)
" Z(L—e)! ¢ no e :
=0

that is, the L-loop IR divergences are determined by o, together with the IR-finite contribu-

tions (including terms proportional to positive powers of €) of all the lower-loop amplitudes.
By keeping the first two terms

L L—1
1o 1 o
AB = — |22 gO) — |2 HWY O(1/el=2 2.6
W= g HOO || EP@ o) @)
we observe that the two leading IR divergences of the L-loop amplitude are completely
determined by the tree and one-loop amplitudes. Moreover, since Hr(Ll)(Le) = H,(LI)(E) +
O(e), we see that the two leading divergences of the L-loop amplitude can be related to
the one-loop amplitude evaluated in D = 4 — 2Le dimensions:

A (¢) = L | L_1A<1>(Le) +0O(1/e£72)., (2.7)
" (L—1)!] € "



In section 4, we will find an analogous relationship for the most-subleading-color YM
amplitude.

For the remainder of this section, we restrict ourselves to the four-point amplitude
of N' = 8 supergravity. In this case, the all-loop-orders amplitude is proportional to the
tree-level amplitude [22, 23], allowing us to define the helicity-independent ratios

= A,/AD, M =AY (2.8)

Then egs. (2.3) and (2.4) imply

M4:6Xp|i2:|Mif), 04:%[510g( )+tlog( )+ulog( u)} (2.9)
€ 87 n? p I

where s = s19, t = s14, and u = s13. Consequently, the logarithm of the ratio of the full
amplitude to the tree amplitude

Ay =log My =2 +1og MY (2.10)
€

only has an IR divergence at one loop

AV =P =224 () (2.11)
By expanding
My=1+> M =exp(Ay) = exp (Z AEP) (2.12)
L=1 L=1

we can obtain explicit expressions at each loop order

2 A (1 A (2
3 1 1 2 3

4 1 1 2 1 3 2 4
My = ﬁw N+ 3P + APAPY + 5(AP)? + ALY,
MY = gL+ AM)PAY +5AL2AP H AP A2+ AT AP AP AT + AT,

(2.13)

Since Afl ) diverges as 1/e, and A( ) are TR-finite for all L > 2, we see that the two leading
IR-divergent terms of the L-loop amplitude can be expressed in terms of the one-loop
amplitude

M) () = [M“)( )}L +O(1/el2y. (2.14)

Ll
As in the general case (2.7), we can also write this as a relation between the L-loop
amplitude and the one-loop amplitude evaluated in D = 4 — 2Le dimensions:

M(L)()—;[E}L_IM(I)(L) O(1/62) (2.15)
L T A RO ER e '



3 Infrared divergences of the most-subleading-color YM amplitudes

In this section we will explore the IR divergences of n-gluon amplitudes that are most-
subleading in the 1/N expansion. These amplitudes are similar to the n-graviton am-
plitudes discussed in the previous section in two respects: (1) although the leading IR
divergence of an n-gluon amplitude at L loops goes as 1/¢2L, the leading divergence of
the most-subleading-color amplitude is milder, only going as O(1/¢"), due to the absence
of collinear divergences, and (2) if the dipole conjecture, described below, holds, then the
IR divergences of the most-subleading-color amplitudes are one-loop exact; that is, all IR
divergences at L loops are determined by the exponential of the one-loop IR divergence,
as we will show below. If the dipole conjecture is not valid, then the first property (lack of
collinear divergences) continues to hold but the second does not: additional IR divergences
unrelated to the one-loop divergence could be present, potentially beginning at three loops.
We will describe the form of a potential three-loop correction to the most-subleading-color
four-point function in section 5.

The n-point amplitude of particles transforming in the adjoint representation (e.g.,
gluons) can be expanded in a trace basis {73}, consisting of single and multiple traces of
generators in the fundamental representation,

A=) ThA, (3.1)
A

where the coefficients Ay are referred to as color-ordered amplitudes. It is convenient to
organize [24, 25] the color-ordered amplitudes into a vector |A). In an SU(NN) gauge theory,

this vector can be decomposed in a simultaneous loop and 1/N expansion!

L2\
4) =303 4w (3.2

L=0 k=0
where 2( 2)
oy 9 (n)N e
a(p”) = g5 —(4me™7) (3.3)

is the 't Hooft coupling and p is the renormalization scale. Our interest in this paper is
in the IR behavior of the most-subleading-color amplitudes, that part of the amplitude
that depends only on ¢g?(u?) with no powers of N. Hence, we are interested in the terms
}A(L’L)> in the expansion (3.2), which carry as many powers of 1/N as of a(u?).

