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ABSTRACT

The ‘direct collapse’ scenario has emerged as a promising evolutionary track for the formation
of supermassive black holes early in the Universe. In an idealized version of such a scenario, a
uniformly rotating supermassive star spinning at the mass-shedding (Keplerian) limit collapses
gravitationally after it reaches a critical configuration. Under the assumption that the gas is
dominated by radiation pressure, this critical configuration is characterized by unique values
of the dimensionless parameters JIM? and Ry/M, where J is the angular momentum, R, the
polar radius, and M the mass. Motivated by a previous perturbative treatment, we adopt
a fully non-linear approach to evaluate the effects of gas pressure on these dimensionless
parameters for a large range of masses. We find that gas pressure has a significant effect
on the critical configuration even for stellar masses as large as M ~ 10° Mg. We also
calibrate two approximate treatments of the gas pressure perturbation in a comparison with
the exact treatment, and find that one commonly used approximation in particular results in
increasing deviations from the exact treatment as the mass decreases, and the effects of gas
pressure increase. The other approximation, however, proves to be quite robust for all masses

M > 10* M.

Key words: black hole physics —equation of state — stars: Population III.

1 INTRODUCTION

Supermassive black holes (SMBHs) reside at the centres of galaxies.
The most recent observational confirmation was provided by the
spectacular images of the Event Horizon Telescope Collaboration
(see Event Horizon Telescope Collaboration: Akiyama et al. 2019,
as well as several follow-up publications), showing radiation emit-
ted by material accreting onto the SMBH at the centre of the
galaxy M87 and shadowing by the black hole’s event horizon.
Accreting SMBHs are also believed to power quasars and active
galactic nuclei, which have been observed out to large cosmological
distances (see e.g. Fan 2006; Fan et al. 2006). Examples of quasars
at large distances include J1342 + 0928, at a redshift of z >~ 7.5,
and powered by a SMBH with mass of approximately 7.8 x 108 M,
(Banados et al. 2018), J1120-0641, at a redshift of z >~ 7.1 and with
a black-hole mass of approximately 2.0 x 10° Mg (Mortlock et al.
2011), as well as the ultra-luminous quasar JO100 + 2802 at a
redshift of z = 6.3 and with a mass of about 1.2 x 10'° My (Wu
et al. 2015). The existence of such massive black holes at so early
an age in the Universe poses an important question (see e.g. Shapiro

* E-mail: tbaumgar@bowdoin.edu

© 2019 The Author(s)

2004; Haiman 2013; Latif & Ferrara 2016; Smith, Bromm & Loeb
2017, for reviews) — namely, how could they have formed in such a
short time?

One possible evolutionary scenario involves the collapse of first
generation — i.e. Population III (Pop III) — stars to form seed black
holes, which then grow through accretion and/or mergers. Growth
by merger may be limited by recoil speeds (Haiman 2004). Growth
by accretion depends in part on the efficiency of the conversion
of matter to radiation, and is usually limited by the Eddington
luminosity (Shapiro 2005; Pacucci, Volonteri & Ferrara 2015).
While this already constrains the formation of SMBHs from stellar-
mass black holes (Smith et al. 2017), including the effects of
photoionization and heating appears to reduce the accretion rate
to just a fraction of the Eddington limit (see Alvarez, Wise &
Abel 2009; Milosavljevi¢ et al. 2009; see also Whalen & Fryer
2012, for how natal kicks affect the accretion rate, as well as Smith
et al. 2018, for recent simulations in a cosmological context). It is
difficult to see, therefore, how seed black holes with masses of Pop
III stars, about 100 Mg, could grow to the masses of SMBHs by z
~ 7. In fact, Bafiados et al. (2018) argue that the existence of the
objects J1342+0928, J1120-0641, and JO100 + 2802 ‘is at odds
with early black hole formation models that do not involve either
massive (>10* M) seeds or episodes of hyper Eddington accretion’
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(see also their fig. 2). The observation of these distant quasars
therefore suggests the direct collapse of objects with masses of
M 2 10*7 Mg, as a plausible alternative scenario for the formation
of SMBHs (e.g. Rees 1984; Loeb & Rasio 1994; Oh & Haiman
2002; Bromm & Loeb 2003; Koushiappas, Bullock & Dekel 2004;
Shapiro 2004; Lodato & Natarajan 2006; Begelman, Volonteri &
Rees 2006; Regan & Haehnelt 2009b; Begelman 2010; Agarwal
et al. 2012; Johnson et al. 2013).

