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Soft Photon and Graviton Theorems in Effective Field Theory
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Extensions of the photon and graviton soft theorems are derived in 4D local effective field theories with
massless particles of arbitrary spin. We prove that effective operators can result in new terms in the soft
theorems at subleading order for photons and subsubleading order for gravitons. The new soft terms are
unique, and we provide a complete classification of all local operators responsible for such modifications.
We show that no local operators can modify the subleading soft graviton theorem. The soft limits are taken
in a manifestly on-locus manner using a complex double deformation of the external momenta. In addition
to the new soft theorems, the resulting master formula yields consistency conditions, such as the
conservation of electric charge, the Einstein equivalence principle, supergravity Ward identities, and that
particles with spin greater than two cannot couple to those with spin less than or equal to two.

DOI: 10.1103/PhysRevLett.118.231601

Introduction.—In quantum field theory, scattering ampli-
tudes are key observables for the calculation of measurable
decay rates and cross sections. Modern research on the
mathematical structure of amplitudes spans a wide range of
topics: from new “on-shell methods” implemented in
computer codes for the efficient calculation of experimen-
tally relevant cross sections to abstract mathematical
interpretations of certain amplitudes as volumes of
geometric figures (see, e.g., [1–4]).
Interest in soft limits of amplitudes has recently been

rekindled due to the derivation of the classic soft photon and
graviton theorems [5–11] as Ward identities of asymptotic
symmetries [12–17]. An intriguing question is the effect of
loop-quantum corrections on these recent results. This is
subtle for loops of massless particles because of IR diver-
gences, but loopsofmassive particles canbe integrated out to
leave effective local operators. The purpose of this Letter is
to completely classify quantum corrections from loops of
massive particles to the soft theorems using on-shell meth-
ods in the context of effective field theory.Our primary result
is a novel generalized soft theorem in effective field theory.
Specifically, we show that in a 4D local effective field

theory of only massless particles, the tree-level soft photon
and graviton theorems receive modifications at subleading
and subsubleading orders, respectively. These new modi-
fied soft theorems for positive-helicity soft photons or
gravitons take the form

Aph
nþ1 ¼

�
Sð0Þ

ϵ2
þ Sð1Þ

ϵ

�
An þ

~Sð1Þ

ϵ
~An þOðϵÞ; ð1Þ

Agrav
nþ1 ¼

�
Sð0Þ

ϵ3
þ Sð1Þ

ϵ2
þ Sð2Þ

ϵ

�
An þ

~Sð2Þ

ϵ
~An þOðϵÞ; ð2Þ

where SðiÞ and SðiÞ are the standard soft factors, well known
from the work of [5–12], and given explicitly in (4) and (5)
below. The new soft terms are

~Sð1Þ ~An ¼
X
k

gk
½sk�
hski

~AðkÞ
n ; ~Sð2Þ ~An ¼

X
k

gk
½sk�3
hski

~AðkÞ
n ; ð3Þ

where gk denotes the couplings of the associated effective
operators. The tilde and superscript (k) on the n-point
amplitude indicate that the particle type of the kth leg of ~An
may differ from that in Anþ1. Thus, the new soft terms are
different from the factorized form of the traditional soft
theorems. Only a small set of effective operators can
modify the soft theorems, and we provide a complete
classification. We show that no matter which operator is
responsible for the modification, the kinematic soft factor is
uniquely fixed to take the form (3). (It would be interesting
to know if these new universal modifications are associated
with asymptotic symmetries.) In this Letter, we present
modifications of the soft photon theorem, though our
results naturally generalize to non-Abelian gauge theory.
Only effective operators with 3-point interactions can

affect the single-particle soft theorems in (1) and (2). If an
operator has many derivatives, its interaction is too soft to
affect the soft theorems at these orders. For example, trF3