We follow refs. [7, 8] by organizing the IR divergences of a gauge theory amplitude as

50 5o 50
‘A (u—g,a(u2),e)> = J (a(p?),¢€) S (ﬁ,a(uz),e) ‘H (ﬁ,a(u2),e>> (3.4)
The prefactors J (“jet function”) and S (“soft function”) characterize the long-distance
IR-divergent behavior, while the short-distance behavior of the amplitude is characterized
by |H) (“hard function”), and is finite as ¢ — 0. (Quantities in boldface act as matrices
on the color space vectors.)

'We have omitted an overall factor of g" 2 for an n-point function.



The jet function has leading IR behavior of O(1/€%L) at L-loops (although the poles

L+1in a generic gauge theory [8], and 1/¢% in N =4 SYM

of log J only go up through 1/e
theory [26]). The jet function, however, is irrelevant to the IR divergences of the most-
subleading-color amplitude because it carries no factors of 1/N to accompany the factors

of a(u?).
The soft function [7, 8]

(o) o | -3 [T (o (froon))] w0

depends on the soft anomalous dimension matrix, which can be expanded as

) Fuoro () e

The one-loop soft anomalous dimension matrix is given by [8]

ro - Ly s T10g< ) (3.7)

] 1<y
where T; are the SU(V) generators in the adjoint representation. Diagrammatically, the

operators T;-T; act by attaching a gluon rung between the legs of the ith and jth external
particles. In terms of the color-ordered expansion (3.1), L) acts on a given element T of
the trace basis (3.1) to yield a linear combination

T Z 7,7 (3.8)

and it is the matrix I‘g\) that then acts on the ket |H).

At this point, we invoke the dipole conjecture [9-11], according to which the soft
anomalous dimension matrix I'“) is proportional to I'™) for all L (with the proportionality
constants given by the coefficients of the cusp anomalous dimension). This had previously
been proven for T in ref. [8], and hypothesized to be valid for all L in ref. [12]. Corrections
at three loops and above, however, have not (yet) been ruled out completely, although they
are highly constrained [9-11, 13-15]. We assume the validity of the dipole formula for the
remainder of this section, but in section 5 we will consider the possibility of a violation at
three loops.

If the dipole conjecture holds, then T'®) all commute with one another, so that path
ordering of the exponential in eq. (3.5) is irrelevant. We can then integrate the terms to

S (%,a(;ﬂ), e) — exp [i %r@) (1 +0 (@))] (3.9)
L=1

where the leading form of the running coupling is given by [7, 8|

o X (e

obtain



The omitted terms in eq. (3.9), which depend on Sy, the one-loop coefficient of the beta
function, will not contribute to the most-subleading-color amplitudes because there are no
factors of 1/N to accompany the powers of a(u?).

Generically, one would expect the soft anomalous dimension matrices F,(»j\) to contain
terms of O(1) through O(1/N%) in the 1/N-expansion. If the dipole conjecture is valid,
however, then I‘Hﬁ\ is proportional to I‘Kl)\, and hence only contains terms of O(1) and
O(1/N). Since T'") is multiplied by a(u?)" but carries at most one power of 1/N, only

'™ can contribute to the most-subleading-color amplitude, which now simplifies to

2
a(p) La
14) —exp [*0750) ) (3.11)
most—subleading—color € most—subleading—color
where I‘Sl{) denotes the 1/N contribution of the one-loop soft anomalous dimension matrix.

Eq. (3.11) is parallel to the gravitational analog (2.4). It demonstrates that, provided
the dipole conjecture is valid, the IR divergences of the most-subleading-color amplitudes
are one-loop exact, that is, determined by the one-loop soft anomalous dimension matrix
'Y and the finite contributions (including terms proportional to positive powers of €) of

sub
lower loop amplitudes, just as in the case of gravitational amplitudes.

4 IR behavior of the most-subleading-color four-point amplitude

In the previous section, we showed that, subject to the validity of the dipole conjecture, the
IR divergences of the most-subleading color amplitudes are one-loop exact, given by the
exponential of the one-loop soft anomalous dimension matrix. In this section, we will write
the IR divergences of the most-subleading-color L-loop amplitude explicitly in the case of
the four-point function, using the group-theory relations among four-point color-ordered
amplitudes [27].

For the four-point amplitude, the one-loop soft anomalous dimension matrix (3.7)
becomes

2

2
(Tl - Ty + T3 . T4) log (lj—s) + (Tl . T3 + Ty - T4) log (/_jl—u)

1
M —
N

+ (T - T4+ Ty-T3)log (é)] (4.1)

As described in the previous section, to evaluate this operator, we choose a specific four-
point trace basis, consisting of single and double traces of SU(N) generators?

Ty = Tr(1234) + Tr(1432), T, = 2Tr(13) Tr(24),
Ty = Tr(1243) + Tr(1342), Ts = 2Tr(14) Tr(23), (4.2)
Ty = Tr(1324) + Tr(1423), Ts = 2 Tr(12) Tr(34).