The progenitor object in such a ‘direct collapse’ scenario is often
referred to as a supermassive star (SMS). The properties of SMSs
have been the subject of an extensive body of literature (see e.g.
Hoyle & Fowler 1963; Iben 1963; Chandrasekhar 1964; Bisnovatyi-
Kogan, Zel’dovich & Novikov 1967; Wagoner 1969; Zel’dovich &
Novikov 1971; Appenzeller & Fricke 1972; Begelman & Rees
1978; Fuller, Woosley & Weaver 1986 for some early references,
as well as Shapiro & Teukolsky 1983, hereafter ST; Kippenhahn,
Weigert & Weiss 2012, for textbook treatments). Numerous authors
and groups have studied possible avenues for their formation (see
e.g. Hosokawa et al. 2013; Schleicher et al. 2013; Sakurai et al.
2015; Umeda et al. 2016; Woods et al. 2017; Haemmerlé et al.
2018b,a; see also Wise et al. 2019 for recent simulations in the
context of cosmological evolutions) as well as their ability to avoid
fragmentation (e.g. Bromm & Loeb 2003; Wise, Turk & Abel 2008;
Regan & Haehnelt 2009a; Latif et al. 2013; Visbal, Haiman & Bryan
2014; Mayer et al. 2015; Sun, Ruiz & Shapiro 2019, and references
therein).

In Baumgarte & Shapiro (1999b, hereafter Paper I), we con-
sidered an idealized evolutionary scenario for rotating SMSs. We
assumed that SMSs are dominated by radiation pressure, and that
they cool and contract while maintaining uniform rotation. Since
the star will spin up during the contraction, it will ultimately reach
mass-shedding, i.e. the Kepler limit, and will subsequently evolve
along the mass-shedding limit (see also Baumgarte & Shapiro
1999a). Ultimately, the SMS reaches a critical configuration at
which it becomes radially unstable to collapse to a black hole.
The critical configuration is characterized by unique values of the
dimensionless parameters J/M* and R,/M, where J is the angular
momentum, R, the polar radius, M the mass, and where we have
adopted geometrized units with G = ¢ = 1. We computed the values
of these parameters both from numerical models of fully relativistic,
rotating n = 3 polytropes, and from an approximate but analytical
energy functional approach that accounts for the stabilizing effects
of rotation and the destabilizing effects of relativistic gravity with
leading-order terms only. Both approaches result in similar values
for the critical parameters (see table 2 in Paper I).

The uniqueness of the parameters characterizing the critical
configuration implies that the subsequent evolution, namely the
collapse to a black hole, as well as the gravitational wave signal
emitted in the collapse, is unique as well. Numerical simulations
have shown that this collapse will lead to a spinning black hole
with mass Mgy/M =~ 0.9 and angular momentum JBH/MéH ~ 0.7,
surrounded by a disc with mass My;o/M = 0.1 (see e.g. Shapiro &
Shibata 2002; Shibata & Shapiro 2002; Liu, Shapiro & Stephens
2007; Montero, Janka & Miiller 2012; Shibata et al. 2016a; Sun
et al. 2017; Uchida et al. 2017; Sun, Ruiz & Shapiro 2018).

Given the importance of the critical parameters, we examined
in Butler et al. (2018, hereafter Paper II) to what degree they
depend on some of the assumptions made, and computed leading-
order corrections due to gas pressure, magnetic fields, dark mat-
ter, and dark energy. We determined these corrections using a
perturbative treatment based on the energy functional approach
mentioned above. As one might expect, the largest corrections by
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far are those caused by gas pressure. We treated the effects of gas
pressure using two different approximations: one based on a formal
expansion (‘Approximation I’, see Section 17.3 in ST, as well as
Section 2.2 below), and the other by adjusting the polytropic index
n [‘Approximation II’, see e.g. Exercise 17.3 in ST, Problem 2.26 in
Clayton (1983), as well as Section 2.3 below]. The latter approach,
Approximation II, is very simple to implement, and is therefore
quite commonly used in numerical simulations (see e.g. Shibata,
Uchida & Sekiguchi 2016b; Sun et al. 2018, for recent examples).
While it results in expressions for the non-dimensional parameters
discussed above that are identical to those from Approximation I, at
least to leading order, expressions for some dimensional quantities
differ even at leading order.