does not modify the soft theorem, but the Pauli dipole
operator χ̄γμνFμνχ does. All effective operators that can
modify the soft theorems (1)–(2) are listed in (22) and (24).
Note that our results imply that the soft graviton theorem is
not corrected at subleading order 1=ϵ2 in effective
field theory. This is important for recent proposals
[16,17] connecting soft graviton theorems to asymptotic
symmetries.
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To investigate the soft limits, we present a novel
approach based on a double complex deformation of the
amplitudes. Combining a “soft shift” with two Britto-
Cachazo-Feng-Witten (BCFW) shifts allows us to identify
the parts of the amplitude responsible for the soft theorems
as factorization poles. Note that we are not deriving new
recursion relations, and the results are independent of
which lines are shifted along with the soft line. The method
allows us to take the soft limit in a manifestly on-locus
fashion that emphasizes the path dependence of the soft
theorems at subleading order.
The approach yields not only the well-known soft

theorems and new soft terms, but it also implies nontrivial,
though well-known, consistency conditions, such as charge
conservation, the equivalence principle, and the super-
symmetric Ward identities, which state that a spin-3=2
particle must be coupled supersymmetrically to a graviton.
We also demonstrate the well-known result [18,19] that no
massless spin > 2 particle can couple consistently to
massless particles with spin 2 or less [20].
Complex deformations.—We work with spinor helicity

formalism in 4D following the conventions of [1,2].
Momenta are assumed to be complex so that angle and
square spinors are independent. The momentum ps ¼
−jsi½sj is taken soft holomorphically: jsi → ϵjsi and
js� → js�, with ϵ a small parameter. The standard soft
theorems for soft positive-helicity photons and gravitons
then take the form (1)–(2) (without the tilde modifications),
where for a soft photon,

Sð0Þ ¼
X
k

gk
hxki

hxsihski ; Sð1Þ ¼
X
k

gk
hskiDsk; ð4Þ

and for a soft graviton,

Sð0Þ ¼ κ
X
k

½sk�hxkihyki
hskihxsihysi ; Sð2Þ ¼ κ

2

X
k

½sk�
hskiD

2
sk;

Sð1Þ ¼ κ

2

X
k

½sk�
hski

�hxki
hxsi þ

hyki
hysi

�
Dsk: ð5Þ

Here, jxi and jyi are arbitrary reference spinors, and
Dsk ≡ js�a∂ jk�a . When the amplitudes have their momen-
tum-conserving delta functions stripped off, the derivatives
are taken with a prescription where one uses momentum
conservation to eliminate a choice of two square spinors [12].
In this Letter, we use a prescription in which the soft

limit is taken along a path on the algebraic locus in
momentum space, defined by requiring that the external
momenta are on shell and satisfy (nþ 1)-particle momen-
tum conservation. Start with n momenta which are
unshifted pk ¼ −jki½kj, satisfying n-particle momentum
conservation,

P
n
k¼1 pk ¼ 0. Introduce the soft momentum

ps ¼ −jsi½sj such that the shifted momenta p̂k ¼ −jk̂i½k̂j,
defined as

jŝi ¼ ϵjsi − zjXi;

jî� ¼ ji� − ϵ
hjsi
hjii js� þ z

hjXi
hjii js�;

jĵ� ¼ jj� − ϵ
hisi
hiji js� þ z

hiXi
hiji js�; ð6Þ

with no other spinors shifted, satisfy (nþ 1)-particle
momentum conservation p̂s þ

P
n
k¼1 p̂k ¼ 0. The spinor

jXi is completely arbitrary. The complex deformation (6)
can be viewed as the combination of a soft ϵ shift [22] and
two BCFW shifts with parameters, z1 ¼ ðhjXi=hjiiÞz and
z2 ¼ ðhiXi=hijiÞz, and zjXi ¼ z1jii þ z2jji. The choice of
the two lines i and j is arbitrary and does not affect the
physics conclusions.
For any momentum k ¼ 1;…; n, we have

P̂2
sk ¼ ðp̂k þ p̂sÞ2 ¼ ðϵ − ϵkÞP2

sk; ϵk ¼ z
hXki
hski : ð7Þ

Evaluating P̂sk at ϵ ¼ ϵk, we obtain P̂sk ¼ −jki½P̂skj, with
jP̂is� ¼ ji�; jP̂js� ¼ jj�;

jP̂sk� ¼ jk� þ z
hXsi
hski js�; for k ≠ i; j: ð8Þ

We are interested in poles at ϵ ¼ 0 in the (nþ 1)-particle
amplitude. With z ¼ 0, there are multiple contributions to
such poles since [as is obvious from (7)] all 2-particle
channels with a soft line s contribute. The role of z ≠ 0 is to
separate these poles to different locations in the complex ϵ
plane and exploit that the amplitude factorizes on simple
poles. Since the only possible poles in ϵ come from the
2-particle channels, we can write

