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1 Introduction

Over thirty years ago, Kawai, Lewellen, and Tye (KLT) discovered that tree-level closed-

string scattering amplitudes can be expressed as a sum of products of open-string scattering

amplitudes [1]. In the field-theory limit, the KLT formula relates gravitational scattering

amplitudes to products of gauge-theory scattering amplitudes [2–9]. The tree-level n-

graviton amplitude may be written in the compact form

Agrav
n = −

∑
σ,τ∈Sn−3

A(1, 3, σ, 2) S[σ|τ ]3 A(2, 3, τ, 1) (1.1)

where A(· · · ) denotes color-ordered (or partial) n-gluon amplitudes, S[· · · ] is the momen-

tum kernel (see eq. (4.9) below for the explicit definition) and σ, τ range over all per-

mutations of {4, · · · , n}. The field-theory formula (1.1) was a harbinger of more recent

developments showing that tree-level gravitational amplitudes can be obtained as a double

copy of gauge-theory amplitudes by replacing the color factors ci that appear in a cubic de-

composition of gauge-theory amplitudes with kinematic numerators ñi that obey the same

algebraic relations [10, 11]. The classical spacetime background itself can be constructed

through a double-copy procedure [12–16]. Much evidence has accumulated [17–28] for the

conjecture [10, 17] that color-kinematic duality and the double-copy procedure also apply

to the integrands of loop-level amplitudes, but difficulties remain [29, 30]. Quite recently,

the KLT formula itself has been generalized to one-loop gravitational amplitudes [31, 32].
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In 1999, Bern, De Freitas, and Wong [33] proposed an expression analogous to eq. (1.1)

for the color-encoded tree-level n-gluon amplitude

Agluon
n = −

∑
σ,τ∈Sn−3

A(1, 3, σ, 2) S[σ|τ ]3 A
(s)(2, 3, τ, 1) (1.2)

in terms of partial gauge-theory amplitudes A(· · · ) and dual partial scalar amplitudes

A(s)(· · · ), which are obtained from partial gauge-theory amplitudes by replacing kinematic

numerators ni with color factors ci [11]. Subsequently proven in ref. [34] using BCFW

recursion relations [35], eq. (1.2) makes manifest that a subset of (n − 3)! of the partial

amplitudes is sufficient to produce the full color-encoded amplitude.1 Consequently, the

full set of partial amplitudes A(· · · ) can be expressed in terms of these (n−3)! independent

partial amplitudes A(1, 3, σ, 2); these are the well-known Bern-Carrasco-Johansson (BCJ)

relations [10].

In addition to being gauge invariant, tree-level gauge-theory amplitudes have been

shown to possess a color-factor symmetry [39, 40]. For each external gluon in the amplitude,

there is a family of momentum-dependent shifts of the color factors ci that leave the

amplitude invariant. These shifts are analogous to generalized gauge transformations of the

kinematic numerators ni but more restrictive because they preserve the Jacobi identities

satisfied by color factors (whereas generalized gauge transformations can relate Jacobi-

satisfying kinematic numerators to non-Jacobi-satisfying kinematic numerators). The dual

partial amplitudes A(s)(· · · ) appearing in eq. (1.2), which depend on the color factors ci, are

themselves invariant under color-factor shifts. Thus eq. (1.2) represents a decomposition

of the amplitude in terms of building blocks that are simultaneously gauge invariant and

color-factor symmetric.

In this paper we use the color-factor symmetry of gauge-theory amplitudes to provide

an alternative derivation of the KLT-type formula (1.2) for the n-gluon amplitude. As a

by-product, we obtain a new KLT-type formula for the biadjoint scalar theory [9]

Abiadjoint
n = −

∑
σ,τ∈Sn−3

Ã(s)(1, 3, σ, 2) S[σ|τ ]3 A
(s)(2, 3, τ, 1) (1.3)

a theory which also possesses color-factor symmetry [39].

We also obtain new KLT-type relations for tree-level n-point QCD amplitudes Aqcd
n,k

containing k differently flavored quark-antiquark pairs and n− 2k gluons. Tree-level QCD

amplitudes can be expressed in terms of partial amplitudes that obey group-theory rela-

tions [41–43] as well as (for amplitudes containing gluons) BCJ relations [44]. Johansson

and Ochirov (JO) used these relations to define an independent basis of partial amplitudes

A(1, γ, 2), where γ denotes a particular subset (described in the main body of this paper)

of permutations of the remaining labels2 of quarks and gluons {3, · · · , n}. For two or fewer

quark-antiquark pairs, the number of independent amplitudes is (n− 3)!, and the JO basis

1The relations (1.2) can be viewed as a generalization of the factorization observed in refs. [36–38].
2Here {2, 4, · · · , 2k} denote the labels of (differently flavored) quarks, {1, 3, · · · , 2k− 1} the labels of the

corresponding antiquarks, and {2k + 1, · · · , n} the labels of gluons.

– 2 –
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is simply given by A(1, 3, σ, 2), where σ is any permutation of {4, · · · , n}. We establish

that, in this case, the color-encoded QCD amplitude can be expressed as

Aqcd
n,k≤2 = −

∑
σ,τ∈Sn−3

A(1, 3, σ, 2) S[σ|τ ]3 A
(s)(2, 3, τ, 1) (1.4)

where A(1, 3, σ, 2) are QCD partial amplitudes, A(s)(2, 3, τ, 1) are corresponding dual par-

tial amplitudes, and S[σ|τ ]3 is the same momentum kernel that appears in the all-gluon

expression (1.2), modified by masses in the case of k = 2 amplitudes. For k > 2, the

number of independent amplitudes in the JO basis is (n−3)!(2k−2)/k! [44], and the QCD

amplitude can be expressed as

Aqcd
n,k =

∑
γ,δ∈JO

A(1, γ, 2) T (1γ2|2δ1) A(s)(2, δ, 1) (1.5)

where γ and δ both belong to the JO set of permutations, and T (· · · ) is the inverse

of a particular submatrix of double-partial amplitudes defined later in the paper. Al-

though we do not present an explicit expression for T (· · · ), we conjecture that it can

be expressed as an (n − 3)th degree polynomial of kinematic invariants, similar to the

momentum kernel. We also write analogous expressions for gravitational scattering ampli-

tudes. Earlier work on extensions of KLT relations to more general gravitational amplitudes

includes refs. [33, 45–47].

This paper is structured as follows: in section 2, we introduce the bicolor scalar the-

ory, containing both biadjoint and bifundamental fields. We describe the Melia basis of

partial amplitudes, the Melia-Johansson-Ochirov decomposition of the bicolor amplitude,

and finally the double-partial amplitudes of the bicolor theory. We end with a KLT-type

relation for amplitudes containing only bifundamental fields. In section 3, we show that

the color-factor symmetry possessed by the bicolor theory can be used to derive the null

vectors of the matrix of double-partial amplitudes, which leads to BCJ relations for the

bicolor partial amplitudes. In section 4, we use the color-factor symmetry to obtain a KLT-

type relation for arbitrary bicolor amplitudes. In section 5, we derive KLT-type relations

for QCD amplitudes. We also discuss more general gravitational KLT relations. Section 6

contains our conclusions.