Motivated by this observation, we revisit in this paper the effects
of gas pressure on maximally rotating SMSs at the onset of collapse.
We improve on our treatment in Paper II in two ways. First, we use
the ‘rotating neutron star’ (RNS) code of Stergioulas & Friedman
(1995) to construct fully relativistic models of rotating SMSs, rather
than relying on a perturbative treatment within the energy functional
approach. Secondly, we employ exact expressions for a mixture
of radiation and gas pressure in addition to the two approximate
treatments of gas pressure described above. As a result, we can
treat these stars accurately even for less massive models, for which
the gas pressure becomes increasingly important, and can calibrate
the accuracy of the two approximate treatments and their impact
on this idealized direct-collapse scenario. We note, though, that
we ignore other effects that may become important for smaller
masses, including electron—positron pair production or nuclear
reactions. Our findings are summarized in Fig. 7 below, which
shows the dimensionless parameters R,/M and J/M? for the critical
configuration as a function of stellar mass for a large range of stellar
masses. We find good agreement between the exact and approximate
treatments of the gas pressure, as well as with the perturbative results
of Paper I, for large masses with M > 10° M. This confirms our
finding of Paper II that, even for these large masses, gas pressure has
an important effect on the above parameters. For smaller masses,
both approximations lead to deviations from the exact treatment
of gas pressure, but those stemming from Approximation II are
significantly larger than those from Approximation I.

This paper is organized as follows. In Section 2, we derive the
equation of state (EOS) for an SMS supported by a combination of
radiation and gas pressure. We model this EOS in three different
ways: exactly, assuming that the star is isentropic (Section 2.1),
as well as using the two Approximations I and II described above
(Sections 2.2 and 2.3). In Section 3, we use these three treatments
of the EOS to explore their effects on equilibrium models of non-
rotating, spherically symmetric SMSs. In Section 4, we consider
rotating SMSs and determine the parameters characterizing their
critical configurations at the onset of collapse to a black hole. We
conclude in Section 5 with a brief summary.

2 EQUATION OF STATE

In this section, we use thermodynamic relationships to derive the
EOS for an SMS supported by both radiation and gas pressure. We
first treat the gas pressure terms exactly, assuming that the star is
isentropic, and then introduce two different approximations.! We
close this section with a description of our numerical implementa-
tion of the different EOSs.

"We closely follow the treatment of Paper IT in this discussion.

€202 JaqWBA0ON gz uo Jasn Aselql| oBs)j00 ulopmog AQ $89ZESS/S6 | 1/S/88Y/8101Ke/seluw/Wwoo dno olwapese//:sdiy Wol) papeojuMo



2.1 Exact approach to handling gas pressure

We begin by finding expressions for the total pressure, total internal
energy density, and total entropy per baryon. We then introduce
dimensionless variables, collect the key expressions, and discuss
our approach to generating a tabulated EOS, leaving the numerical
details to Section 2.4.

2.1.1 Total pressure
The total pressure, P, is the sum of the radiation and gas pressures,
P =P + P,. @))

The radiation pressure P, is given by

= Lot )
r = 5a s
3
where 7 is the temperature and
8ok
S 3)
15h

the radiation constant in geometrized units. In (3), we have also
introduced the Boltzmann constant kz and Planck’s constant /.

Assuming a fully ionized hydrogen gas for simplicity, the gas
pressure P, is

Pg = ZanBT, (4)

where

ng = 22 5)
mg

is the baryon number density, py is the rest-mass density, and mjg is
the baryon rest mass. The total pressure is then given by

1
P=P+P, = 3aT“ + 2npkpT. (6)

2.1.2 Total internal energy density

Similarly, the total internal energy density € is the sum of contribu-
tions from the radiation,

& =aTl*, @)
and the (non-relativistic) plasma,
Eg = 3anBT, (8)

where we have again assumed a fully ionized hydrogen gas. We
then have

€e=¢+¢ =aT*+ 3ngksT. ©)]

The total (energy) density p is the sum of the rest-mass density and
the total internal energy density, i.e.

P =po+e. (10)

2.1.3 Total entropy per baryon

The total entropy per baryon, s, is again the sum of contributions
from the radiation and the gas,

5 =S+ 5, (11)
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and is related to the internal energy density and pressure through
the first law of thermodynamics,

() ()
Tds=d(— )+ Pd|—). (12)
ng ng

The photon entropy per baryon, s;, is

5= M;"—/ZTS, (13)
and the gas entropy per baryon, s,, is

4m3/2m|73/2 kg T 3
%z“m<_ﬁ?_(mm)>+“& (14)

where m. is the electron mass and & = h/27. Substituting equa-
tions (13) and (14) into equation (11), we find that the total entropy
per baryon is

damgT? Skl 4m2/2m7B/2 kT 3 4 sk (15)
= — n| ——— .
N 300 " 02 2 h? "

