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Entanglement sharing among quantum particles with more than two orthogonal states

Kenneth A. Dennison and William K. Wootters
Department of Physics, Williams College, Williamstown, Massachusetts 01267

~Received 14 July 2001; revised manuscript received 28 August 2001; published 5 December 2001!

Consider a system consisting ofn d-dimensional quantum particles~qudits!, and suppose that we want to
optimize the entanglement between each pair. One can ask the following basic question regarding the sharing
of entanglement: what is the largest possible valueEmax(n,d) of theminimumentanglement between any two
particles in the system?~Here we take the entanglement of formation as our measure of entanglement.! For
n53 andd52, that is, for a system of three qubits, the answer is known:Emax(3,2)50.550. In this paper we
consider first a system ofd qudits and show thatEmax(d,d)>1. We then consider a system of three particles,
with three different values ofd. Our results for the three-particle case suggest that as the dimensiond increases,
the particles can share a greater fraction of their entanglement capacity.

DOI: 10.1103/PhysRevA.65.010301 PACS number~s!: 03.67.2a, 03.65.Ta, 03.65.Ud

Quantum entanglement, as exhibited, for example, in the
singlet state (1/A2)(u01&2u10&) of a pair of qubits, has been
the object of much study in recent years because of its con-
nection with quantum communication and quantum compu-
tation @1#. Though entanglement is a kind of correlation, it is
known to be fundamentally different from ordinary classical
correlation. One of the characteristic differences is this:
whereas arbitrarily many classical systems can be perfectly
correlated with each other—the temperature fluctuations in
ten different cities could, in principle, be exactly parallel—
any entanglement that may exist between two quantum par-
ticles seems to limit the degree to which either of the par-
ticles can be entangled with anything else@2,3#. For
example, if two qubitsA andB are in the singlet state, then
neither of them can have any entanglement with a third qubit
C, simply because such entanglement would require the pair
AB to be in amixedstate, whereas the singlet state is pure.
Coffmanet al. @3# have generalized this example~still con-
sidering only qubits! by allowingA andB to be only partially
entangled, in which case one finds an inequality expressing a
trade-off between theAB entanglement and theAC or BC
entanglement.

As this sort of limitation may be a fundamental property
of entanglement, one would like to express it more generally.
In particular, one would like to capture quantitatively the
limitation on the sharing of entanglement among arbitrarily
many particles of arbitrary dimension. The following prob-
lem offers one approach to such a quantitative expression.
Consider a system ofn d-dimensional quantum particles~qu-
dits!, and suppose that one wants each particle to be highly
entangled with each of the other particles. We expect that
there will have to be compromises, since increasing the en-
tanglement of any given pair will probably work against the
entanglements of other pairs. It makes sense, then, to ask
how large one can make theminimum pairwise entangle-
ment, the minimum being taken over all pairs@4#. In this
paper we address this problem, taking as our measure of
entanglement the entanglement of formation@5,6#, which for
a pair of qudits ranges from zero to log2 d. For a collection of
n qudits, let us call the maximum possible value of the mini-
mum pairwise entanglementEmax(n,d). This function, if it
can be found, will give us a specific quantitative bound on

the degree to which entanglement can be shared among a
number of particles. We focus in this paper on two special
cases:n5d andn53. As we will see, our results forn53,
combined with earlier work on the problem, suggest that in a
well-defined sense the limitation on entanglement sharing
becomes less restrictive with increasing values of the dimen-
sion d.

Before reviewing what is currently known about
Emax(n,d), let us recall the definition of entanglement of
formation. For a pure stateuF& of a bipartite quantum sys-
tem, the entanglementE(F) is defined@7# as

E~F!52(
i

r i log 2r i , ~1!

where ther i ’s are the eigenvalues of the density matrix of
either subsystem.~For a pure bipartite state the density ma-
trices of both subsystems necessarily have the same eigen-
values.! A mixed stater can always be written in many dif-
ferent ways as a probabilistic mixture of distinct but not
necessarily orthogonal pure states

r5(
j

pj uF j&^F j u. ~2!

The entanglement of formation ofr is defined@5,6# as the
average entanglement of the pure states of the decomposi-
tion, minimized over all possible decompositions:

Ef~r!5 inf (
j

pjE~F j !. ~3!

As we have mentioned above, the entanglement of formation
between a pair of qudits ranges from zero to log2 d. Let us
refer to the maximum value log2 d as theentanglement ca-
pacity of a pair of qudits.