2 Bicolor scalar theory

The biadjoint scalar theory, introduced by Cachazo, He, and Yuan in ref. [9], is a theory

consisting of massless scalar particles φaa’ transforming in the adjoint representation of the

color group U(N)×U(Ñ) with cubic interactions of the form

fabcf̃a’b’c’φaa’φbb’φcc’ (2.1)

where fabc and f̃a’b’c’ are the structure constants of U(N) and U(Ñ). Whereas gravity is

a double copy of gauge theory (replacing color factors ci with kinematic numerators ñi),

the biadjoint theory can be viewed as a zeroth copy of gauge theory (replacing kinematic

– 3 –
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numerators ni with color factors c̃i). The double-partial amplitudes of the biadjoint theory,

which depend only on kinematic invariants of the external momenta (without the compli-

cations of spin), provide the cleanest examples of amplitudes obeying Kleiss-Kuijf [41] and

BCJ relations. The biadjoint theory is also color-factor symmetric [39], which we will use

in section 4 to derive KLT-type relations (1.3) for its amplitudes.

Because our goal is also to obtain KLT-type relations for QCD amplitudes containing

quarks as well as gluons, we generalize the biadjoint scalar theory to include, in addition

to the massless biadjoint fields, several flavors3 of (possibly massive) scalar fields ψi i’
(s),

s = 1, · · · , Nf , transforming in the R⊗ R̃ representation of U(N)×U(Ñ) with mass terms

m2
(s) ψ(s)i i’ψ

i i’
(s) (2.2)

as well as cubic couplings

(T a)i j(T̃
a’)i’j’ψ(s)i i’φaa’ψ

j j’
(s) (2.3)

where (T a)i j and (T̃ a’)i’j’ are generators in the R and R̃ representations. For convenience in

what follows, we will refer to ψj j’
(s) as bifundamental fields (and ψ(s)i i’ as anti-bifundamental

fields), although the representation could be more general. We refer to this as the bicolor

scalar theory.

Consider a tree-level n-point amplitude with both bifundamental and biadjoint fields

Abicolor
n,k (ψ̄1, ψ2, ψ̄3, ψ4, · · · , ψ̄2k−1, ψ2k, φ2k+1, · · · , φn) (2.4)

where external fields ψ in the bifundamental representation have even labels and fields

ψ̄ in the anti-bifundamental representation have odd labels. We assume that the ψ2` all

have different flavors (and possibly different masses), with ψ̄2`−1 having the corresponding

antiflavor (and equal mass) to ψ2`. This amplitude is given by a sum over cubic diagrams

Abicolor
n,k =

∑
i∈cubic

ci c̃i
di

(2.5)

where ci, c̃i are color factors constructed from the cubic vertices (2.1) and (2.3), and di is

the product of massless φ and massive ψ propagators. The cubic diagrams appearing in

eq. (2.5) correspond to a subset of the cubic diagrams appearing in an n-point amplitude

of biadjoint fields. For example, the five-point amplitude with two pairs of bifundamentals

is given by

Abicolor
5,2 (ψ̄1, ψ2, ψ̄3, ψ4, φ5) =

5∑
i=1

ci c̃i
di

(2.6)

3This generalization was considered earlier in ref. [48] for a single flavor of bifundamental scalar. See

also ref. [49].
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Figure 1. Cubic diagrams i = 1 through 5 for Abicolor
5,2 . Lines with arrows denote bifundamental

scalars whereas curly lines denote biadjoint scalars.

where the five contributing cubic diagrams are shown in figure 1, and the color factors and

denominators have the form [39, 44]

c1 = (T a5T b)i1i2(T b)i3i4 , d1 = (s15−m2
1)s34 = 2s34 k1 · k5 ,

c2 = (T bT a5)i1i2(T b)i3i4 , d2 = (s25−m2
1)s34 = 2s34 k2 · k5 ,

c3 = (T b)i1i2(T a5T b)i3i4 , d3 = s12(s35−m2
3) = 2s12 k3 · k5 ,

c4 = (T b)i1i2(T bT a5)i3i4 , d4 = s12(s45−m2
3) = 2s12 k4 · k5 ,

c5 = fa5bc (T b)i1i2(T c)i3i4 , d5 = s12s34 (2.7)

where sij = (ki+kj)
2, with analogous expressions for c̃i. The color factors obey the Jacobi

identities

c1 − c2 + c5 = 0, c3 − c4 − c5 = 0 . (2.8)

This five-point amplitude will be our prototypical example throughout the paper as it

nicely illustrates many of the features of bicolor amplitudes.

Following ref. [9], we define partial amplitudes with respect to each color group factor

as well as double-partial amplitudes. The partial amplitude Ã(s)(α) with respect to the

first group factor U(N), where α denotes an arbitrary permutation of the external particle

labels {1, · · · , n}, receives contributions from those cubic diagrams i whose color factor ci
can be drawn in a planar fashion with the external legs in the cyclic order specified by

the permutation α. For example, by examining figure 1, one can write down the following

five-point partial amplitudes4

Ã(s)(15342) =
c̃1
d1
− c̃3
d3
− c̃5
d5
, Ã(s)(13542) =

c̃3
d3

+
c̃4
d4
, Ã(s)(13452) =

c̃2
d2
− c̃4
d4

+
c̃5
d5

(2.9)

where the ± sign in front of each term results from the antisymmetry of the structure

constants fabc = −fbac and a similar antisymmetry imposed on the generators (T a)i j =

−(T a) i
j (see ref. [44]). In general the partial amplitudes are given by

Ã(s)(α) =
∑
i

Mi,αc̃i
di

(2.10)

where Mi,α vanishes if ci does not contribute to Ã(s)(α), and is otherwise given by 1 or

−1. These partial amplitudes may be regarded as “dual” to color-ordered gauge-theory

4For the remainder of the paper, we omit the commas between arguments for conciseness.
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amplitudes, as they can be obtained from the latter by replacing the kinematic numerators

ni with c̃i [11].

When k ≥ 2, some of the partial amplitudes vanish because none of the cubic diagrams

can contribute. In the five-point amplitude above, for example, Ã(s)(13245) vanishes be-

cause any contributing diagram would require the lines for the differently flavored bifunda-

mental fields to cross, and are thus non-planar. Moreover, there are group-theoretic rela-

tions among the nonvanishing bicolor partial amplitudes analogous to the Kleiss-Kuijf [41]

and Melia [42, 43] relations among gauge-theory partial amplitudes. For the five-point

amplitude, some of the Melia relations are

Ã(s)(15432) = −Ã(s)(15342)− Ã(s)(13542) ,

Ã(s)(14532) = Ã(s)(13452) ,

Ã(s)(14352) = −Ã(s)(13452)− Ã(s)(13542) . (2.11)

These group-theoretic relations can be used to define an independent basis5 of (n− 2)!/k!

partial amplitudes, called the Melia basis [42, 43].