2.1.4 Collecting equations

In geometrized units, the pressure and the various energy densities
all have the same units of length~2. Therefore, we can non-
dimensionalize them using the same constant, which proves to be
convenient for later numerical work. Defining a constant K with
units of length??,

a 3s \*?
K=- , (16)
3 (4mBa>

we define dimensionless pressure, rest-mass density, internal energy
density, and total density as

P =K3P, 17
oo = K po, (18)
¢ = K3, (19)
and

p=Kp, (20)

respectively. In terms of these dimensionless variables, equa-
tions (6), (9), (10), and (15) now take the form

_ 1 o)
P=-ak’T* + 22 kT, @1
3 mpe
¢ =ak’T* + 3% 4T, (22)
mg
_ _ 34 ;50
p =,00+aK T +3—kBT, (23)
mp
and
4a T3 2/2m]73/2 kg T 3
= ——K kg 1 Skg.
$=5 5 me sl 2 (2nh2) + ok
(24)

Given a pressure P and an entropy per baryon s, we solve
equations (21) and (24) simultaneously for 7 and py, which we
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then substitute into equations (22) and (23) to calculate € and p,
respectively. The result is a tabulated EOS that we use in numerical
calculations in Sections 3 and 4. We discuss the construction of
these tabulated EOSs in more detail in Section 2.4 below.

Instead of adopting an exact description of radiation and gas
pressure, it is also common to use approximate treatments. We
introduce two different approximations, ‘Approximation I and
‘Approximation II’, in Sections 2.2 and 2.3 below. For the purpose
of comparing these approximate treatments with the exact solution
it is convenient to define a small dimensionless parameter S,

B = 8kg/s ~ P,/P.. (25)

We note that slightly different definitions of B are used in the
literature. In Paper II, in particular, we defined B in terms of
the radiation entropy s, rather than the total entropy s. To linear
order, however, the two definitions are equivalent, so that all linear
order expressions in Paper II can be used without modification.
With the definition (25) a constant 8 now means constant total
entropy per baryon throughout a star, instead of constant radiative
entropy per baryon. Constant total entropy per baryon is the more
realistic assumption, and is made plausible for SMSs because they
are expected to be convective (see e.g. the appendix of Loeb &
Rasio 1994).

2.2 Approximation I

Approximation I is based on a formal expansion, and takes into
account the effects of the gas to leading order only. We refer the

reader to Section 17.3 in ST for a detailed treatment, but review the
main results here. If s, < s;, we can approximate s, with s and write
the temperature as

3 173 k 3
T~ 220 LIS Y () : (26)

4mga 3s  3s 4myapo
where s is defined as

k 3 7

S0 = (31n (TEZ) + 5 Inme+ 2 lnmg +21n2 + 5) ks. (27)
(see equation 17.3.4 in ST). The natural scale factor, which we

called K; in paper II, is the same as K defined in (16), K; = K.
Defining the auxiliary functions

4 12k, 4k 3
ﬂ + B B 1 s

r=— - — 28
s s K 4dmpa (28)
and
4k
p=—, 29
s
we write the internal energy density as
e~ Kpy” (3+%+alnp). (30)

The functions A and fi are decorated with bars because they are
dimensionless versions of the corresponding functions A and u
defined in equations (17.3.11) and (17.3.12) of ST.

In terms of B, equation (30) becomes

5 1 1
e~Kpy  (3=B(1-Smp—-In(K3p)+-Inn) ), 31
2 2 2
where
243452 (m

3/2
n= _) ~ 1.367 x 107*. (32)
nmg

77
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The pressure can be found in terms of € as

1148
31+ p/2

As in Section 2.1.4, we define dimensionless fluid variables using
the scaling relations (17) through (20). Given the pressure and the
entropy per baryon, we can solve equation (33) for the internal
energy density €. Substitution into equation (31) then allows us
to find a numerical solution for the rest-mass density pg, which
can simply be added to the internal energy density to find the total
density p. From these, we construct another tabulated EOS (see also
Section 2.4 below).

€. (33)

2.3 Approximation II

A pure radiation gasis ann =3, or I' = 1 4 1/n = 4/3 polytrope. In

Approximation II, the EOS is still taken to be of polytropic form,

with the effects of the gas pressure approximated by a small change

in the polytropic index (see e.g. exercise 17.3 in ST, and problem

2.26 in Clayton 1983). We compute the adiabatic exponent from
B4+ p) 4 B

_(dlnP) _4,_ BUtp 4P ”
=\ane), T3 50 p6p 376

and require the pressure P to obey

P=Kip,'. (35)
We find that Kj; is
Ki=(+pKp,"", (36)

which is not truly constant. Approximating Kj; as independent of
po for small B, we can find the internal energy density to be

e=mP, 37)
where the approximate polytropic index is
R 3

-1 1482

The scale factor used to define dimensionless quantities is now
K =~ (1 + B)K. Given a pressure and an entropy per baryon, we
can use equation (37) to calculate the internal energy density € and

equation (35) to calculate the rest-mass density p¢. The total density
p is again the sum of py and €.