Ânþ1ðz;ϵÞ ¼
X
k;hP;c

Â3ðŝ; k̂;−P̂hP
sk;cÞ

1

P̂2
sk

ÂðkÞ
n ðzÞþOðϵ0Þ ð9Þ

because when a propagator goes on shell, the amplitude
factorizes into a product of on-shell amplitudes [23]. The
sum is over all relevant momentum channels k, as well as
over the spectrum of particles on the internal line, as
indicated with the helicity label hP and a collective index c
of other quantum numbers. The superscript on the n-point
amplitude indicates that it, in general, depends on the

channel momentum k: ÂðkÞ
n ðzÞ ¼ ÂnðP̂−hP

sk;c̄ ;…Þ.
Little-group scaling fixes the 3-particle amplitude up to a

constant, which we absorb in the associated coupling gHk
,

where Hk ¼ fhs; hk; hP; a; b; cg labels helicities and pos-
sible quantum numbers:

Â3ðŝ; k̂;−P̂hP
sk Þ ¼ gHk

½ŝ k̂�x1 ½k̂P̂sk�x2 ½P̂skŝ�x3 ; ð10Þ

where x1 ¼ hs þ hk − hP, x2 ¼ hk þ hP − hs, and x3 ¼
hP þ hs − hk. In special 3-particle kinematics, another
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option is that A3 could depend on angle brackets only;
however, the shifted angle brackets vanish. The mass
dimension of the coupling is

½gHk
� ¼ a − 2hs; with a≡ hs − hk − hP þ 1: ð11Þ

Using the kinematics above, (9) becomes

Ânþ1ðz; ϵÞ ¼
X
k;hP;c

gHk
½sk�2hs−ahXsi1−aÂðkÞ

n ðzÞ
ϵza−1hski2−að1 − z

ϵ
hXki
hskiÞ

þOðϵ0Þ:

ð12Þ

This is the “master formula” for the following analysis. (For
comments about signs, see footnote [19].) We work with
the Laurent expansion (12) for sufficiently small z ≪ ϵ and,
as we shall see, the soft theorems then follow from the
Oðz0Þ terms.
Photon and graviton consistency conditions.—At tree

level, locality requires that an amplitude can be singular
only on a factorization channel. For z ¼ 0 and generic
ϵ ≠ 0, there is no associated channel, so the appearance of
such a pole violates locality. Therefore, if the value of a is
greater than 1 in (12), the sum of residues of the apparent
poles at z ¼ 0 must vanish. This imposes nontrivial
constraints on the amplitudes.
Two nontrivial constraints arising from this requirement

are

hs ¼ 1;a ¼ 2 ⇒
X
k

gHk
¼ 0;

hs ¼ 2;a ¼ 3 ⇒
Xn
k¼1

gHk
½sk�hski ¼ 0: ð13Þ

The first condition is simply charge conservation. The
second condition can be satisfied only when the graviton
couples identically to all particles; we recognize this as the
equivalence principle. These results were first obtained by
a different argument by Weinberg [18].
We now prove that a unitary local theory can have no

interactions with a ≥ 4. Let the highest value of a in a
theory be amax ≥ 4. The kinematic structure of the corre-
sponding 3-particle amplitude A3ðshsa ; 1h1b ; PhP

c Þ is uniquely
determined by little-group scaling as in (10). Denote the
coupling by fabc, where a, b, c are collective indices for all
internal quantum numbers. CPT invariance requires that
the theory also includes the amplitude of the CP conjugate
states; its coupling is fabc ¼ f�abc. Consider the soft limit of

the 4-particle amplitude A4ðshsa ; 1h1b ; 2−hsā ; 3−h1
b̄

Þ, whose
s1-channel diagram includes the 3-particle interaction,
with amax ≥ 4 and its conjugate, as well as the s2- and
s3-channel diagrams, if relevant. The consistency condition
arising from the absence of the pole 1=zamax−1 in (12)
implies