To describe the Melia basis of partial amplitudes, we recall that a Dyck word of length

2r is a string composed of r letters ψ̄ and r letters ψ such that the number of ψ̄’s preceding

any point in the string is greater than the number of preceding ψ’s. An easy way to

understand this is to visualize ψ̄ as a left bracket { and ψ as a right bracket }, in which

case a Dyck word corresponds to a well-formed set of brackets. The number of such words is

(2r)!/(r+1)!r!, the rth Catalan number. For example for r = 1 there is only one Dyck word:

{}, for r = 2 there are two: {}{} and {{}}, and for r = 3 there are five: {}{}{}, {}{{}},
{{}}{}, {{}{}}, and {{{}}}. Consider the set of partial amplitudes A(1, γ(3), · · · , γ(n), 2),

where γ is any permutation of {3, · · · , n} such that the set of k−1 ψ̄ and k−1 ψ in γ form

a Dyck word of length 2k − 2. The biadjoint fields may be distributed anywhere among

the ψ̄ and ψ in γ. The number of distinct allowed patterns of ψ̄, ψ, and φ is given by the

number of Dyck words of length 2k − 2 times the number of ways of distributing n − 2k

biadjoint fields among the letters of the Dyck word

(2k − 2)!

k!(k − 1)!
×
(
n− 2

2k − 2

)
. (2.12)

For each allowed pattern, there are (n− 2k)! distinct choices for the biadjoint labels, and

(k−1)! choices for the ψ̄ labels. The label on each ψ is then fixed: it must have the flavor of

the nearest unpaired ψ̄ to its left. Thus, for example, for Abicolor
6,3 the allowed permutations

γ are ψ̄3ψ4ψ̄5ψ6, ψ̄5ψ6ψ̄3ψ4, ψ̄3ψ̄5ψ6ψ4, and ψ̄5ψ̄3ψ4ψ6, whereas for Abicolor
5,2 the allowed

permutations are φ5ψ̄3ψ4, ψ̄3φ5ψ4, and ψ̄3ψ4φ5. Thus the three partial amplitudes given

in eq. (2.9) precisely comprise the Melia basis for Abicolor
5,2 . The multiplicity of the Melia

basis is given by

(2k − 2)!

k!(k − 1)!
×
(
n− 2

2k − 2

)
× (n− 2k)!× (k − 1)! =

(n− 2)!

k!
(2.13)

5The Melia basis amplitudes are independent only with respect to purely group-theoretic relations. As

we will see in section 3, color-factor symmetry implies additional (BCJ) relations among these amplitudes.
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as found in ref. [43]. We refer to the allowed permutations of γ as the Melia set, and the

partial amplitudes A(1γ2) as the Melia basis. For k = 0 and k = 1, the elements of γ are

all biadjoint scalars, the Melia set consists of all permutations of {3, · · · , n}, and the Melia

basis coincides with the Kleiss-Kuijf basis [41].

Since, for γ belonging to the Melia set, the Ã(s)(1γ2) form an independent basis of

partial amplitudes with respect to the first group factor U(N), the bicolor amplitude can

be written in a proper decomposition [50]

Abicolor
n,k =

∑
γ∈Melia

Ã(s)(1γ2) C1γ2 (2.14)

for some set of color factors C1γ2. Equation (2.14) follows from eqs. (2.5) and (2.10),

provided that these color factors satisfy

ci =
∑

γ∈Melia

Mi,1γ2 C1γ2 . (2.15)

For purely biadjoint amplitudes, the C1γ2 are simply half-ladder color factors

C1γ2 ≡
∑

b1,...,bn−3

fa1aγ(3)b1fb1aγ(4)b2 · · · fbn−3aγ(n)a2 , γ ∈ Sn−2 , k = 0 (2.16)

and eq. (2.14) is the Del Duca-Dixon-Maltoni decomposition [51]. For amplitudes con-

taining one pair of bifundamentals, the C1γ2 are also half-ladder color factors along a

bifundamental backbone [52, 53]

C1γ2 = (T aγ(3)T aγ(4) · · ·T aγ(n))i1 i2 , γ ∈ Sn−2 , k = 1 . (2.17)

For k ≥ 2, the requisite color factors were constructed by Johansson and Ochirov [44],

and so we refer to eq. (2.14) as the Melia-Johansson-Ochirov (MJO) decomposition.6 We

do not give here the explicit expressions for the JO color factors (which may be found in

refs. [40, 44, 50]) but for our five-point example Abicolor
5,2 , they reduce to

C15342 = c1 , C13542 = c2 + c4 , C13452 = c2 (2.18)

where ci are defined in eq. (2.7). It is straightforward to verify that the MJO decomposition

Abicolor
5,2 = Ã(s)(15342)C15342 + Ã(s)(13542)C13542 + Ã(s)(13452)C13452 (2.19)

agrees with eq. (2.6). The general proof was given in ref. [50].

Similarly, we define partial amplitudes A(s)(β) with respect to the second group fac-

tor U(Ñ),

A(s)(β) =
∑
i

Mi,βci
di

(2.20)

corresponding to the sum over cubic diagrams i whose color factor c̃i can be drawn in a

planar fashion with the external legs in the cyclic order specified by the permutation β.

6Recently, a one-loop version of the MJO decomposition has been developed in ref. [54].
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Finally, we define double-partial amplitudes corresponding to a sum over diagrams that

satisfy both of these criteria simultaneously

m(α|β) =
∑
i

Mi,αMi,β

di
. (2.21)

In our five-point example, the double-partial amplitudes for which both α and β belong to

the Melia basis are given by
m(15342|15342) m(15342|13542) m(15342|13452)

m(13542|15342) m(13542|13542) m(13542|13452)

m(13452|15342) m(13452|13542) m(13452|13452)

 (2.22)

=


1
d1

+ 1
d3

+ 1
d5
− 1
d3

− 1
d5

− 1
d3

1
d3

+ 1
d4

− 1
d4

− 1
d5

− 1
d4

1
d2

+ 1
d4

+ 1
d5

 .

For purely biadjoint amplitudes [9] and for bicolor amplitudes with a single pair of bifun-

damentals [48], the double-partial amplitudes are equal to the elements of the propagator

matrix defined in ref. [55]. For bicolor amplitudes containing two or more (massless) ψψ̄

pairs, the matrix of double-partial amplitudes will be a “thinned-out” version of the prop-

agator matrix, because some of the cubic diagrams that contribute to the purely biadjoint

amplitude will be absent.

Using eqs. (2.15) and (2.21) we may express the partial amplitudes (2.20) as

A(s)(β) =
∑

γ∈Melia

m(β|1γ2) C1γ2 (2.23)

and in particular the partial amplitudes belonging to the Melia basis are

A(s)(1δ2) =
∑

γ∈Melia

m(1δ2|1γ2) C1γ2 , δ ∈ Melia . (2.24)

For amplitudes containing only bifundamental fields (n = 2k), the (2k−2)!/k! × (2k−2)!/k!

matrix whose entries are given by m(1δ2|1γ2) may be inverted to give

C1γ2 =
∑

δ∈Melia

m−1(1γ2|1δ2) A(s)(1δ2), for n = 2k . (2.25)

This may in turn be inserted into eq. (2.14) to yield

Abicolor
2k,k =

∑
γ,δ∈Melia

Ã(s)(1γ2) m−1(1γ2|1δ2) A(s)(1δ2) (2.26)

which has the structure of a KLT-type relation for the bicolor amplitude. The elements of

the inverse matrix m−1(1γ2|1δ2) are rational functions of the kinematic invariants, but we

conjecture that, using momentum conservation, they can be written as polynomials in the

kinematic invariants. (We have verified this for Abicolor
4,2 and Abicolor

6,3 .)
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When the amplitude contains biadjoint fields as well as bifundamentals (n > 2k), the

rank of the matrix m(1δ2|1γ2) is less than (n− 2)!/k!, and therefore the matrix cannot be

inverted. It possesses null vectors: eigenvectors with eigenvalue zero. In the next section,

we will use the color-factor symmetry to determine these null vectors. Then in section 4 we

will identify an invertible submatrix of this matrix, and thereby write a KLT-type relation

for bicolor amplitudes that contain both bifundamental and biadjoint fields.