2The basis specified here is that of ref. [28], which differs from refs. [19, 27] by a factor of two in the
double-trace terms.



The six-dimensional ket |A) then consists of the coefficients Ay of T in the amplitude (3.1).
In this basis, the (subleading-color piece of the) one-loop soft anomalous dimension matrix
takes the form

0 —-2Y 2X 0 - XY
r(”—3<0b> b=| 22 0 —2Xx c=| X 0 -z
sub N c0 - ) - —
—27 2Y 0 -Y Z 0
where
t
X =log (—) , Y =log (E> , 7 =log (f) . (4.4)
U S t

Hence, eq. (3.11) becomes

a(p?) (0D
= exp | 20 ()
most—subleading—color € c0

Expanding both sides in a loop expansion, we can write

L 0b L—¢
‘ LL)> Z = €'6L€<CO) ‘H(e,z)(€)>’ (4.6)

(=

4) (4.5)

most—subleading—color

analogous to eq. (2.5) for gravitational amplitudes. This expression, valid to all orders in
the € expansion, was previously obtained in ref. [17] for ' = 4 SYM theory, but here we
see that it remains valid for the four-gluon amplitude in a general gauge theory provided
the dipole conjecture holds.

We rewrite eq. (4.6) separately for even- and odd-loop cases:

4(26:20) —  beb) ! (2k,2k) (2k+1,2k+1)
AR0) < kZ 20— 2k)1 2 e [HEE(E)) + (20 = 2k)e [ HEHT244 )
=0
n ‘ H<2e,2e>> , (4.7)
! (cb)t™
(20+41,20+1)
‘A > kz 20 — 2k + 1)1e20-2k+1
=0
X [c ‘H(Qk’zk)(e)> + (20— 2k + 1)e (2k+1’2k+1)(6)>] , (4.8)
where now the kets denote 3-dimensional vectors
A(2e 20) A512€+1,2£+1)
‘ A(2£,2E)> _ A(ze 20 | ‘ A(2e+1,2e+1)> = | AR (4.9)
20,20 20+1,20+1
Ag ) AS )



We are able to further simplify the expressions (4.7) and (4.8) by using the group-theory
constraints satisfied by the four-point amplitude [27, 28]. For L = 2/ even, there are four
independent group-theory relations® (only one when L = 0)

Agze,zz) _ _§A512€,2£—1) n %Aéﬂ,zg—l) " %Aé%’%_l),
Agzz,ze) _ +§Aff€’2£*1) B %Agze,zeq) " %Aé%’%*l), (4.10)

)

A:(32£,2£) _ +%Al(l2e,2£f1) n %Ag2e,2£f1) B %A((fe,zefl)

0— Aggg,gg_g)+A;2£,ze—2)+Ag2e,2£—2) _% Aizz,ze—l)JrAé%,Qe—n +Aé2e,25—1)
which implies
Agzz,%)+Agzz,2@)+Agze,2z) —0 (4.11)

and similarly for the IR-finite H )(\%’%).
For L = 2¢+ 1 odd, we also have four independent relations® (only three when L = 1)

Aff“l’%ﬂ) _ A%QZH’%)+A§2g+1’2@—|—A§2H1’%),

Aé2£+1,ze+1) _ Ag2z+1,2z)+A§2@+1,25)+Ag2e+1,2e)’ (4.12)
Aé2e+1,2£+1) _ A?“l’%)+A§2£+1’%)+A§%+1’%),

0= Agzeﬂ,yfz)+A§2£+1,21372)+A:(32£+1,2272)

5
20+4+1,2¢ 20+1,2¢ 20+1,2¢
5 AP0 4 AP0 4 A0E120]

_% [Az(l2e+1,2zf1)+A(2e+1,21371)+A((32e+1,2e71)]

which implies

A512£+1,2€+1) _ Ag25+1,2€+1) Aé2€+1,2f+1) (413)

and similarly for the IR-finite H /(\2“_1’2“1).

By virtue of egs. (4.11) and (4.13), together with eq. (4.4), one can show that the
entries of both ¢ ‘H(Zk’%)> and ‘H(2k+1’2k+1)> are all equal

. ’H(2k,2k)> _ (Yﬂé%’%) _ XHQ(%’%)) i : ‘H(2k+1,2k+1)> _ H£2k+1,2k+1) 1
1
(4.14)
These together with
1 1 1 X-Y
b 1| =0@X*+2v*+22%) | 1|, bl1]=22-x (4.15)
1 1 1 Y -Z

3These relations differ from those given in ref. [27] by some factors of two, due to the change in the trace
basis.