X3
k¼1

hskiamax−2Bk ¼ 0; ð14Þ

where B1 ¼
P

cfabc½sk�2hs−amax ÂðkÞ
3 ð0Þ, similar for B2 and

B3 (if present). Importantly, the Bi are independent of jsi.
Applying the operator jpi _a∂ jsi _a to (14) gives

X3
k¼1

hkpihskiamax−3Bk ¼ 0: ð15Þ

Since jsi and jpi are arbitrary, we can choose them to be j2i
and j3i, in which case, (15) requires B1 ¼ 0. (Similarly, one
can show B2 ¼ B3 ¼ 0.) Since

B1 ∝
X
c

fabcfabc ¼
X
c

jfabcj2; ð16Þ

it can vanish only if fabc ¼ 0. This shows that any
couplings of interactions with a ≥ 4 must vanish.
For a ¼ 3, the above argument fails because the power

of hski in (15) is no longer strictly positive. Indeed, a ¼ 3
is perfectly fine for gravitons. For soft photons, however,
we have proven that there are no interactions with
amax > 2.
Consider two examples of excluded interactions: (i) A

3-particle interaction with hs ¼ 1 and hk ¼ hP ¼ −1 gives
a ¼ 4. It may appear strange that such an interaction is
excluded here since the gluon amplitude A3ð1þ; 2−; 3−Þ
certainly exists and is nonvanishing in Yang-Mills theory.
However, this 3-gluon amplitude is nonvanishing in terms
of angle brackets only. To produce such an amplitude in
terms of square brackets only would require a nonlocal
interaction A2ð∂=□ÞA [1,2] and is therefore not allowed in
a local theory. (ii) Consider a soft photon case of a ¼ 3:
take hs ¼ 1, hk ¼ −1, hP ¼ 0. This matrix element can be
obtained from the operator □

−2FμνFν
ρ∂μ∂ρϕ, which

clearly is not local.
Since hs þ hk þ hP ¼ 0 implies a ¼ 2hs þ 1, we con-

clude from the above bounds on a that no 3-point
interactions involving photons, gravitinos, or gravitons
are allowed if the sum of the three helicities vanishes.
Standard soft photon theorem.—Set a ¼ 2 in the master

formula (12) for a soft positive-helicity photon (hs ¼ 1).
Expanding the n-point amplitude and the denominator
factor in small z, there are two contributions at order z0.
One goes as 1=ϵ2 and takes the form

Ânþ1ðz; ϵÞjz0;1=ϵ2 ¼
1

ϵ2
X
k;c

gHk

hXki
hXsihskiAn; ð17Þ

where An is the unshifted amplitude, which is a function of
the momenta pk that satisfy n-particle momentum
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conservation. The result (17) is the standard leading soft
factor Sð0Þ.
The other Oðz0Þ contribution is order 1=ϵ,

Ânþ1ðz; ϵÞjz0;1=ϵ ¼
1

ϵ

X
k;c

gHk

hXsi ∂zÂnðzÞjz¼0: ð18Þ

The shifted amplitude ÂnðzÞ depends on z through the
momentum line P̂sk, as well as potentially through the
shifted momenta p̂i and p̂j. In the momentum channel with
P̂2
sk ¼ 0, one uses the chain rule to find ∂zÂnðzÞ ¼

ðhXsi=hskiÞ∇skÂnðzÞ, with

∇sk ≡ js�a
�
∂ jk�a þ

hkii
hiji ∂ jj�a −

hkji
hiji ∂ ji�a

�
: ð19Þ

The first term gives the familiar subleading soft factor Sð1Þ.
The two other terms are consequences of our prescription
for taking the soft limit. In contrast to [12], where the soft
limit is taken by defining an extrinsic continuation of the
amplitude off locus (away from the support of the momen-
tum-conserving delta function), our soft limit is calculated
along an on-locus path defined by the z ¼ 0 deformation
(6). The corresponding soft theorems can therefore depend
only on intrinsic on-locus data. The modified differential
operators can be understood as an element of tangent space
of the momentum-conserving locus.
The strategy employed by Cachazo and Strominger [12]

for acting with the subleading soft-theorem differential
operator on the delta-function-stripped amplitude is to use
momentum conservation to eliminate two square brackets
ji� or jj� from the expression via ji� ¼ −