For a pair of qubits, there is an explicit formula for the
entanglement of formation of an arbitrary mixed state@8#. It
is given in terms of another measure of entanglement called
the concurrence@8,9#, which at this point has a standard defi-
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nition only for qubits.1 In terms of the concurrenceC, which
ranges from zero to one, the entanglement of formation of a
pair of qubits isEf(r)5E @C(r)#, where the functionE is
defined by

E~C!5hF1

2
~11A12C2!G , ~4!

h being the binary entropy functionh(x)52x log2 x
2(12x)log2(12x). Note thatE(C) is a monotonically in-
creasing function, withE(0)50 andE(1)51. We will not be
focusing particularly on qubits in this paper, but Eq.~4! will
be useful both for summarizing previous work on the prob-
lem and, in a different context, for presenting our own re-
sults.

We now list the results that have been obtained so far
regardingEmax(n,d).

~1! Emax(2,d)5 log2 d. This equation simply says that if
there are only two particles, they can saturate their entangle-
ment capacity; they do not have to share the entanglement
with other particles.

~2! Emax(3,2)5E(2/3)50.550. Dür et al. @4# obtained this
result by proving that the optimal pairwise entanglement for
a system of three qubits is achieved in the state
(1/A3)(u100&1u010&1u001&).

~3! Emax(n,2)>E(2/n). Koashiet al. @10# showed that for
a system ofn qubits, if the state is such that the density
matrix of each pair of particles is the same, then the maxi-
mum pairwise concurrence is 2/n. It is conceivable~though it
seems unlikely! that by removing the symmetry constraint
one might be able to achieve a greater pairwise entangle-
ment; therefore, we write this result as an inequality rather
than an equality.

In this paper we add two new items to the above list:~i!
For n5d, that is, for a system ofd qudits, we find for each
value ofd a specific state in which each pair of particles has
exactly 1 ‘‘ebit’’ of entanglement between them.~For d52,
our state reduces to the singlet state of a pair of qubits.! This
will show thatEmax(d,d) is at least 1 for all values ofd. ~ii !
For n53, that is, for a system of three particles, we add to
the known result for qubits (d52) and to our own result for
qutrits @d53 in item ~i!# a third example withd57. Our
results for the three-particle case suggest that asd increases,
the particles can share not just more entanglement, but a
greaterfraction of their entanglement capacity.

A system ofd qudits

Before writing down our special state ofd qudits with
arbitraryd, we illustrate our construction in the special case

of three qutrits. Let the particles be calledA, B, andC, and
let the indicesi, j, and k label the elements of orthogonal
bases for the three particles, each index taking the values 0,
1, and 2. Our special state for this system is

uj&5
1

A6
(
i , j ,k

e i jk u i jk &, ~5!

where e i jk is antisymmetric under interchange of any two
indices ande01251. This is the singlet state of three qutrits
with respect to the group SU(3); i.e., it is the unique three-
qutrit state~up to an overall phase factor! that is invariant
under arbitrary transformations of the formU ^ U ^ U where
UPSU(3). Thedensity matrixuj&^ju is symmetric under
interchange of any two particles, so that each pair of particles
is equally entangled. To find the pairwise entanglement, we
write down the reduced density matrix of any pair; for defi-
niteness we choose the first two particles,A andB:

r i j ,i 8 j 8
AB

5
1

6 (
k

e i jke i 8 j 8k5
1

6
~d i i 8d j j 82d i j 8d j i 8!, ~6!

d being the Kronecker delta. Alternatively, we can writerAB

without indices as

rAB5
1

6
~ I 2F !, ~7!

where I is the identity operator andF is the operator that
interchanges particlesA and B: F5( i j u i j &^ j i u. The two-
qutrit staterAB is an example of a Werner state, that is, a
state that is invariant under all transformations of the form
U ^ U whereU is unitary. Werner states can be defined for
any d3d system, and one can show@11# that in any dimen-
sion the Werner states are precisely those states that can be
written asr5aI1bF, a and b being real numbers andF
being defined as above. Vollbrecht and Werner@11# have
shown that the entanglement of formation of any Werner
state is given byEf(r)5E@c(r)#, wherec(r)52Tr rF and
E is the function defined in Eq.~4!. @When c(r) is non-
negative, it plays the role of a concurrence for Werner
states.# In our case,c(rAB)51, so that the entanglement is
Ef(r

AB)5E(1)51. Thus each pair of qutrits has exactly one
ebit of entanglement. This value is, by the way, the maxi-
mum possible entanglement of any Werner state.