allow one to write the even- and odd-loop most-subleading-color amplitude (4.7) and (4.8)

as
A(2620) .
( 2 2 2\ 0—k—1
2(2X2 +2Y2 4+ 222)
(2¢,20) Yy H(Zk,%) - X H(2k,2k)
A%ﬂ 20) Z (20 — 2k)! 202k X [( 3 5 )
A =0
X —-Y H(QZ,Q[)
+(20 — 2k)€H£2k+l,2k+1)] 7-x |+ Héze,ze) ’ (4.16)
Y - Z H§2€,2£)

A(26+1,26+1)

A?ZE-H,QZ-H) (2X? 4 2Y2 +22%)F

MN

(4.17)
A?2€+1,2e+1) —0 (20 — 2k + 1)1€2(-2k+1
6
1
% |:(YH3(2]€72]€) - XH;?/C,QIC)) + (2€ — 2% + 1)6H£2k+1’2k+1) 1
1

Provided the dipole conjecture holds, these expressions give the complete IR-divergent
contribution to the most-subleading-color L-loop four-point amplitudes in terms of the
IR-finite parts of lower-loop amplitudes, as in the case of gravitational amplitudes (2.5).

Finally we turn our attention to the two leading IR divergences of the most-subleading-
color amplitudes. These are given by the k = 0 terms in eqs. (4.16) and (4.17),

4(26:20)
1 2 2 2\/—1
2(2X2+2Y2% 427
Ae20 | — ( ‘% ) [(YA&O) _ x40 + (2£)€H£1,1)}
(20,20) (20)!e
A3
X-Y
x| Z-X | +0(1/7?), (4.18)
Y - Z
(2041,20+1)
A (2X2% +2Y2% +222)* 0 0 1,1 !
A2 | o (Y AY = xAD) + 20+ 1er V| | 1
(201,204 1) (20+1)le 1
A6
O(1/e¥ 71y, (4.19)

Using the fact that

AR ) ) ©) 1
YA, — XA
A | = | +Hil’l)] X (4.20)
1,1 €
Ag (o)

,10,



we see that the two leading IR divergences can be expressed in terms of the one-loop
subleading-color amplitude evaluated in D = 4 — 2Le dimensions:

A(% 20) (¢) X-Y
2(2X242Y24222)-1
a0 | = 2 P2 A0 (@00 | 2-x | +0(1/302), (121)
(21} 20) (e) (26-1)le Y-Z
A(2€+1 2€+1)(6) 1
2X2 4+ 2Y2% 4+ 222%)! -
A(2€+1 2€+1 (6) ( (2€>l€2€ ) A 1 1)((26 + 1) ) 1 + 0(1/€2£ 1) . (422)
A(ze+1 2£+1)(6) ’ 1

In the case of N' =4 SYM theory, these relations were previously conjectured in ref. [16]
and proved in ref. [17]. Here we point out that this is another point of similarity with
gravity amplitudes, which obey the analogous eq. (2.7).

5 Possible three-loop corrections to the dipole conjecture

The results of the previous two sections were contingent on the validity of the dipole formula
for the soft anomalous dimension matrix. The dipole formula holds through at least two
loops [8], but could break down beginning at three loops. Possible forms of a three-loop
correction term were considered in refs. [11, 13], including a term of the form

1
AF(3) — m'I‘tlngTng [fadEfcbePt(Sij) 4+ fcaefdbepu(sij) + fbaedeEPs(Sij) (5.1)

which might be generated by the purely gluonic diagram shown in figure 1 of ref. [13], and
which contributes at O(1/¢) [11]. Other correction terms, involving d**¢, were also discussed
in ref. [13]. In refs. [11, 13-15], strong constraints were put on the possible kinematical
dependence of the functions P(s;;) appearing in eq. (5.1). In this section, we discuss the

effect of a term of the form (5.1) on the most-subleading-color four-point amplitude A(3),

Acting with AT'®) on the four-point trace basis (4.2), as in eq. (3.8), we extract the

matrix
1 ab
ATG) = — 2
N3 (c d> (5:2)
where
0 2N(3P; — Ps — 2P,) 2N (2P, — 3P, + Pt
a= | 2N(P, + 2P, — 3P,) 0 N(3P — 2131t
2N(3P, — 2P, — P;) 2N (2P, — 3P, + P,)
8(P,— Ps) 2N%(P,— Ps)+4(P,—Ps) 2N%(P,—P;)+
b= | 2N?(P;—P,)+4(Ps—P,) 8(Ps—P,) 2N2(P -P,)+ ( ) ,
2N?(Py—P,)+4(Ps—P;) 2N?(Py—P) +4(Py— Py) 8(Pu—P)

— 11 —



2(P,— P;)  (N?2+2)(Ps—P,) (N?+2)(P, - P,)
c=| (N*+2)(P,—P,) 2(P,—P,) (N*?+2)(P,—P) |,
(N2 +2)(P, — P,) (N2 +2)(Ps—P,) 2(P,—P)

6N(P; — P,) 0 0
d= 0 6N (P, — P,) 0 . (5.3)
0 0 6N(P, — P,)

One can see that AT'®) is subleading in the 1/N expansion and hence cannot contribute

to the planar amplitude AG:0).