3 Color-factor symmetry of the bicolor scalar theory

A new symmetry of gauge-theory amplitudes was introduced in ref. [39], one which acts

on the color factors ci while leaving the amplitude invariant. Specifically, color factors

undergo momentum-dependent shifts δci that preserve the Jacobi identities satisfied by

the color factors. The proof of invariance of gauge-theory amplitudes under color-factor

shifts employed a decomposition called the radiation vertex expansion.

Ref. [40] examined the color-factor symmetry of QCD amplitudes involving k massive

quark-antiquark pairs and n− 2k gluons. For each of the external gluon legs a in a QCD

amplitude, there is a family of color-factor shifts δaci. It was shown that the color factors

C1γ2 defined by Johansson and Ochirov transform in a natural way under color-factor shifts

δa C1σ(3)···σ(b−1)aσ(b)···σ(n)2 = αa,σ

(
ka · k1 +

b−1∑
c=3

ka · kσ(c)

)
(3.1)

where αa,σ is a set of arbitrary, independent parameters (or functions) associated with the

family of shifts, with σ denoting a fixed permutation of the remaining legs {3, · · · , n} \ {a}
that belongs to the Melia basis. To give a specific example, the five-point amplitude Aqcd

5,2

is invariant under a one-parameter shift δ5ci under which the JO color factors transform as

δ5C15342 = α5,34 k5 · k1 ,
δ5C13542 = α5,34 k5 · (k1 + k3) , (3.2)

δ5C13452 = α5,34 k5 · (k1 + k3 + k4) .

In general, since the number of gluons in the amplitude is n− 2k and the number of Melia

permutations σ is (n − 3)!/k! the number of independent color-factor shifts is given by

(n − 2k)(n − 3)!/k! for k ≥ 2. (For k = 0 and k = 1, the number of independent shifts is

(n− 3)(n− 3)!)

In section 8 of ref. [39] it was shown that amplitudes of the biadjoint scalar theory are

also invariant under color-factor shifts, which was proven using the cubic vertex expansion.

This proof is straightforwardly extended to the amplitudes of the bicolor scalar theory

introduced in the previous section.

The color-factor symmetry of bicolor amplitudes can be used to derive the null eigen-

vectors of the matrix of double-partial amplitudes. First we use eq. (2.15) and its analog

for c̃i to express the bicolor amplitude (2.5) in terms of the JO color factors

Abicolor
n,k =

∑
γ,δ∈Melia

C̃1δ2 m(1δ2|1γ2) C1γ2 . (3.3)
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Its variation under a shift of the color factors δaci is

δaAbicolor
n,k =

∑
γ,δ∈Melia

C̃1δ2 m(1δ2|1γ2) δaC1γ2 . (3.4)

Since the amplitude is invariant under color-factor shifts, and since C̃1δ2 constitute an

independent basis, we conclude that δaC1γ2 are null vectors of the matrix m(1δ2|1γ2)

0 =
∑

γ∈Melia

m(1δ2|1γ2) δaC1γ2 . (3.5)

Given the independence of αa,σ we obtain

n+1∑
b=3

(
ka · k1 +

b−1∑
c=3

ka · kσ(c)

)
m(1δ2|1σ(3) · · ·σ(b− 1)aσ(b) · · ·σ(n)2) = 0 (3.6)

i.e., we have derived a set of null eigenvectors of the matrix m(1δ2|1γ2). Since the matrix

of double-partial amplitudes is symmetric (cf. eq. (2.21)), we can also write

n+1∑
b=3

(
ka · k1 +

b−1∑
c=3

ka · kσ(c)

)
m(1σ(3) · · ·σ(b− 1)aσ(b) · · ·σ(n)2|1γ2) = 0 . (3.7)

The number of independent null eigenvectors is simply the number of independent color-

factor shifts specified above, namely (n− 2k)(n− 3)!/k! for k ≥ 2, and (n− 3)(n− 3)! for

k = 0 and k = 1. Subtracting this from the size of the Melia basis (n − 2)!/k!, we obtain

the rank of the matrix of double-partial amplitudes [44]

β(n, k) =

{
(n− 3)! k = 0, 1, 2,

(n− 3)!(2k − 2)/k! k ≥ 2 .
(3.8)

The existence of null eigenvectors has two consequences for the partial amplitudes

A(s)(β) =
∑

γ∈Melia

m(β|1γ2) C1γ2 . (3.9)

First, by virtue of eq. (3.5) they are invariant under the color-factor symmetry

δaA
(s)(β) =

∑
γ∈Melia

m(β|1γ2) δaC1γ2 = 0 . (3.10)

Second, by virtue of eq. (3.7), the set of partial amplitudes A(s)(1γ2) (where γ belongs to

the Melia set) are not independent, as they obey the fundamental BCJ relations

n+1∑
b=3

(
ka · k1 +

b−1∑
c=3

ka · kσ(c)

)
A(s)(1, σ(3), · · · , σ(b− 1), a, σ(b), · · · , σ(n), 2) = 0 . (3.11)

These relations reduce the number of independent amplitudes to β(n, k).
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Using the fundamental BCJ relations (3.11), Johansson and Ochirov identified an

independent basis of β(n, k) amplitudes for k ≥ 2, namely those A(s)(1γ2) for which γ

belongs to the Melia set and with γ(3) restricted to be one of the ψ̄ fields, i.e. γ(3) belongs

to the set {3, 5, 7, · · · 2k − 1}. We refer to this subset of permutations γ as the JO set. In

the Abicolor
5,2 (ψ̄1, ψ2, ψ̄3, ψ4, φ5) example, of the three Melia partial amplitudes A(s)(15342),

A(s)(13542), and A(s)(13452), only the last two belong to the JO basis. The JO set of

permutations will play a prominent role in the remainder of this paper, in which we use

the color-factor symmetry to express color-encoded amplitudes in terms of the JO basis.

For k = 2 amplitudes, γ(3) can only be 3, so the JO basis consists of the (n − 3)!

amplitudes A(1, 3, σ, 2), in which σ is an arbitrary permutation of {4, · · · , n}. The same

set of (n − 3)! amplitudes provides an independent basis for k = 0 and k = 1 amplitudes

as well, in which 3 labels one of the biadjoint fields.

4 KLT-type relations for biadjoint and bicolor amplitudes

Having set the stage by introducing the bicolor scalar theory and its amplitudes in section 2,

and by exploring the consequences of their invariance under color-factor symmetry in sec-

tion 3, we now derive a KLT-type relation for biadjoint and bicolor amplitudes. The results

of this section will facilitate the derivation of KLT-type relations for QCD amplitudes in

section 5.

We first perform a color-factor shift

C ′1γ2 = C1γ2 + δC1γ2 (4.1)

to set to zero all color factors not belonging to the JO set of permutations γ. (Color-factor

redefinitions of this form were previously discussed in section 5 of ref. [7] for all-gluon

amplitudes.) For example, for Abicolor
5,2 we choose α5,34 = −C15342/k5 · k1 in eq. (3.2)

to obtain

C ′15342 = 0 ,

C ′13542 = C13542 −
k5 · (k1 + k3)

k5 · k1
C15342 , (4.2)

C ′13452 = C13452 −
k5 · (k1 + k3 + k4)

k5 · k1
C15342 .