It is a simple matter to generalize the above construction
to a system ofd qudits. In that case, we haved indices
i 1 ,i 2 , . . . ,i d , each taking values from 0 tod21. Our spe-
cial state for this system is the SU(d) singlet state2

uj&5
1

Ad!
(

i 1 . . . i d
e i 1 . . . i d

u i 1 . . . i d&, ~8!

1The concurrence of a pure state of two qubits is simply 2AdetrA,
whererA is the reduced density matrix of one of the qubits. The
concurrence of a mixed stater of two qubits is given by
max$0,l12l22l32l4%, where l1>l2>l3>l4 are the square
roots of the eigenvalues ofr(sy^ sy)r* (sy^ sy), r* being the
complex conjugate ofr in the standard basis andsy being the usual
Pauli matrix @8,9#. We recall these formulas here for the sake of
completeness but will not need them in the present paper.

2This state has been used recently by Hillery and Buzˇek in a
scheme designed to probe a quantum gate that realizes an unknown
unitary transformation@12#.
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wheree i 1 . . . i d
is completely antisymmetric ande0,1, . . . ,d21

51. One can show directly that the reduced density matrix
of each pair of particles is again a Werner state

rAB5
1

d~d21!
~ I 2F !, ~9!

and that the entanglement of formation of this state is one
ebit. We thus conclude thatEmax(d,d)>1. We write an in-
equality here simply because our stateuj& may not optimize
the pairwise entanglement; one might be able to do better.
However, having put some effort into looking for better
states withd53, we regard it as likely that our state is op-
timal in that case.

A three-particle system

It is interesting to compare our result for three qutrits with
the previously studied example of three qubits@4#. For a
triple of qubitsEmax is 0.550, and we have just seen that for
a triple of qutrits,Emax is at least 1. However, a straightfor-
ward comparison of these numbers is not particularly illumi-
nating, because qubits and qutrits have different entangle-
ment capacities. We can perhaps make a fairer comparison
by considering the ratio ofEmax to the relevant entanglement
capacity. For qubits, this ratio is 0.550/log2 250.550,
whereas for qutrits it is 1/log2 350.631. Thus by this mea-
sure, qutrits are better able to share entanglement than qu-
bits: they can share a greater fraction of their entanglement
capacity. It is interesting to ask whether this trend will con-
tinue for larger values ofd. That is, will Emax(3,d)/ log2 d
continue to increase with increasingd?

To address this question, we consider one further case
with three particles, namely, the cased57. We choose the
value 7 because it allows us to construct a reasonably simple
and symmetric state that exhibits large pairwise entangle-
ment. In fact, we consider a one-parameterfamily of states,
having the following form:

uz&5
1

A7
(
j 50

6

~au j , j , j &1b (
kPQ

u j 1k, j 12k, j 14k&).

~10!

HereQ is the set$1,2,4%, and all the arithmetic shown in the
ket labels is mod 7, the basis states of each particle being
labeled by the integers 0, . . . ,6. Wetakea andb to be real
and positive, witha213b251 to ensure normalization. Thus
the stateuz& is completely specified once the value ofa is
given.

We have chosenQ to consist of thequadratic residues
mod 7, that is, the elements of$1,2,3,4,5,6% that can be writ-
ten asx2 mod 7 for some integerx. The properties of qua-
dratic residues@13# tend to minimize the overlap, in each
particle’s state space, between terms in Eq.~10! with differ-
ent values ofj. ~For this it is important that 7 is a prime of
the form 4N21 with integralN.!

A particular symmetry ofuz& shows immediately that the
pairsAB, BC, andCA are all equally entangled. If we define
a new summation indexk8 by k52k8 mod 7, then Eq.~10!
becomes

uz&5
1

A7
(
j 50

6

~au j , j , j &1b (
k8PQ

u j 12k8, j 14k8, j 1k8&),

~11!

where we have used the invariance ofQ under multiplication
by 2 mod 7. But Eq.~11! differs from Eq.~10! in that the ket
labels have been cyclically permuted. Thusuz& is invariant
under a cyclic permutation of the particles, and it follows
that each pair is equally entangled.

To write down the density matrix of one of the pairs, say
BC, it is helpful to reexpress Eq.~10! in yet another form,
changing the indexj in the jk sum to j 85 j 1k and then
relabelingj 8 as j:

uz&5
1

A7
(
j 50

6

~au j , j , j &1b (
kPQ

u j , j 1k, j 13k&). ~12!