However, O(1/e€) corrections to all the subleading-color
amplitudes AG1), AG2) and AG3) are possible. In particular, by keeping only the most-

subleading-color contribution of (a(u?)3/€)AT'®) ‘A(0)>, where

U

41K

A0 — T 5.4

‘ > stu t ( )
s

is the tree-level amplitude, we obtain the following three-loop contribution to the most-
subleading-color amplitude

AA?)
K — 3P, —t)P, t—u)Ps
AAé?”?’) _ & [(u—s)P+ (s —1)Py + (t — u)P] 1|10 . (5.5)

€ stu
AASY)

This is an example of a possible IR-divergent contribution to the most-subleading-color
amplitude that does not arise from the exponentiation of the one-loop divergence. Hence,
if the dipole formula is modified by a term of the form (5.1), then the one-loop-exactness
of this class of amplitudes breaks down.

6 L-loop supergravity/SYM relations

In the previous sections, we saw that gravity and most-subleading-color gauge-theory am-
plitudes are one-loop exact, i.e. higher-loop divergences can be expressed in terms of one-
loop divergences. In this section, we use this result to derive a relation between the two
leading divergences of the L-loop four-point A/ = 8 supergravity amplitude and the most-
subleading-color N/ = 4 SYM amplitudes.

An exact relation between the one-loop four-point N' = 8 supergravity and subleading-
color N' = 4 SYM amplitudes has long been known [16, 19, 29]. In the notation of the
current paper, this relation is

A\ AGD (e
Mil)(e) = (‘@) (Aﬁoﬁ (6.1)

“In appendix B of ref. [9], it was stated that the three-loop correction term (5.1) contributes at O(N).
This is indeed true for the matrix element a connecting single-trace terms. However, the off-diagonal matrix
elements b, ¢, which connect single- and double-trace terms, have an O(N 2) contribution, as the authors of
ref. [9] have confirmed (private communication).
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where A1) refers to any of the four-point subleading-color amplitudes Ail’l) = Agl’l) =

Aél’l), and we recall that the tree-level amplitude A is given by eq. (5.4).

In eq. (2.15) we showed that the two leading IR divergences of the L-loop four-point
supergravity amplitude can be expressed in terms of the one-loop supergravity amplitude.
In egs. (4.21) and (4.22), we derived similar expressions for the two leading IR divergences
of the L-loop most-subleading-color four-point SYM amplitudes. Combining these with
eq. (6.1), we obtain for odd L = 2¢ + 1 the relation

M(2€+1)(6) _ 7i 2041 (SY - tX)ZE A(2Z+1,25+1) (6) Lo 1
4 (2X2 +9Y2 + 222)5 (Ago)/u) €201

= (_i) . [ (slog s+ tlogt + ulogu)? r AREAL2641) ()
2(10g2(t/u) + logQ(u/s) + logQ(s/t)) (Ago)/u)

+o<;%3>. (6.2)

Again, ACHL2HD) refers to any of the most-subleading-color four-point amplitudes
204+1,20+1 20+41,204+1 20412041
Al ) = Al ) = A ) (cf. eq. (4.13)).
For even L = 2/, a similar relation holds, namely

M= (A sy — X AP (LY gy
: 8r2) (2X2+2Y2+22%)1 o x _v) (A" ) 20-2 '

for ¢ > 1. The factor Agﬂ’%)/ (X —Y) can of course be replaced with Agﬂ’%)/ (Z—-X)or
Agﬂ’%)/(Y — Z), or in fact with (Ag%’%) — Agz£’2£)> /3X (since X +Y + Z = 0) giving

M3 (e) = (i>2g (sY — tX)2 (Ag%%)(e) _ Ag%w(e)) +0 (L) :
4 872 (2X2 +2Y2 + 222)671 6X(Ago)/u) €262
(6.4)
To repeat, these relations are immediate consequences of egs. (2.15), (4.21), (4.22),
and (6.1).
An interesting question is whether the relations (6.2) and (6.3) remain valid beyond
the leading two orders in the Laurent expansion. Unfortunately, the answer will turn out

to be no.
To see this, observe that for L = 2, eq. (6.3) states that
2 (2,2)
@ _ (A Y —tX) A7 (e) 0
M7 (e) = (8772) 2X V) (A0 /) + 0 (). (6.5)

We know this to be valid at O(1/€?) and O(1/¢), and the question is whether it continues
to hold at O(e"). To answer this, we recall the ezact two-loop supergravity/SYM relation
derived in [16, 19]

uA®? (e AP () 4 sA%Y (e
fo):(,¥>2( P20 + 0480 + 54800 o)