P
k≠iðhjki=hjiiÞjk�,

similarly for jj�. Now, acting with js�a∂ jk�a on

A½i;j�
nþ1 ¼ Anþ1

�
…; ji− 1�;−

X
k≠i

hjki
hjii jk�;…; j1i;…

�
ð20Þ

gives the same result as acting with our∇sk of (19) on Anþ1,
without ji� and jj� eliminated by momentum conservation.
One sees this by considering the cases k ¼ i, j or k ≠ i, j
separately. Therefore, the prescription used in [12] is
equivalent to our on-locus differential operator (19).
Modification of the subleading soft photon theorem.—

The only other 1=ϵ contributions from (12) for hs ¼ 1 arise
from interactions with a ¼ 1. These give

Ânþ1ðz; ϵÞjz0;1=ϵ ¼
1

ϵ

X
k;c

gHk

½sk�
hski

~AðkÞ
n þOðϵ0Þ; ð21Þ

which yields the new subleading soft factor ~Sð1Þ ~An in (3).
By (11), the coupling must have mass dimension −1 and
hk þ hP ¼ 1. The new a ¼ 1 contribution to the sublead-
ing soft theorem involves an n-point amplitude ~An, whose

external states may differ from the n hard states of Anþ1. To
determine which theories can have these corrections, one
simply goes through the options to find that the only
possible operators are

χ̄γμνFμνχ; ϕFμνFμν; ϕFμν
~Fμν;

ψ̄μFνργ
μνρχ; hF2; ð22Þ

where χ is a spin-1=2 field, and ψμ is the gravitino field.
The operator hF2 is shorthand for the 3-particle interaction
that arises from the metric expansion of FμνFμν.
To summarize, we have shown that in effective field

theory, the soft theorem for a positive-helicity soft photon
takes the form (1), where Sð0Þ and Sð1Þ are as given in (4),
with Dsk → ∇sk on the momentum-conserving locus. The
new soft factor ~Sð1Þ in (3) is unique no matter which of
the possible effective operators in (22) are responsible for
the modification of the soft theorems.
Standard soft graviton theorem.—The familiar terms (5)

of the graviton soft theorem (2) follow from the master
equation (12) by setting hs ¼ 2 and a ¼ 3. As we have
already seen in (13), the absence of the 1=z2 pole in this
expression implies the equivalence principle: the graviton
couples uniformly to all particles with a universal coupling
κ ¼ gHk

. Using this, the 1=z terms can be rewritten in terms
of the Lorentz generators Jab ¼ ði=2ÞPkðjk�a∂ ½kjb þ
jk�b∂ ½kjaÞ and terms that vanish by momentum conserva-
tion. Since Jab annihilates the on-shell amplitudes, the
residue of the 1=z pole vanishes without imposing further
constraints. The Oðz0Þ terms give the soft theorem (2) in a
form, with

Sð0Þ ¼ κ
X
k

½sk�hski hXki2
hXsi2hski2 ; Sð2Þ ¼ κ

2

X
k

½sk�
hski∇

2
sk;

Sð1Þ ¼ κ
X
k

hXki½sk�
hXsihski∇sk: ð23Þ

Using the Schouten identity to write, e.g., hXki=
hXsihski ¼ hXyi=hXsihsyi − hkyi=hksihsyi, as well as
using momentum conservation and annihilation of the
amplitude by Jab, one can show that the soft factors (23)
are equivalent to those in (5), with the replacement Dsk →∇sk as discussed for the photon soft theorem above.
Subleading soft graviton theorem unchanged.—The only

way to get a modification to the soft graviton theorem at
order 1=ϵ2 is via interactions with a ¼ 2. The responsible
local operators would have couplings of mass dimension
−2 and give rise to 3-particle amplitudes A3ð1þ2; 2h2 ; 3hPÞ,
with h2 þ hP ¼ 1. Restricting to spin ≤ 2, the options are
ðh2; hPÞ ¼ ð2;−1Þ; ð3