In the appendix, we compute the analogous color-factor shift for the five-point biadjoint

amplitude Abicolor
5,0 (or the five-gluon amplitude Aqcd

5,0 ) from which the procedure for the

general n-point amplitude will be clear. Since the bicolor amplitude (2.14) is invariant

under the color-factor shift (4.1), we may write it as

Abicolor
n,k =

∑
γ∈JO

Ã(s)(1γ2) C ′1γ2 (4.3)

where the sum is now restricted to the JO set of permutations.

An alternative way to obtain the shifted color factors C ′1γ2 employs the fact that

Ã(s)(1γ2) with γ ∈ JO is an independent basis, and that BCJ relations can be used to
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Figure 2. CHY prescription for computing the double-partial amplitude m(23τ1|13σ2).

write all the other partial amplitudes Ã(s)(1γ2) with γ ∈ Melia in terms of the JO basis,

thus reducing eq. (2.14) to the form of eq. (4.3) for some appropriate set of C ′1γ2. Johansson

and Ochirov use this approach to obtain eq. (4.3) with an explicit expression for C ′1γ2 (cf.

eq. (4.45) of ref. [44]).

Since the partial amplitudes (2.23) are invariant under the color-factor shift (cf.

eq. (3.10)), we can also write them as a sum over the JO set of permutations

A(s)(β) =
∑
γ∈JO

m(β|1γ2) C ′1γ2 . (4.4)

Let us now restrict our attention to amplitudes with two or fewer pairs of bifundamental

fields. For k ≤ 2, permutations belonging to the JO set must have γ(3) = 3, and so eq. (4.4)

takes the form

A(s)(β) =
∑

σ∈Sn−3

m(β|13σ2) C ′13σ2 , k ≤ 2. (4.5)

(For k = 0 and 1, this is true by definition. For k = 2, this is because 1 and 3 label the

only ψ̄ fields in the amplitude.) We further restrict our attention to the particular set of

partial amplitudes

A(s)(23τ1) =
∑

σ∈Sn−3

m(23τ1|13σ2) C ′13σ2 , k ≤ 2 (4.6)

where τ is an arbitrary permutation of {4, · · · , n}.
Let us now examine the (n − 3)! × (n − 3)! matrix of double-partial amplitudes

m(23τ1|13σ2) for amplitudes with k ≤ 2, beginning with k = 0. For the biadjoint scalar

theory, Cachazo, He, and Yuan gave an algorithm [9] for computing double-partial ampli-

tudes that begins with drawing a circle with the labels {1, 3, σ(4), · · · , σ(n), 2} around

the perimeter, and then inscribing a polygon whose vertices are {2, 3, τ(4), · · · , τ(n),1}
inside, as shown in figure 2. Because the segments of the polygon emerging from 1 and

2 must cross, the CHY prescription dictates that m(23τ1|13σ2) is given by 1/s12 times

an (n − 1)-point double-partial amplitude m(v3τ |v3σ), in which one of the fields (v) is

off-shell. Since kv can be eliminated in terms of k3, · · · , kn using momentum conservation,

the double-partial amplitudes m(v3τ |v3σ) can be expressed in terms of invariants sab with

3 ≤ a, b ≤ n. For example, for the amplitude Abicolor
5,0 , one has(

m(23541|13542) m(23541|13452)

m(23451|13542) m(23451|13452)

)
=

1

s12

(
− 1
s35
− 1

s45
1
s45

1
s45

− 1
s45
− 1

s34

)
. (4.7)
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The inverse of this matrix (using momentum conservation) is given by(
−s35(s34 + s45) −s34s35

−s34s35 −s34(s35 + s45)

)
= −

(
S[54|54]3 S[54|45]3

S[45|54]3 S[45|45]3

)
(4.8)

where S[σ|τ ]3 is the momentum kernel [4–7] defined as7

S[σ|τ ]3 =
n∏
i=4

[
s3,σ(i) +

i−1∑
j=4

θ(σ(j), σ(i))τ sσ(j),σ(i)

]
. (4.9)

For n-point amplitudes in general, the inverse of m(23τ1|13σ2) is given by the negative of

the momentum kernel, −S[σ|τ ]3, as was shown by Cachazo, He, and Yuan [9] by using KLT

orthogonality [56]. This can be seen from the results of ref. [9] by relabeling the external

legs 1→ 3, n− 1→ 1, n→ 2, and σ(i)→ σ(i+ 2), and then using cyclic symmetry of the

double-partial amplitudes m(3τ12|3σ21) = m(23τ1|13σ2).

Next consider bicolor amplitudes with one pair of (possibly massive) bifundamentals,

ψ̄1 and ψ2. It was shown in ref. [48] that the double-partial amplitudes with k = 1, when

expressed in terms of ka · kb with 2 ≤ a, b ≤ n, are identical to those of the biadjoint

theory. Above we showed that the particular double-partial amplitudes m(23τ1|13σ2) can

be written8 in terms of ka · kb with 3 ≤ a, b ≤ n. Since sab = 2ka · kb for 3 ≤ a, b ≤ n, the

matrix of double-partial amplitudes m(23τ1|13σ2) with k = 1 is identical, when written in

terms of sab with 3 ≤ a, b ≤ n, to that of the biadjoint scalar theory, and therefore has the

same inverse, namely −S[σ|τ ]3.

Next let us consider bicolor amplitudes with two pairs of bifundamentals, ψ̄1, ψ2 and

ψ̄3, ψ4, with masses m1 = m2 and m3 = m4. In general, fewer cubic diagrams will

contribute to these double-partial amplitudes relative to purely biadjoint double-partial

amplitudes because some of the cubic vertices present in the latter are ruled out by flavor

conservation, etc. (e.g., ψ̄1ψ̄3φa and ψ̄1ψ4φa). For the specific subclass of double-partial

amplitudes m(23τ1|13σ2), however, the same set of cubic diagrams that contribute in the

purely biadjoint case will also contribute to k = 2 bicolor amplitudes. This is because

for these amplitudes, as we explained above, the fields ψ̄1, ψ2 are effectively replaced by

a virtual biadjoint field φv, and the n-point double-partial amplitude is given by 1/s12
times an (n− 1)-point double-partial amplitude with (n− 3) external biadjoint fields, one

virtual biadjoint field, and one bifundamental pair ψ̄3, ψ4. These latter (effectively k = 1)

double-partial amplitudes are equal to the analogous biadjoint double-partial amplitudes,

except that we must replace sij with s′ij , where

s′12 = s12, s′34 = s34, s′ab = sab,

s′3a = s3a −m2
3, s′4a = s4a −m2

3, a, b ≥ 5. (4.10)

7Here σ, τ ∈ Sn−3 are permutations acting on labels {4, · · · , n}. Define θ(r, s)τ = 1 if the ordering of

r, s is the same in both sequences of labels, {σ(4), · · · , σ(n)} and {τ(4), · · · , τ(n)}, and zero otherwise. The

original definition [4–7] of the momentum kernel is slightly modified [8, 9] to be symmetric in its arguments,

S[σ|τ ]3 = S[τ |σ]3.
8Using s12 = (k3 + · · · kn)2.
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For example, for Abicolor
5,2 , eq. (4.7) becomes(

m(23541|13542) m(23541|13452)

m(23451|13542) m(23451|13452)

)
=

1

s′12

− 1
s′35
− 1

s′45

1
s′45

1
s′45

− 1
s′45
− 1

s′34

 (4.11)

as can be verified by examining eqs. (2.7) and (2.22). In general, for k = 2 amplitudes, the

inverse of m(23τ1|13σ2) is given by (minus) the momentum kernel (4.9) with sij → s′ij .