82 6(A” Ju)
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A short calculation using s+t+u =0, X +Y + 7 =0, and eq. (4.11) shows that egs. (6.5)
and (6.6) are consistent provided that

A§2’2) B AgQ,Q) B A§2’2)
X-Y Z-X Y-Z

In fact, were eq. (6.7) to hold, then eq. (6.2) would also hold at O(1/¢) for L = 3 (provided
that the dipole conjecture is also valid at three loops), and in fact for the O(1/eX~2) term

(6.7)

at higher loops as well.
While eq. (6.7) evidently holds for the IR-divergent parts of the amplitude (cf.
eq. (4.16)), we have verified that it fails at O(€), that is

(Z-x)A%Y — (x —v)APY 20 (6.8)

using the explicit expressions for the two-loop most-subleading-color N' = 4 SYM four-point
amplitudes (see appendix A). To ensure that the complicated expression obtained for the
left hand side of eq. (6.8) does not vanish due to polylogarithmic identities, we evaluated
it numerically for various values of the kinematic variables, obtaining nonzero results.
Finally, we checked that the symbol [30] for the expression on the left hand side of eq. (6.8)
does not vanish (sometimes a non-obvious polylog identity reduces a long expression to
a simple one, which can be made explicit by the calculation of the symbol [30-32], and
moreover an identity could be valid only up to terms with zero symbol); see appendices B
and C for detalils.

Consequently, egs. (6.2) and (6.3) are valid for the two leading terms, but break down
at the next order in the Laurent expansion.

7 Conclusions

In this paper, we explored parallels between the IR behavior of gravitational amplitudes and
that of the most-subleading-color gauge-theory amplitudes. Both sets of amplitudes have
a leading IR divergence of O(1/e") at L loops, due to the absence of collinear divergences.
We have shown that, if the dipole conjecture for the IR behavior of gauge-theory amplitudes
is valid, then the most-subleading-color amplitudes, like gravity amplitudes, are one-loop-
exact; that is, higher-loop divergences are determined by the one-loop result. Specifically,
the all-loop amplitude is given by the exponential of the one-loop soft anomalous dimension
matrix I'®) acting on the IR-finite hard function.

Assuming the validity of the dipole conjecture, we computed an expression for the
complete IR behavior of the L-loop most-subleading-color four-point amplitude in terms of
the finite parts of lower-loop amplitudes. Similar expressions could be derived for five- and
higher-point amplitudes using the explicit form for the one-loop soft anomalous dimension
matrix T(). We note that T'M is essentially equivalent to the (transpose of the) iterative
matrix G specified in refs. [27, 28, 33|, defined by attaching a rung between two external legs
7 and j of an element of the trace basis 7). In the present context, each rung corresponds
to the exchange of a soft gluon between the corresponding external particles, accompanied
by a factor of log(u?/ — s;j).

— 14 —



Corrections to the dipole conjecture may occur at three loops and beyond, although
the possible form of such corrections is highly constrained. In recent work, Oxburgh and
White [34] use BCJ duality and the double-copy property to study the IR behavior of
gauge theory and gravity. They emphasize that the known IR structure of gravity is
insensitive to possible corrections to the dipole conjecture in gauge theories. Therefore
the presence or absence of such corrections at three loops will likely require a Laurent
expansion of the three-loop non-planar diagrams contributing to the gauge amplitude. We
showed that, though collinear IR divergences remain absent, corrections could spoil the
one-loop-exactness of most-subleading-color amplitudes.

Finally, we showed that the similarities between gravity and most-subleading-color
amplitudes allow us to deduce a relation between L-loop four-point N' = 8 supergravity
and most-subleading-color N’ = 4 SYM amplitudes that holds for the two leading IR
divergences, O(1/e") and O(1/eL1), but breaks down at O(1/e-~2).
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A  Two-loop most-subleading-color N' = 4 SYM four-point amplitude

The two-loop most-subleading-color four-point amplitudes in N' = 4 SYM theory are
given in terms of two-loop planar and nonplanar scalar integrals [35]. Explicit expres-
sions for these may be derived employing the Laurent expansions of the planar [26] and
non-planar [36] integrals. Analytically continuing these integrals to the kinematic region
t >0 and s, u < 0, we obtain the expression

Ag2’2)(e) _ (,u_Z) o { (—slogy —ulog(l —y) —in(s+u)) (X =Y) (A1)
(A )\t a
N (2(s + u)logylog(1l — y) + 2imulogy + 2irslog(l —y)) (X —Y)
€
+(=20s — 4u) S3.1(y) + (4s — 4u) S2.2(y) + (—8s — 4u) S13(y)
+[ (10s — 4u) logy + (8s + 10u)log(1 — y) + (14ims + 10imu) | S21(y)
+[ (4s + 8u)logy + (—16s — 8u) log(1 — y) + (—4ims + 4imu) | S1,2(y)
+[6ulog®y + (—8s — 10u) log ylog(1 — y) + (—12s — 6u)ir logy
(