2
;− 1

2
Þ; ð1; 0Þ; ð1

2
; 1
2
Þ. The requirement

that the 1=z pole in (12) vanishes implies that no such local
operators exist. For the case ðh2; hPÞ ¼ ð2;−1Þ, consider
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the 4-graviton amplitude A4ð1þ2; 2þ2; 3−2; 4−2Þ at quad-
ratic order in the nonstandard effective coupling gc. Only
one factorization channel contributes to 1=z in (12), namely

with an implicit sum over possible internal quantum
numbers c of the exchanged spin-1 state. CPT invariance
requires the couplings of the two interactions to be
conjugate, so the 1=z pole in (12) will be proportional
to

P
cjgcj2. Absence of this pole requires gc ¼ 0. The three

other cases of a ¼ 2 interactions can be similarly excluded.
In conclusion, in a unitary CPT-invariant theory, there can
exist no local operators that modify the subleading soft
graviton theorem.
This result may have relevance to recent discussions of

asymptotic symmetries. In [13], it was shown that the
universality of the subleading soft graviton theorem (2) is
equivalent to the Ward identity of a Virasoro symmetry of
the quantum gravity S matrix. Our result implies that the
subleading soft graviton theorem, and consequently
the Virasoro symmetry, is unmodified at tree level in the
presence of local effective operators. In particular, this
includes curvature corrections.
Modification of the subsubleading soft graviton

theorem.—The only other 1=ϵ contributions from (12)
for hs ¼ 2 arise from interactions with a ¼ 1. By (11),
the coupling must have mass dimension −3 and
hk þ hP ¼ 2. The corresponding operators in effective
field theory are

ϕRμνρσRμνρσ; ϕRμνρσ
~Rμνρσ;

Rμνρσψ̄ργμν∂σχ; RμνρσFμνFρσ: ð24Þ

All of these operators up to constants give the same
correction ~Sð2Þ ~An in (3) to the soft theorem. The modifi-
cation due to the operator ϕR2 was previously noted
by [24,25].
Higher spin.—The equivalence principle mandates that

any theory containing a massless spin-2 boson and a
particle X of spin j must include a coupling
A3ð1þ2; 2þj

X ; 3−jX Þ, with the universal coupling constant.
Taking the soft limit of the helicity þj particle, this
coupling has a ¼ 2j − 1. As discussed in Sec. III, the
condition for the vanishing of poles in z has no nontrivial
solutions for a > 3, which implies j ≤ 2. Thus, by
demanding locality and unitarity in the soft limit, we find
that massless higher spin particles cannot interact in any
way with particles of spin ≤ 2 in a theory of gravity. This is
an on-shell version of the results presented previously in
[18,19,26].

Supergravity.—We learned above that the usual soft
graviton theorems arise from interactions with a ¼ 3, for
which hP ¼ −hk. Such interactions include the standard
graviton self-interactions, and if we have spin-3=2massless
fields, the equivalence principle implies that the coupling
of A3ð1þ2; 2þ3

2; 3−
3
2Þ must be the same as that of

A3ð1þ2; 2þ2; 3−2Þ. Let us explore the soft limit of a pos-
itive-helicity spin-3=2 particle. With hs ¼ 3

2
, the interaction

A3ð1þ2; 2þ3
2; 3−

3
2Þ has a ¼ 2, for which (12) yields a non-

trivial constraint from the absence of a 1=z pole. Consider,
for example, Anþ1ðsþ3

2; 1−
3
2; 2þ2; 3þ2; 4−2;…; n−2Þ. The 1=z

pole in (12) has three contributionswitha ¼ 2, namely from
k ¼ 1, 2, 3. (Lines k ¼ 4;…; n give a ¼ 6.) The sum over
the three channels k ¼ 1, 2, 3 gives the consistency
condition

0 ¼ ½s1�Anð1−2; 2þ2; 3þ2; 4−2;…; n−2Þ
− ½s2�An

�
1−

3
2; 2þ3

2; 3þ2; 4−2;…; n−2
�

− ½s3�An

�
1−

3
2; 2þ2; 3þ3

2; 4−2;…; n−2
�
: ð25Þ

This is precisely the Maximally Helicity Violating (MHV)
version of the N ¼ 1 supersymmetric Ward identities
[27,28] (see also [29]). Thus, we reached the well-known
conclusion that particles of spin-3=2 couple to gravity
supersymmetrically. The role of the usual reference spinor
in the supersymmetry Ward identities is here played by the
soft momentum.
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