Thus, for all bicolor amplitudes with k ≤ 2, we have established that the inverse of

the matrix of double-partial amplitudes m(23τ1|13σ2) is given by (minus) the momentum

kernel, −S[σ|τ ]3 (with sij → s′ij in the k = 2 case). Hence eq. (4.6) can be inverted to give

an explicit expression for the shifted color factors

C ′13σ2 = −
∑

τ∈Sn−3

S[σ|τ ]3 A
(s)(23τ1) , k ≤ 2 . (4.12)

In turn, eq. (4.12) can be inserted into eq. (4.3) to obtain the following expression for k ≤ 2

bicolor amplitudes9

Abicolor
n,k≤2 = −

∑
σ,τ∈Sn−3

Ã(s)(13σ2) S[σ|τ ]3 A
(s)(23τ1) . (4.13)

This is our new KLT-type relation for biadjoint and bicolor scalar amplitudes (with k ≤ 2),

which expresses the full amplitude in terms of dual partial scalar amplitudes A(s)(· · · ) and

Ã(s)(· · · ). For example, for the five-point amplitude we have

Abicolor
5,2 =

(
Ã(s)(13542), Ã(s)(13452)

)(−s′35(s′34 + s′45) −s′34s′35
−s′34s′35 −s′34(s′35 + s′45)

)(
A(s)(23541)

A(s)(23451)

)
.

(4.14)

We can also write an expression for the most general partial scalar amplitude A(s)(β) in

terms of the partial amplitudes belonging to the independent basis A(s)(23τ1),

A(s)(β) = −
∑

σ,τ∈Sn−3

m(β|13σ2) S[σ|τ ]3 A
(s)(23τ1) , k ≤ 2 (4.15)

by inserting eq. (4.12) into eq. (4.4). These are precisely BCJ relations for scalar partial

amplitudes.

For amplitudes with k > 2, the fundamental BCJ relations imply that the ma-

trix of double-partial amplitudes has rank β(n, k), defined in eq. (3.8). In general, the

β(n, k)× β(n, k) submatrix m(2δ1|1γ2), where both δ and γ belong to the JO set, should

be invertible. Provided this is the case, the equation10

A(s)(2δ1) =
∑
γ∈JO

m(2δ1|1γ2) C ′1γ2 , δ ∈ JO (4.16)

9Recall that for k = 2 we must let sij → s′ij in eq. (4.9).
10The partial amplitudes A(s)(2δ1) constitute an alternative JO basis with opposite choice of “signa-

ture” [43] for the ψ̄1, ψ2 bifundamental pair relative to the usual JO basis.
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can be inverted to give

C ′1γ2 =
∑
δ∈JO

T (1γ2|2δ1) A(s)(2δ1) , γ ∈ JO (4.17)

although, unlike the k ≤ 2 case, we cannot present at this point an explicit expression for

the inverse matrix T . Inserting eq. (4.17) into eq. (4.3), we can write a KLT-type relation

for a general bicolor amplitude

Abicolor
n,k =

∑
γ,δ∈JO

Ã(s)(1γ2) T (1γ2|2δ1) A(s)(2δ1) . (4.18)

Similarly, by inserting eq. (4.17) into eq. (4.4), we obtain the BCJ relations

A(s)(β) =
∑

γ,δ∈JO
m(β|1γ2) T (1γ2|2δ1) A(s)(2δ1) . (4.19)

We anticipate that, like the momentum kernel, the matrix elements of T (1γ2|2δ1) will be

(n− 3)th order polynomials in the kinematic invariants.

5 KLT-type relations for QCD (and gravity) amplitudes

In this section, we derive KLT-type relations for QCD amplitudes with quarks and gluons

in two different ways. The first way uses the invariance of QCD amplitudes under color-

factor symmetry [39, 40], together with the results of the previous section. The second

way explicitly invokes color-kinematic duality [10, 44]. Both methods of course yield the

same result. In the final subsection, we apply our methods to obtain KLT relations for

gravitational amplitudes.

5.1 Derivation of QCD KLT-type relations using color-factor symmetry

An n-point tree-level QCD amplitude with k differently flavored (massive) quarks ψ, k

(massive) anti-quarks ψ̄ with corresponding anti-flavors, and (n− 2k) gluons is given by a

sum over cubic diagrams

Aqcd
n,k (ψ̄1, ψ2, ψ̄3, ψ4, · · · , ψ̄2k−1, ψ2k, g2k+1, · · · , gn) =

∑
i∈cubic

ci ni
di

(5.1)

where ci and di are the same color factors and propagators appearing in section 2 and

ni are kinematic numerators for QCD. Using eq. (2.15), we can rewrite eq. (5.1) in the

Melia-Johansson-Ochirov proper decomposition [42–44, 50]

Aqcd
n,k =

∑
γ∈Melia

A(1γ2) C1γ2 (5.2)

where C1γ2 are the JO color factors described in section 2 and

A(α) =
∑
i

Mi,αni
di

(5.3)

are color-ordered partial amplitudes of the gauge theory.
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For amplitudes containing one or more gluons, Aqcd
n,k is invariant under a family of

color-factor shifts, as was shown in ref. [39] by expanding the amplitude in a radiation

vertex expansion. Invariance of eq. (5.2) under a color-factor shift δaci implies

δaAqcd
n,k =

∑
γ∈Melia

A(1γ2) δaC1γ2 = 0 (5.4)

where δaC1γ2 are given in eq. (3.1). Since the parameters αa,σ in eq. (3.1) are independent,

eq. (5.4) implies

n+1∑
b=3

(
ka · k1 +

b−1∑
c=3

ka · kσ(c)

)
A(1, σ(3), · · · , σ(b− 1), a, σ(b), · · · , σ(n), 2) = 0 (5.5)

which are simply the fundamental BCJ relations for color-ordered QCD amplitudes, derived

using color-factor symmetry. These relations were first discovered for all-gluon amplitudes

in ref. [10], and proven in refs. [57–60]. The fundamental BCJ relations were extended to

QCD amplitudes for all values of k in ref. [44], and subsequently proven in ref. [61]. They

were shown to be a consequence of color-factor symmetry in refs. [39, 40].

Using the color-factor symmetry of the amplitude, we can rewrite eq. (5.2) in terms of

shifted color factors C ′1γ2 defined in section 4, which vanish unless γ belongs to the JO set

of permutations

Aqcd
n,k =

∑
γ∈JO

A(1γ2) C ′1γ2 . (5.6)

For amplitudes with k ≤ 2, we can use eq. (4.12) to write11

Aqcd
n,k≤2 = −

∑
σ,τ∈Sn−3

A(13σ2) S[σ|τ ]3 A
(s)(23τ1) . (5.7)

This is our KLT-type expression for QCD amplitudes with two or fewer quark-antiquark

pairs. For k = 0, an expression equivalent to this first appeared in ref. [33] and was proven

in ref. [34] using BCFW techniques [35]. In this paper, we have established that eq. (5.7)

is also valid for amplitudes with k = 1 and k = 2. We emphasize that each of the terms

in the sum is both gauge-invariant (the partial gauge-theory amplitudes) and color-factor

symmetric (the dual partial scalar amplitudes), as is, of course, the entire color-encoded

amplitude.