2.4 Numerical implementation

Given an EOS, a pressure P, and a total entropy per baryon s,
we would like to calculate the remaining thermodynamic variables.
For all three approaches, we first compute 8 from s using (25). For
Approximation II (Section 2.3), we can then compute all quantities
analytically. For the exact approach (Section 2.1.4) and Approxi-
mation I (Section 2.2), however, we need to find roots of equations
numerically. In practice, we use the Numerical Recipes (Press
et al. 2007) routines rt safe and mnewt for one-dimensional and
two-dimensional iterative root-finding, respectively. These routines
require analytical derivatives. For the exact EOS, for example, we
use equations (21) and (24) to define

_ 1 2p0ksT
F(T. o) = P — —ak’T* — 2B~ (39)
3 mg
4amgK3T3
BT, p)=s— ————— (40)
300
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am3Pm*KS [ keT \°
kil c B — 5kg. 41
B n( p= (2nh2> B (41)

To solve equations (21) and (24) simultaneously for 7 and py, the
required analytical derivatives are the Jacobian matrix elements

4 200k
Ji =07k =*—GK3T3*m, (42)
3 mg
2kg T
Jip =05 F1 = — , (43)
mp

4amBK3T2 3kB
Iy = 0rF = - = 2R, (44)
Po T

4amB K 3 T3 ZkB

304 o
Note that J,; is also the derivative needed for the numerical solution
of equation (24) for 7"when given s and py. In addition to derivative
information, mnewt needs a good initial guess for the solutions 7
and py. Because we expect the addition of gas terms to make only
a small difference, we can assume a polytropic solution with n = 3
and use

Ty = 0, Fy = (5)

3P\

Tguess = (a?) ) (46)
damgK>T3

ﬁO,guess = Tg““ .

as initial guesses. Once the solutions for 7"and g, have been found,
€ and p can be found from equations (22) and (23). Our EOS class is
called directly from our TOV-solver for the calculations in Section 3.
A separate driver routine calls our EOS class to generate tabulated
EOSs suitable for input to the RNS code (Stergioulas & Friedman
1995) used for calculations in Section 4.

3 NON-ROTATING SUPERMASSIVE STARS

As a first experiment, we explore the effects of the different
treatments of the EOS on the structure of non-rotating SMS.
To do so, we solve the Tolman—Oppenheimer—Volkoff equations
(Oppenheimer & Volkoff 1939; Tolman 1939)

dm

—— =4 (o +)r?, (48)
dr

and

dp m + 4m Pr?
d_r:_(p0+€+P)r2(1——2m/r)7 (49)

where m(r) is the mass inside areal radius r. The stellar radius R is
defined as the value of r at which the pressure P first vanishes. The
stellar mass is then given by M = m(R). Equations (48) and (49)
can be non-dimensionalized as previously discussed for the EOSs.
For each of our three approaches to handling gas pressure we pick
a value for the total entropy per baryon and numerically integrate
the TOV equations at fixed entropy for a variety of central rest-
mass densities. At a critical central rest-mass density pg . the mass
M of the star along a sequence of constant entropy is maximized,
marking the onset of radial instability (‘turning-point’ criterion).
We call this mass M.;;. As motivated in Paper II, we combine these

Supermassive stars at the onset of collapse 4199

x  TOV Exact

0006' Pert. 2
o TOVI
= TOVII

o1
0.0021
P00 001 002 0.03 004

B
23 1/3

Figure 1. The dimensionless variable xcii = Mg}, Pole as a function of
B = 8kg/s for non-rotating SMS solutions to the TOV equations. Crosses
(red online) denote the numerical results for the exact treatment of the
EOS from Section 3. The solid line (blue online) represents the analytical,
leading-order perturbative prediction (52) from Section 3 (which is identical
for Approximations I and II to the EOS). The open circles (outlined in
black online) and filled squares (green online) denote the numerical results
from Section 3, using Approximations I and II to the EOS, respectively.
For finite entropy (non-zero f) an SMS is partially supported by gas
pressure, and non-zero X indicates that this stabilizes it against collapse
for central densities below pg .. Compare with fig. 1 of Paper II. As
suggested in Paper II, Approximation I is indeed closer to the exact solution,
despite Approximation II agreeing better with the leading-order perturbative
prediction.

