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Abstract

We describe a simple family of analytical coordinate systems for the
Schwarzschild spacetime. The coordinates penetrate the horizon smoothly and
are spatially isotropic. Spatial slices of constant coordinate time ¢ feature a
trumpet geometry with an asymptotically cylindrical end inside the horizon at
aprescribed areal radius Ry (with 0 < Ry < M) that serves as the free parameter
for the family. The slices also have an asymptotically flat end at spatial infinity.
In the limit Ry = 0 the spatial slices lose their trumpet geometry and become
flat—in this limit, our coordinates reduce to Painlevé-Gullstrand coordinates.

Keywords: Schwarzschild black hole, coordinate system, trumpet geometry
PACS numbers: 04.20.Jb, 04.70.Bw, 97.60.Lf, 04.25.dg

(Some figures may appear in colour only in the online journal)

1. Introduction

The Schwarzschild spacetime can be described analytically in many different coordinate
systems. In addition to the original Schwarzschild coordinates [1], well-known coordinate
systems include Kruskal-Szekeres coordinates [2, 3], Eddington—Finkelstein [4, 5] (or Kerr—
Schild [6]) coordinates, harmonic (or De Donder) coordinates [7] as well as Painlevé—
Gullstrand coordinates [8, 9]. Another example is a one-parameter family of analytical
coordinate systems that has both Eddington—Finkelstein and Painlevé—Gullstrand coordinates
as members [10, 11] (see also [12, 13]).

In this short paper we present another family of analytical coordinate systems representing
the Schwarzschild spacetime. This family has some remarkable properties: the coordinates
extend smoothly through the black hole event horizon, the spatial coordinates are isotropic
(so that the spatial metric can be written as a conformal factor to some power times a flat
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Figure 1. Embedding diagram for the Ry = M member of our family of solutions with
t = constant, = /2. The distance from the axis of symmetry measures the areal
radius R. The circle near the top of the figure marks the event horizon at R = 2M.

3_...............},

TKrlllkaI

Figure 2. Kruskal (left) and Penrose (right) diagrams for the Ry = M member of the
family of solutions (1). Short dashes mark the singularity at R = 0, long dashes mark the
limiting surface at R = M, and dots mark more general curves of constant areal radius R.
Solid curves (red online) mark # = constant trumpet slices which connect spatial infinity
to future timeline infinity. For comparison, the solid horizontal line (green online) in
the Penrose diagram marks a wormhole slice. Finally, the solid diagonal lines mark the
event horizon.

spatial metric), and, for almost all members of the family, the spatial slices take a so-called
trumpet geometry [14]. Moreover, all expressions are surprisingly simple, particularly for one
special member of the family.

Trumpet slices, meaning spatial slices of constant coordinate time that feature a trumpet
geometry, have played an important role in numerical relativity, since they help numerical
simulations avoid the spacetime singularities at the centers of black holes (see, e.g., [14, 15]
for discussions). A trumpet slice ends on a sphere of non-zero (and finite) areal radius. The
proper distance between this sphere and any point away from the sphere, measured on a slice
of constant coordinate time, is infinite. Represented in an embedding diagram (see figure 1,
or figure 2 in [14]), the slice therefore appears to approach a cylinder. The resulting shape
has given the trumpet geometry its name. Represented in a Penrose diagram, trumpet slices
connect spatial infinity in one universe with future timelike infinity in the other universe (see
figure 2).
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In numerical relativity simulations, trumpet slices emerge as a result of the imposed slicing
condition. In particular, the so-called 1+log slicing [16] leads, at late times, to ‘stationary 1+log’
trumpet slices [14, 17]. A ‘non-advective’ version of the 1+log slicing leads to maximally sliced
trumpet slices [18]. While the latter can be expressed analytically, albeit only in parametric
form [19], it does not appear to be possible to express the former completely analytically. Here
we present a completely analytical family of trumpet slices. The family is parameterized by
the areal radius of the trumpet, Ry, and takes a particularly simple form for Ry = M. At the
other limit of the family, Ry = 0, we recover Painlevé—Gullstrand coordinates, for which the
trumpet geometry disappears.

This paper is organized as follows: In section 2 we present the family of solutions. We
follow this with a derivation of the family in section 3. In section 4 we discuss our solutions
from the perspective of numerical relativity. We conclude with a brief summary in section 5.

2. A family of isotropic trumpet slices of the Schwarzschild spacetime

Consider the line element
2 2fi

Ry —2M
_r—"_o—dt +

ds* = —_—
r+ Ry r

R 2
drdr + (1 + —") (dr? + 2 dQ?). (1)
r

Here we have used spherical polar coordinates with an isotropic radius r, we have abbreviated

fi(r) = /2r(M — Ro) + Ry(2M — Ry), 2

and M and R, are constants. It can be verified that the line element (1) satisfies Einstein’s
equations in vacuum, but we will also derive this form of the metric from the Schwarzschild
solution below. In the following we restrict our analysis to Ry < M so that f; remains real for
all r > 0.

Computing the proper area of a sphere centered on the origin we see that the areal radius
R is related to the isotropic radius r by the simple relation

R:r+R0. (3)

In particular, this implies that the point » = 0 corresponds to a sphere of areal radius Ry. We
also see that, for positive Ry, the proper distance from r = 0 to any point r > 0 (at constant
coordinate time #) is infinite. Together, these two properties establish the spatial geometry of
the line element (1) as a trumpet geometry. An embedding diagram of this geometry is shown
in figure 1.