For amplitudes with more than two quark-antiquark pairs, we use eq. (4.17) to obtain

Aqcd
n,k =

∑
γ,δ∈JO

A(1γ2) T (1γ2|2δ1) A(s)(2δ1) (5.8)

where T (1γ2|2δ1) is the inverse of the matrix m(2δ1|1γ2), for both δ and γ belonging to

the JO set. For all-quark amplitudes (n = 2k), there is no color-factor symmetry, and

eq. (2.25) may be used to rewrite eq. (5.2) as

Aqcd
2k,k =

∑
γ,δ∈Melia

A(1γ2) m−1(1γ2|1δ2) A(s)(1δ2) . (5.9)

We cannot present at this point explicit expressions for T orm−1 in these two equations, but

we anticipate that they take the form of (n−3)th order polynomials of kinematic invariants.

11For k = 2, one must let sij → s′ij in eq. (4.9), where s′ij are defined in eq. (4.10).
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5.2 Derivation of QCD KLT-type relations using generalized gauge invariance

An alternative proof of the KLT-type relations for QCD amplitudes begins by assuming

color-kinematic duality, which means that the kinematic numerators satisfy the same alge-

braic relations as the color factors [10, 44]. The Jacobi relations among the color factors

ci allow them to be written in terms of a set of independent color factors C1γ2 as in

eq. (2.15). The analogous kinematic Jacobi equations allow the kinematic numerators ni
to be written as

ni =
∑

γ∈Melia

Mi,1γ2 N1γ2 (5.10)

for some set of independent numerators N1γ2. Expressions for N1γ2 in terms of ni parallel

those for C1γ2 in terms of ci [44]. We use eq. (5.10), together with eq. (2.20), to write

eq. (5.1) as

Aqcd
n,k =

∑
γ∈Melia

A(s)(1γ2) N1γ2 (5.11)

as was done for all-gluon amplitudes (k = 0) in ref. [11]. Similarly, the color-ordered partial

amplitudes (5.3) can be written as

A(α) =
∑

γ∈Melia

m(α|1γ2) N1γ2 (5.12)

using eq. (2.21).

Kinematic numerators ni that satisfy the same algebraic relations as color factors ci can

necessarily be written in the form (5.10), but this requirement does not uniquely determine

the N1γ2 (unless there are no gluons, n = 2k). Generalized gauge transformations on ni
(provided they preserve the Jacobi relations) can result in a different set of N1γ2’s. In

ref. [39], we described a set of restricted generalized gauge transformations of all-gluon

amplitudes that preserve the Jacobi relations, analogous to the shifts of color factors. In

the context of QCD amplitudes of gluons and quarks, for each of the external gluon legs

a, there is a family of restricted generalized gauge transformations δ̃ani. These restricted

generalized gauge transformations act on the independent numerators N1γ2 as

δ̃a N1σ(3)···σ(b−1)aσ(b)···σ(n)2 = βa,σ

(
ka · k1 +

b−1∑
c=3

ka · kσ(c)

)
(5.13)

where βa,σ is a set of arbitrary, independent parameters (or functions), with σ denoting a

fixed permutation of the remaining legs {3, · · · , n} \ {a} that belongs to the Melia basis.

We can choose βa,σ in such a way that the shifted numerators

N ′1γ2 = N1γ2 + δ̃N1γ2 (5.14)

vanish except for those in which γ is restricted to the JO set. We described how to do this

for color factors in section 4 and in the appendix, and the procedure is the same in this

case. Since gauge-theory amplitudes are invariant under generalized gauge transformations,
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eqs. (5.11) and (5.12) can be written as

Aqcd
n,k =

∑
γ∈JO

A(s)(1γ2) N ′1γ2 , (5.15)

A(α) =
∑
γ∈JO

m(α|1γ2) N ′1γ2 (5.16)

where the sums are now restricted to the JO set of permutations.

For amplitudes with two or fewer quark-antiquark pairs, we may invert eq. (5.16), just

as we did in section 4, to obtain

N ′13σ2 = −
∑

τ∈Sn−3

S[σ|τ ]3 A(23τ1) , k ≤ 2 . (5.17)

For all-gluon amplitudes (k = 0), these numerators are essentially those written down by

Kiermaier in ref. [62], and later by Cachazo, He, and Yuan in ref. [9].

By inserting eq. (5.17) into eq. (5.15), we obtain the KLT-type relation

Aqcd
n,k≤2 = −

∑
σ,τ∈Sn−3

A(s)(13σ2) S[σ|τ ]3 A(23τ1) , (5.18)

which is equivalent to eq. (5.7). Similarly, for k > 2, we can obtain an expression equivalent

to eq. (5.8).

By inserting eq. (5.17) into eq. (5.16), we obtain an expression for the most general

color-ordered amplitude A(α) in terms of partial amplitudes belonging to the independent

basis A(23τ1), namely

A(α) = −
∑

σ,τ∈Sn−3

m(α|13σ2) S[σ|τ ]3 A(23τ1) , k ≤ 2 . (5.19)

In the all-gluon case (k = 0), this is essentially the expression given in appendix C of

ref. [63]. It is equivalent in content (for k ≤ 2) to eq. (4.37) of ref. [44], though different in

form.

5.3 Gravitational KLT amplitudes

Having invoked in the previous subsection color-kinematic duality for the QCD kinematic

numerators ni, we can now use the double-copy prescription [10, 11, 17] to obtain gravita-

tional scattering amplitudes containing n−2k gravitons and 2k matter particles [44, 64, 65]

Agrav
n,k =

∑
i∈cubic

niñi
di

. (5.20)

Color-kinematic duality then allows us to use eq. (5.10) to write

Agrav
n,k =

∑
γ∈Melia

Ã(1γ2) N1γ2 (5.21)

where Ã(1γ2) are QCD partial amplitudes (5.3) with ni replaced by ñi. This expression

was first introduced for all-graviton amplitudes (k = 0) in ref. [11]. By virtue of the fact
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that the QCD partial amplitudes Ã(1γ2) obey BCJ relations (5.5), the amplitude (5.21) is

invariant under (restricted) generalized gauge transformations

δ̃Agrav
n,k =

∑
γ∈Melia

Ã(1γ2) δ̃N1γ2 = 0 . (5.22)

Hence we can write eq. (5.21) in terms of shifted numerators (5.14)

Agrav
n,k =

∑
γ∈JO

Ã(1γ2) N ′1γ2 (5.23)

with the sum now restricted to the JO set of permutations. We may then use eq. (5.17)

we obtain the gravitational KLT relation12

Agrav
n,k≤2 = −

∑
σ,τ∈Sn−3

Ã(13σ2) S[σ|τ ]3 A(23τ1) (5.24)

valid13 for amplitudes with k ≤ 2. A similar expression can be written for amplitudes with

k > 2. For k = 0, this is just the original (field-theory) KLT relation for the tree-level

n-graviton amplitude, so we have come full circle to the starting point of this paper.

6 Conclusions

Gauge-theory amplitudes possess a color-factor symmetry, which acts on its color factors

ci via momentum-dependent shifts while leaving the tree-level amplitudes invariant. A

direct consequence of this symmetry are the fundamental BCJ relations satisfied by the

color-ordered partial amplitudes of Yang-Mills theory and QCD.

The biadjoint scalar theory, which can be considered the zeroth copy of Yang-Mills

theory, also possesses color-factor symmetry. In this paper, we introduced another theory

with color-factor symmetry, the bicolor scalar theory. This theory contains both massless

biadjoint scalars as well as massive bifundamental scalars, and can be regarded as the

zeroth copy of QCD. The partial amplitudes of the biadjoint and bicolor scalar theories

are dual to the partial amplitudes of Yang-Mills and QCD, as they can be obtained by

replacing the kinematic numerators ni in the latter with color factors c̃i. We showed that

the dual partial amplitudes are themselves invariant under color-factor symmetry, and also

obey BCJ relations.