critical parameters into a single dimensionless parameter X
o = WP = MR (50
For an SMS supported by radiation pressure alone, i.e. pure n =
3 polytropes, we have pg . = 0 and hence x; = 0, indicating that
all of these stars are unstable in relativistic gravity. The max1mum
mass is then given by the Newtonian value Mo = M = 4.555.
In the presence of gas pressure, the mass will take a maximum
at some finite central density po . > 0, thereby stabilizing those
configurations with central densities smaller than this critical value.
In the following, we parametrize the critical configurations for our
EOSs by the values of x.; and by the relative mass differences § Sph,
defined through

Moy = M (1 + a*"“) (51)

In Figs 1 and 2, we show results for x.; and Bﬁh as a function of
B = 8kgls.

Both Figs 1 and 2 also include perturbative results, labelled

‘Pert.’, that are computed from analytical, leading-order perturba-
tive expressions derived from a simple energy functional approach
(see Paper II for details). Both Approximation I and II lead to
identical expressions for X,
Xerit = %ﬁ (52)
(see equations 49 and 56 in Paper II, hereafter 11.49 and I1.56),
where k, = 0.638 99 (Lai, Rasio & Shapiro 1993) and k4, =
0.918 294 (Shapiro & Teukolsky 1983). The two approximations
differ, however, in their predictions for the corrections to the mass.
For Approximation I, this correction is

3.k 3
a*P'”_<41n4—]q+21 npg+= C>ﬁ (53)
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0.0

TOV Exact
Pert. T
TOV I
Pert. II
TOV II
SUS II

—0.11

sph
5M

—0.21

0.00 0.02 0.04 0.06

Figure 2. The relative change in the mass Sigh (see 51) as a function of
B = 8kg/s for non-rotating SMS solutions. Crosses (red online) denote
the numerical results using the exact EOS from Section 3. The solid and
dashed lines (blue online) represent the analytical, leading-order perturbative
predictions (53) and (55) derived using the energy functional method with
Approximations I and II to the EOS, respectively. The open circles (outlined
in black online) and filled squares (green online) denote the numerical
results from Section 3. The triangles (purple online) labelled SUS represent
numerical results of Shibata et al. (2016b), who adopted Approximation
II. The relative change in the critical mass increases in magnitude as B
increases. As in Fig. 1, we find that Approximation I is closer to the
exact treatment of the EOS than Approximation II. Compare with fig. 2 of
Paper I1.

(see I1.51) with
ke 1 o 1 1

C=— M- -lny— -, 54
2 3 Mo Ty 4

k; = —0.45928, and 7 given by (32), while for Approximation II it
is

st — (Z In ‘% + zlnﬂ - %m M3Ph> B (55)
(see 11.60).

Fig. 1 (compare with fig. 1 of Paper II) shows that when an SMS
is partially supported by gas pressure (8 > 0) it is stabilized against
collapse (x.ir > 0) for central densities below pg .. The numerical
solution using the exact EOS falls between the solutions using
Approximations I and II. As suggested in Paper II, Approximation
I is closer to the exact solution, despite Approximation II agreeing
better with the perturbative prediction.

Fig. 2 (compare with fig. 2 of Paper II) shows that the relative
change in the critical mass increases in magnitude as f increases.
As in Fig. 1, the numerical solution from handling the EOS exactly
falls between the solutions using Approximations I and II, but is
much closer to the results of Approximation I. Also included in this
plot are numerical results of Shibata et al. (2016b), labelled SUS,
who adopted Approximation II. Not surprisingly, their results agree
very well with our corresponding results.

4 ROTATING SUPERMASSIVE STARS

As discussed in Paper I, rotation can stabilize an SMS even when
it is supported by a pure radiation gas, i.e. an n = 3 polytrope.
In fact, for maximally rotating SMS, i.e. stars rotating uniformly
at the mass-shedding limit, the critical configuration marking the
onset of a radial instability is characterized by unique values of the
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dimensionless parameters

xp 2~ 5.97 x 1073, (56)

Jo =~ 0.919, (57)
where j = J/M? is the dimensionless angular momentum, and
My ~ 4.56 (58)

(see Section 4.2 below). In this section, we evaluate how changes
in these parameters due to the presence of gas pressure are affected
by the different treatments of the gas pressure. Specifically, we will
compute changes d,, §;, and 8,, defined by

x =xo0(1+36,), (59)
J=do(145), (60)
M = My(1+38y), (61)

using the exact and approximate treatments of the gas pressure. As in
Section 3, we will also compare these changes with the perturbative
expressions of Paper II.