1 4
+(8s—2u)imlog(l—y)+ (—48+4u)7r2]Slvl(y)+§slog4y—g(s—u) log® ylog(1—y)
—(2s + 4u) log® ylog?(1 — y) + (4s + 4u) log ylog®(1 — y) — ulog*(1 — y)

—im(s + 2u) log® y + Sirulog? ylog(1l — y) — dimulogylog?(1 — )
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13

1
+4imslog®(1 —y) + (Egs — 2u) 2 log?y + (?8 + %711) 72 logylog(1l — y)

13 1
+ (—23 — Eu) 2 log2(1 —y)+ (—2z’7r38 + 6i7r3u — 23C3) logy

3 6
177%s  wtu }

1
+ <—§i7r3s — —9i7r3u + 8s(3 + 2uC3> log(1 — )

5 + 5 + 2ims(s — 6imuls + O(e)

where y = —s/t and Sj, ,(y) denote the generalized polylogarithms of Nielsen [37]. In this
region, the variables X, Y, and Z defined in eq. (4.4) become
X = —log(1l —y) —im,
YV = —logy +log(l - y), (A.2)
= logy +im.

(See appendix A of ref. [3] for details on the performance of the analytic continuation.)
We also have

APP(e) (1) [ (=slogy — ulog(l — y) — in(s +u)) (Z — X)
<A§”>/u>_< )1 . .

t

(2(s +u)logylog(1l — y) + 2irulogy + 2imwslog(l — y)) (Z — X)

€
(16s — 4u) S3.1(y) + (—8s + 8u) S22(y) + (4s — 16u) S13(y)
[(—14s — 4u)logy + (—4s — 2u)log(1 — y) + (—10ims — 14imu) | S21(y)
[ (10s — 4u) logy + (8s — 2u) log(1 — y) + (14ims + 10iwu) | S1,2(y)
It
(—4

+
+
+
+[(65 + 6u)log?® y + (4s + 2u) log y log(1 — y) + (65 + 18u)iwlogy

+(—4s+4u)irlog(1—y)+ (83—8u)7r2] Slyl(y)—I—%slog4(y)+§(s+2u) log®(y) log(1 — )

(25 + u) log?(y) Iog*(1 — ) — (25 + u) og(y) Iog®(1 — y) + sulog*(1 — )

+im(s — 2u) log®(y) + 5imulog?(y) log(1 — y) — im(6s + u) log(y) log*(1 — ¥)
13

1
+im(—2s +u) log3 (1 — y) + (335 + 4u> 72 log?y + (ES — %u) 72 logylog(1l — y)

13 11 1
+ (43 + Eu) 2 log2(1 —y)+ (Eiﬂ?’s + éiﬂgu — 25{3) logy

5 29
+ (—i?T3S + Zimdu — 4s(3 + 2uC3) log(1 — )

6 6
2 4 4
- 817; - % — 10imsCs — 6imuls + O(e )}

Finally, Ag2’2) is obtained using

A§2,2) +Ag2,2) —|—A§2’2) —0. (A4)
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To our knowledge, explicit expressions for these amplitudes have not appeared previously
in the published literature. The uniform transcendentality of these expressions, previously
noted in ref. [16], is evident in these expressions, underlining the fact that this property of
N =4 SYM observables extends beyond the planar approximation.

Using the expressions above, one may verify that
(Z - X)AP? — (x —Y)AP? £0. (A.5)

For this purpose, it is simplest to examine the coefficient of (3.

B Symbology

In this appendix we review the general features of symbols. For more details, see refs. [38]
and [39].
The symbols are simply defined for Goncharov polynomials of one variable, defined

recursively as

G(al,...,an;x):/ dt G(ag,...,anp;t) (B.1)
0 t—a1

with
G(x)=G(;x)=1;,G(0)=0 (B.2)

Other functions are obtained from them as

G(0y,

—log z

jx) =
G(dp;x) = —log (1—2)
G(On_1,a;7) = —Liy <§)
7) = (<18, (%) (B.3)

<Ona ap; T
The Goncharov polylogarithms of one variable are similarly defined with the harmonic
polylogarithms [40] H with indices 0 and +1, which are related to the Nielsen polyloga-
rithms by

Spp(x) = H(0,, Tp; x). (B.4)
The symbol of a Goncharov polynomial is defined as sum of terms of the type tensor
product of R;’s, understood as dlog R; = dR;/R;’s, i.e. such that the rules the R;’s satisfy
follow from this dlog form. These tensor monomials are written as R; ®...® R,, and satisfy