The color-factor symmetry was then used to recast tree-level biadjoint and bicolor am-

plitudes into a KLT-type form, involving a sum over products of dual partial amplitudes

multiplied by a momentum-dependent function T (· · · ). This momentum-dependent func-

tion is given by the inverse of a particular submatrix of double-partial amplitudes of the

bicolor theory, and is thus a rational function of the kinematic invariants. For amplitudes

with two or fewer bifundamental pairs (k ≤ 2), this function was shown to be an (n− 3)th

12Earlier work on extensions of KLT relations to more general gravitational amplitudes includes refs. [33,

45–47].
13Recall that for k = 2 we must let sij → s′ij in eq. (4.9).
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degree polynomial of the kinematic invariants, specifically the momentum kernel of refs. [4–

9], slightly modified by masses in the k = 2 case. We conjecture that, for amplitudes with

k > 2, the momentum-dependent function will also be an (n − 3)th degree polynomial in

the invariants, for which we hope that an explicit expression can be found.

We also used the color-factor symmetry to obtain a new KLT-type relation for tree-

level QCD amplitudes, involving a sum over products of QCD partial amplitudes and dual

partial amplitudes, and the same momentum-dependent function that appeared in the

bicolor amplitude. Each term in this sum is both gauge-invariant and color-factor symmet-

ric, as is the full color-ordered amplitude. The KLT-type relation was then alternatively

obtained through a derivation that explicitly invoked color-kinematic duality and a re-

stricted generalized gauge transformation. Finally, the double-copy prescription together

with the same generalized gauge transformation was used to obtain the KLT relation for

gravitational amplitudes.

By utilizing the color-factor symmetry and its parallels with generalized gauge trans-

formations, we have presented a unified treatment of the derivation of KLT-type relations

for the tree-level amplitudes

Abicolor
n,k =

∑
γ,δ∈JO

Ã(s)(1γ2) T (1γ2|2δ1) A(s)(2δ1) ,

Aqcd
n,k =

∑
γ,δ∈JO

A(1γ2) T (1γ2|2δ1) A(s)(2δ1) ,

Agrav
n,k =

∑
γ,δ∈JO

Ã(1γ2) T (1γ2|2δ1) A(2δ1) (6.1)

of the bicolor scalar theory, QCD, and gravity.
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A Color-factor shifts for five- and higher-point amplitudes

In this appendix, we describe the specific color-factor shift required to write the five-gluon

amplitude (or five-point biadjoint amplitude) in terms of BCJ basis amplitudes. In the

process, we obtain the five-point BCJ relations [10]. Our procedure readily generalizes to

an arbitrary n-point amplitude.

The Del Duca-Dixon-Maltoni decomposition [51] of the five-gluon amplitude (or alter-

natively the five-point amplitude of the biadjoint scalar theory) is given by

A5,0 =
∑
γ∈S3

A(1γ2) C1γ2

=A(13452) C13452 +A(13542) C13542 +A(14352) C14352

+ A(15342) C15342 +A(14532) C14532 +A(15432) C15432 (A.1)
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where A(1γ2) constitute the Kleiss-Kuijf basis of partial amplitudes of the corresponding

theory. There is a four-parameter family of color-factor shifts generated by gluons 4 and 5

δC13452 = α4,35 k4 · (k1 + k3) + α5,34 k5 · (k1 + k3 + k4) ,

δC13542 = α4,35 k4 · (k1 + k3 + k5) + α5,34 k5 · (k1 + k3) ,

δC14352 = α4,35 k4 · k1 + α5,43 k5 · (k1 + k3 + k4) ,

δC15342 = α4,53 k4 · (k1 + k3 + k5) + α5,34 k5 · k1 ,
δC14532 = α4,53 k4 · k1 + α5,43 k5 · (k1 + k4) ,

δC15432 = α4,53 k4 · (k1 + k5) + α5,43 k5 · k1 . (A.2)

We now show explicitly how to define a set of shifted color factors

C ′1γ2 = C1γ2 + δC1γ2 (A.3)

that vanish except for C ′13452 and C ′13542. First we consider the color factors in which the

label 3 is to the right of both 4 and 5. We set δC14532 = −C14532 and δC15432 = −C15432

by requiring (
k4 · k1 k5 · (k1 + k4)

k4 · (k1 + k5) k5 · k1

)(
α4,53

α5,43

)
= −

(
C14532

C15432

)
(A.4)

which can be solved to give(
α4,53

α5,43

)
=

1

(k4 · k5)(k2 · k3)

(
k5 · k1 −k5 · (k1 + k4)

−k4 · (k1 + k5) k4 · k1

)(
C14532

C15432

)
. (A.5)

Next we set δC14352 = −C14352 and δC15342 = −C15342 by choosing

α4,35 = − C14352

k4 · k1
− k5 · (k1 + k3 + k4)

k4 · k1
α5,43 ,

α5,34 = − C15342

k5 · k1
− k4 · (k1 + k3 + k5)

k5 · k1
α4,53 . (A.6)

Finally we plug eqs. (A.5) and (A.6) into the first two equations of eq. (A.2) to obtain,

after the use of momentum conservation and some algebra,

C ′13452 = C13452 −
k4 · (k1 + k3)

k4 · k1
C14352 +

k5 · k2
k5 · k1

C15342

− k2 · k5
k2 · k3

(
k4 · k3
k4 · k1

)
C14532 +

k2 · k5
k2 · k3

(
k4 · k2
k5 · k1

− 1

)
C15432 ,

C ′13542 = C13542 +
k4 · k2
k4 · k1

C14352 −
k5 · (k1 + k3)

k5 · k1
C15342

+
k4 · k2
k2 · k3

(
k5 · k2
k4 · k1

− 1

)
C14532 −

k4 · k2
k2 · k3

(
k5 · k3
k5 · k1

)
C15432 ,

C ′14352 = 0 ,

C ′15342 = 0 ,

C ′14532 = 0 ,

C ′15432 = 0 . (A.7)
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Since the amplitude is invariant under this color-factor shift, we have

A5,0 = A(13452) C ′13452 +A(13542) C ′13542 . (A.8)

Substituting eq. (A.7) into eq. (A.8) and equating to eq. (A.1) we obtain

A(14352) = −k4 · (k1 + k3)

k4 · k1
A(13452) +

k4 · k2
k4 · k1

A(13542) ,

A(15342) =
k5 · k2
k5 · k1

A(13452)− k5 · (k1 + k3)

k5 · k1
A(13542) ,

A(14532) = −k2 · k5
k2 · k3

(
k4 · k3
k4 · k1

)
A(13452) +

k4 · k2
k2 · k3

(
k5 · k2
k4 · k1

− 1

)
A(13542) ,

A(15432) =
k2 · k5
k2 · k3

(
k4 · k2
k5 · k1

− 1

)
A(13452)− k4 · k2

k2 · k3

(
k5 · k3
k5 · k1

)
A(13542) (A.9)

which are precisely the BCJ relations for five-gluon partial amplitudes [10].

An analogous procedure can be used for any n-point QCD amplitude to define shifted

color factors that vanish except for those belonging to the JO basis.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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