4.1 Numerical method

We use a version of the RNS code (see Stergioulas & Friedman
1995) slightly modified for use with SMSs. We use the tabulated
EOS option with the EOSs discussed in Section 2 and tables
assembled using code discussed in Section 2.4. We change the
default surface values for energy density, pressure, and enthalpy in
the example main.c to zero for tabulated EOSs. We also make
a radial step size in the RNS code’s TOV-solver in equil. c six
orders of magnitude larger. Both changes are needed because SMSs
are far less dense than neutron stars, and much larger. We add a
high-resolution grid option to the makefile for these calculations,
increasing the number of angular gridpoints to 801 and the number
of radial gridpoints to 1601. Given an EOS and a central energy
density, the example RNS code spins up a TOV solution until the star
reaches mass-shedding, finding many intermediate configurations
along the way. For a given EOS, we consider many different central
densities, allowing us to compute the data displayed in Figs 3
and 4.

The curves of constant J in Figs 3 and 4 are constructed by
interpolation. Stable and unstable configurations are separated by
locating the maximum mass M along curves of constant J (see
Friedman, Ipser & Sorkin 1988 and discussion in Baumgarte &
Shapiro 2010). We mark these turning points in Figs 3 and 4
with black dots. The turning point corresponding to the maximally
rotating configuration is marked separately as the critical point.

4.2 Pure radiation fluid

We start our analysis for an SMS supported by a pure radiation fluid,
i.e. for an n = 3 polytrope, essentially reproducing the numerical
analysis of Paper 1. Our results are shown in Fig. 3. In partic-
ular, we identify the critical configuration as the mass-shedding
configuration at the onset of radial instability. The dimensionless
parameters Xo, jo, and M characterizing this critical configuration
are given in equations (56) through (58) above, see also Table 1.
We note that these values differ slightly from those computed in
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---- J=1825
---- J=18.39
---- J=1850
--—- J=18.75
---- J=19.00
J=19.13
---- J=19.25
---- J=19.50
. Turn. Pt.
e  (Crit. Pt.
4.540 T T T T
0.00 0.25 0.50 0.75 1.00

Poc x10~8

Figure 3. The mass-shedding curve (MS in the legend; solid blue online)
and curves of constant J for an SMS supported by a pure radiation fluid,
i.e. an n = 3 polytrope. Black dots denote the turning points (‘Turn. Pt.” in
the legend), i.e. maxima of curves of constant J. The larger dot (red online)
denotes the critical configuration (‘Crit. Pt.” in the legend), defined as the
intersection of the turning point and mass-shedding curves. (Compare fig. 2
in Paper I).

Paper I; we believe that the differences are due to the significantly
higher numerical resolution used in our work here. In the following
sections, we evaluate how gas pressure, treated both exactly and
approximately, affects these critical parameters.

4.3 Exact approach

We start with the exact treatment of the EOS, as described in
Section 2.1. To do so, we run the RNS code with the corresponding
tabulated EOS for different values of B = 8kg/s. For each value
of B, we again choose a number of different values for the central
density, and let the RNS code spin the star up to mass-shedding.
Results from these calculations are shown in the left column of
Fig. 4. We determine the critical configurations, marked by the red
dots in Fig. 4, as before, and compute their physical parameters
(see Table 1). Finally, we compute the corresponding changes from
equations (59)—(61), and plot these changes in Fig. 5.

‘We summarize our results for critical configurations of maximally
rotating SMSs partially supported by gas pressure in Figs 6 and 7.
In Fig. 6, we show the dimensionless parameters R,/M and JIM?
as a function of B, as well as plotted against each other, while
in Fig. 7 we show the parameters as a function of mass. For the
exact treatment of the EOS, we compute these physical masses
by rescaling the dimensionless masses M computed in the code
according to M = K*?M, with K given by (16).

4.4 Approximation I

For Approximation I, we compute and analyse models of rotating
SMS in the same way as for the exact approach, except that we
now run the RNS code with EOS tables computed as discussed in
Section 2.2. We show results from these calculations in the middle
column of Fig. 4. We again identify the critical configurations for
different values of S, compute the corresponding changes from
equations (59)—(61), and plot these changes in Fig. 5. We also
graph the parameters R,/M and J/IM? in Figs 6 and 7, where, for
Approximation I, we have again computed the mass in Fig. 7 from
M = K3?M, with K given by (16).