Particular values of Ry result in very simple solutions. Letting Ry = M, we see that
f1 = M, and the line element (1) reduces to

r—m
r+M

ds* = —

2
a2+ M arar 1 (1 + A—/I) (dr* + r*dQ?). )
r r

The relation (3) now becomes R = r + M, which is the same relation as for harmonic (or De
Donder) coordinates [7]. Figure 2 shows Kruskal and Penrose diagrams for this solution. If
we choose Ry = 0 instead, the line element (1) becomes

2M 2M
ds2:_(1_—)d12+2,/—dtdr+dr2+r2d92, (©)
r r

which is well known as the Painlevé—Gullstrand line element.
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3. Transformation from Schwarzschild coordinates
A straightforward derivation of the line element (1) starts with the Schwarzschild solution in
Schwarzschild coordinates,

ds? = —fodi* + f, ' dR* + R* dQ%. (6)

Here fy(R) = 1 — 2M/R, and M is the black hole’s gravitational mass. We then introduce a
height function 4(R) that transforms the Schwarzschild time 7 to a new time coordinate

t =1+h(R). 7

In terms of this new time coordinate the line element takes the form
2 2 dh —1 dh\? 2 2 162
ds” = —fodr +2fod—Rdth—|— o = fo R dR* + R*dQ°. 8)

We seek transformations that bring the spatial part of the line element into isotropic form,
meaning that we can write this spatial part as some overall factor times the flat metric.
Following convention we express the overall factor as the fourth power of a conformal factor
¥ and identify

dn\?
(fo—l — fo <&) ) dR? + R*dQ? = y*(dr? + 2 dQ?), )
where r is again an isotropic radius. From the angular part of this identification we obtain
R(r)
¥ = T, (10)

while the radial part yields

dh 1 R() \?
dr ]To\/l o (rR’(r)) ' "

Here we interpret R = R(r) as a function of r, and abbreviate R'(r) = dR/dr. Finally, in order
to obtain trumpet solutions, we look for solutions for which the conformal factor scales with
r~1/2 for small r. A surprisingly simple solution of this form results from the choice

R(r) =r+Ry, (12)
with 0 < Ryp < M. We then see that
v=,1+ IE, (13)
' —1/2

which, for small r, diverges with r as desired. Substituting equation (12) into (11) yields
dh/dR = fi/(rfp); inserting this into (8) and expressing fj in terms of r then results in the
line element (1) and completes the derivation.

4. 3+1 decomposition

Since trumpet slices play a special role in numerical relativity, it is of interest to express the
line element (1) in terms of a 3 + 1 decomposition (see, e.g., [15] for a textbook treatment).
Comparing the line element (1) with the 3+1 form

ds® = —a?dt? + y;; (dx' + B dr)(dx/ + 7 dr) (14)



Class. Quantum Grav. 31 (2014) 117001 Note

we can identify the lapse function «, the radial component of the shift vector ", and the spatial
metric y;; as

a—L ﬂ’_L and y;; = ¥ty (15)

T r+ Ry (r + Ro)?’ Vi i
Here the conformal factor v is given by (13), n;; is the flat metric in spherical polar coordinates,
and the non-radial components of the shift vanish. For time-independent solutions, the extrinsic
curvature can be computed from K;; = (D;8;+D;f;)/(2a), where D; is the covariant derivative

associated with y;;. For the line element (1) we find the non-zero components

r(M — R()) + MRO K¢¢
K, =— and Ky = = f1, 16
2 0= i (16)
as well as the trace
iy 3 2Ro) (M — R, MR
Eyl]Kij: ( r+ 0)( O)+ 0' (]7)

(r+Ro)fi
In many applications (for example in the BSSN formalism [20-22]) the extrinsic curvature is
decomposed according to
Aij = v (Kij = 37iK). (18)
All singular terms are then absorbed in the conformal factor, leaving the regular terms
2 3r + Ro)(M — Ry) + 2MRy

A~rr = ’
3 (r+ Ro)?fi

19)

and

. A r2(r(M — Ro) 4+ Ro(M — Ro/3))
Agg = 2L = . : (20)
sin” 0 (r+ Ro)*fi
For Ry = M most of the above expressions simplify significantly.
The 1+log slicing condition [16], which has proven to be extremely valuable in numerical

simulations of black holes, is a member of the family of slicing conditions
@ — B = —a’f()K @n
for the special choice f(«) = 2/a. From the above expressions we see that the line element
(1) satisfies the slicing condition (21) if instead we choose
l—a 2M — Ry(1 + @)
fla) = :
o 3M—Ry2+ @)
orjust f(o) = (1—a)/a for Ry = M. Unfortunately, this does not appear to be a very promising
choice from the perspective of numerical relativity. As discussed in [16], the properties of the
resulting gauge speeds suggest that one should choose f(«) > 1; here, however, f(a¢) — 0
as r — 00. We therefore do not expect the family of solutions (1) to be of great practical use
in numerical relativity, at least for this slicing condition.

(22)

5. Summary

We present a one-parameter family of analytical coordinate representations of the
Schwarzschild spacetime. This family has some remarkable properties, in addition to being
surprisingly simple: the coordinates penetrate smoothly through the event horizon, the spatial
coordinates are isotropic, and the spatial slices feature a trumpet geometry. The family is
parameterized by the areal radius Ry of the sphere to which the trumpets asymptote; for
Ry = 0 we recover Painlevé—Gullstrand coordinates. While these coordinates may not be of
great practical use in numerical relativity, we believe that they are interesting in their own right,
and that they provide a simple pedagogical example of black holes in trumpet geometries.
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