The density matrix ofBC is the trace ofuz&^zu over particle
A, which we can write as

rBC5
1

7 (
j 50

6

usj&^sj u, ~13!

whereusj&, defined by

usj&5au j , j &1b (
kPQ

u j 1k, j 13k&, ~14!

is the state ofBC associated with the stateu j & of A.
In order to find the entanglement of formationEf (rBC),

we need to consider pure-state decompositions ofrBC and
find their average entanglements. Now, any pure stateub& in
such a decomposition must be a linear combination of the
seven orthogonal statesusj& that make uprBC ; that is, it
must lie in the seven-dimensional subspaceH spanned by
$usj&%:

ub&5(
j

b j usj&, ~15!

where( j ub j u251. The problem of findingEf (rBC) is sim-
plified by two facts:~i! E(rBC) cannot be smaller than the
smallest entanglement of anyub&PH; that is, Ef (rBC)
>minb E(b). ~ii ! Given any stateub&PH, one can generate
an entire decomposition ofrBC in which everyelement has
the same entanglement asub&. ~We prove this assertion in the
following paragraph.! Together, these two facts imply that
the entanglement of formation ofrBC is equalto minbEf (b).
Thus it is sufficient to find a single minimally entangled pure
state in the subspaceH occupied byrBC .

To generate a decomposition ofrBC from a given state
ub&PH, we apply a set of local unitary transformations to
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ub&; such transformations are guaranteed not to change the
entanglement. We start by defining two basic single-particle
transformationsS andT:

Su j &5vu j &; Tu j &5u j 11&, ~16!

wherev5e2p i /7 and, as always, the addition in the ket label
is mod 7. In terms of these basic operations, we define a pair
of two-particle transformationsU andV:

U5S5
^ S3; V5T^ T. ~17!

One can show thatUusj&5v j usj& and Vusj&5usj 11&, from
which it follows that

1

49 (
m50

6

(
p50

6

VpUmub&^buU2mV2p ~18!

5
1

49 (
j , j 8

(
m,p

v ( j 2 j 8)mb jb j 8
* usj 1p&^sj 81pu ~19!

5
1

7 (
j

ub j u2(
p

usj 1p&^sj 1pu5rBC . ~20!

We have thus produced the desired decomposition ofrBC .
It remains, then, to find the smallest possible value of

Ef (b). For the special case wherea5b51/2, each stateusj&
has exactly two bits of entanglement, but it happens that
certain linear combinations of the statesusj& have slightly
smaller entanglement. Using numerical minimization, we
find that for this case, minEf (b)51.9933.

Of course we are free to choose the value ofa as we
please, and it turns out that we maximize the entanglement of
formation by choosinga50.461, in which caseb50.512.
For this value ofa, we find numerically that the minimum
Ef (b) is 1.9944, obtained both for the simple caseub&
5usj& and for certain nontrivial linear combinations.@One
such combination has coefficientsb j equal to

(0.120,0.197,0.689,0.259,20.468,20.275,20.332), and the
others we have found are all related to this one by permuta-
tions and phase changes.# We conclude, then, that for the
stateuz& with a50.461, the entanglement of formation be-
tween each pair of particles is 1.9944, and, therefore,
Emax(3,7)>1.9944.

This result gives us another data point as we consider the
dependence of the ratioEmax(3,d)/ log2 d on the dimensiond.
Table I summarizes what we know so far about the casen
53. ~For d53 and d57, the values given are lower
bounds.!

In the limit asd goes to infinity, we wonder what value, if
any, the ratioEmax(3,d)/ log2 d approaches. It is conceivable
that the limit is 1, but it is equally conceivable that it is some
smaller constant. Either answer would be interesting. If the
limit of Emax(n,d)/ log2 d is 1 for all values ofn, then one
could reasonably say that entanglement can be shared freely
in an infinite dimensional state space.

We note that although in this paper we have focused on
the entanglement of formation, there exist other sound mea-
sures of entanglement, and it is surely a good idea, in trying
to quantify the restrictions on the sharing of entanglement, to
keep in mind alternatives such as the relative entropy of en-
tanglement@14# and the generalized concurrence of Rungta
et al. @15#. At the present stage of investigation, it is not clear
which measure or measures will yield the most elegant quan-
titative expressions of the limitations on entanglement
sharing.
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TABLE I. Lower bounds onEmax.

d Emax
(bound)(3,d) Emax

(bound)(3,d)/ log2 d

2 0.550 0.550
3 1.000 0.631
7 1.994 0.710
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