QR R)®...= .. ORI ®...+.. R ®...
= R)"®=n.. R1®...
..®c®...=0
LORI®...=—...®1/Ri®... (B.5)
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where R1, Ro, ... are variable monomials and c is a constant. The symbol of an object T},
a priori a function of several variables, an extension of the simple Goncharov polynomials
of one variable above and defined recursively as

b b t
Tk:/ dlogRlo...odloan:/ (/ dlogRlo...dloanl) dlog R,(t), (B.6)

is
STy =R1®R2® ... R,,. (B.7)

From this definition we obtain immediately the symbol of a Li; polylogarithm,
SLig(z)]=—(1-2)®z®...z (B.8)

(there are k — 1 factors of z), as a particular case of the Goncharov polylogarithms. Note
that (1 — z) and (z — 1) are the same, since they differ by multiplication by the constant
—1, however, the overall minus sign is for the tensor monomial, it does not belong into any
of the tensored factors.

We can also define the rule for multiplication of two symbol terms S[F] = ® ; R; and
S[G] = @2, 1 Ri, as

S[FG] =Y &M "Ry (B.9)
11

where the permutations I preserve the original order of the factors in S[F] and in S[G]
within S[F'G]. For example, if n = m = 2 we get

S[FG] =R @Ry @R3 @Ry + R @ R3 @ Ry ® Ry + R1 ® R3 @ Ry ® Ry
+R3® R @ Ro® Ry + R3 ® Ry ® Ry ® Ry + R3 ® Ry ® Ry ® Ry. (B.10)

For logs and their products we obtain

Sllogz] = x
Sllogzlogyl =z ®@y+y® x. (B.11)

Finally, for the Nielsen polylogarithms

_ (_1)n+p71 /1d logn_l(t) logp(l — .’L't) (B12)
0

S =
P (n = 1) ! t '
the symbol is given by

S[Spp(@) = HOn, Ip;2)] = (—1)P1-2)0(1-2)®.. 0 (1-2)@z®z...0z (B.13)

where there are p 1 — 2’s and n x’s.
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C Symbol relation

In this appendix, we describe how we tested the relation (6.8) using the symbol. Appendix
B reviews some salient features of symbols of polylogarithms.

The amplitude A§2’2) from appendix A, divided by Ago)/ u, has terms proportional to
the independent variables s and u (where s+t+u = 0), and these kinematic factors are not
touched by the symbol. Therefore we will only check the s-terms in the desired relation,

(2 - x)AP?Y < (X —v)AP?, (C.1)

for the finite order pieces. (We know the IR divergent pieces satisfy this relation, and we
have in fact explicitly checked this.)

Given that we are interested only in the relation between symbols, the analytical
continuations become simpler. To find the first cyclic term, in the ¢ > 0,s,u < 0 region,
we need to first analytically continue to s > 0,¢,u < 0 and then do the cyclic shift. The
analytical continuation gives

y= —; — ye ™ = logy — logy — 2mi

g

1—y:—% — —(1—y)e”
Lix(y) — Lix(ye ™) = Lix(y)
S1(y) = Siklye™™) = S1x(y) (C.2)
and then the change (s,t,u) into (t,u,s) leadstoy — 1/(1 —y) and 1 —y — —y/(1 — y).
All in all, we obtain
T — V4 2m
Vo -T-V—-m
1
Lik(y) — Lig (—)

1—y

S1(y) = Stk (i) . (C.3)

To find the second cyclic term in the t > 0, s,u < 0 region, we first analytically continue
tou > 0,s,t <0, and then do the cyclic shift. The analytical continuation gives
y — —ye " = logy — log(—y) — i
L—y = (1—y)e ™™
Lix(y) — Lig(y) + terms of 0 symbol
S1k(y) = S1k(y) + terms of 0 symbol (C4)
and then the change (s,t,u) into (u,s,t) leadstoy — —(1 —y)/y and 1 —y — 1/y. All in
all, we obtain
T— -V -T+mi
V — T —2mi

1—
Lig(y) — Lig (——y) + terms of 0 symbol
Y

1—
S1k(y) = Sk (—Ty) + terms of 0 symbol (C.5)
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and now we can ignore the terms with zero symbol, involving transcendental constants like
w. That means that ignoring these terms, the relation we need to check is

Agm)(logy +log(1—y)) = Agm) (logy — 2log(1 — y)) + terms of 0 symbol (C.6)

and as we mentioned, we will only check the s-terms.

The resulting symbol contains tensor products of y and (1 — y) monomials forming a
5-fold tensor product, so there are 2° = 32 independent tensor structures which should have
zero coefficient if this identity is to hold in symbol. We have checked 4 of these coefficients,
and shown them to be nonzero.

In conclusion, the identity (C.1), and therefore also the SYM-supergravity relation at
two-loops, does not hold to finite order, not even in symbol.
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