4201
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In Paper II, we adopted a perturbative approach within a simple
energy functional model to compute leading-order corrections to
the critical parameters. Applying these methods for rotating SMSs
and adopting Approximation I, these changes are given by

1 ki 1

8= ——8x = —— B (62)
J 2 8ks My (22 — j2im) %o

(see I11.93) and

5! :(Elnxo—}—élnﬁ—l—éc—i—%x—o)ﬁ 63)
M\ 4 4 27 Aks 252 - )
(see 11.96), where k3 = 1.204 1 (Lai et al. 1993), and ks = 0.33 121 1
(J. C. Lombardi Jr., 1997, private communication). We also find
Jmin = 0.886 for our n = 3 polytrope simulations. We use these
expressions to calculate the perturbative curves labelled ‘Pert. I’ in
Fig. 5. From §;, we can compute changes in the dimensionless ratios
R,/M and J/M? from

RN _ (R _
(ﬁ)crit B <M )crit,O (1 - 261) (64)

and

J J
<m>cri( - (W>cri10 (1 " 8]) (65)

(see I1.87 and I1.88). These equations are plotted as the solid lines in
Figs 6 and 7, using equation (62) and the leading-order relationship
between  and M

Mo\ -2
B~ 8.46 (%) (66)

(see e.g. 11.40).

4.5 Approximation II

Finally, we repeat the same exercise with EOS tables computed
from Approximation II, as discussed in Section 2.3. We show
numerical results in the right column of Fig. 4. As before, critical
configurations are marked by red dots. We identify the physical
parameters for these critical configurations, compute changes from
equations (59)—(61), and plot these changes in Fig. 5. As before, we
also graph the polar radius and the angular momentum in Figs 6 and
7. In the latter, we now compute the mass from M = K] 2 M, with
Ky~ (1 4+ B)K and n; given by equation (38) (see Section 2.3).

Adopting Approximation II in the perturbative treatment of the
energy functional approach leads to the same §; as Approximation
I, given by (62), while 8,, is now given by

31 - 3 3 it
Sih=(>=-InMy+ >Inxg— > —52— ) B. 67
M <4 3 o+ ;Inx 328 o B (67)
(see I1.105). We use these expressions to calculate the perturbative
curves labelled ‘Pert. I’ in Fig. 5. Since expressions for R,/M and
JIM? are the same in Approximation I and II, both are represented
by the same perturbative line in Figs 6 and 7.

4.6 Comparison

Figs 5-7 show that, for small g, corresponding to large masses, all
approaches, including the perturbative treatment, lead to similar pre-
dictions for dimensionless quantities, including the dimensionless
parameters R,/M and JIM? characterizing the critical configuration.
In particular, our numerical results confirm our perturbative finding
of Paper II that, even for masses as large as M =~ 10° Mg, gas
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Figure 4. The mass-shedding curve (MS in each legend; blue online) and curves of constant J for different treatments of the EOS and different values of 8.
The left column shows results for the exact treatment of the EOS, the middle column for Approximation I, and the right column for Approximation II. Black
dots mark turning points, and red dots the critical configurations, as in Fig. 3.
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Table 1. Critical configuration parameters for an n = 3 polytrope (first row) and for the exact treatment of the EOS
(other rows). Effects of electron—positron pair production become important for temperatures greater than about 10° K
(see e.g. Kippenhahn et al. 2012), but are ignored in our treatment here.

B Ry/M JIm? M M (Mo) pe (gem?) T(K)

0 380 0.919 4.56 - - -
0.001 369 0.908 4.51 7.17 x 107 278 x 1072 1.22 x 107
0.002 358 0.895 4.46 1.77 x 107 496 x 1074 2.53 x 107
0.004 338 0.873 4.38 4.35 x 10° 9.72 x 1073 5.39 x 107
0.010 288 0.811 4.17 6.64 x 10° 0.670 1.61 x 108
0.016 250 0.762 4.00 248 x 10° 7.22 3.02 x 108
0.028 196 0.688 3.71 7.51 x 10* 158 6.92 x 10%
0.040 159 0.632 3.47 3.45 x 10* 1.35 x 10° 1.24 x 10°
0.052 133 0.588 3.27 1.92 x 10* 7.25 x 10° 1.97 x 10°

0.0

2 _02 x  Exact

—— Pert. 1

_03 1+ ©  Approx. I
—--=- Pert. II

= Approx. II

—04 A SUS

0.00 0.02

0.04 0.06
B

Figure 5. Effects of gas pressure on the dimensionless parameter x (top left panel), the dimensionless angular momentum j (top right panel), and the rescaled
mass M (bottom panel) of the critical configuration of rotating SMSs. We show §, 8j, and &y, defined in equations (59)—(61), as a function of 8. Crosses
(red online) denote numerical results from the exact treatment of the EOS. The solid and dashed lines (blue online) represent the analytical, leading-order
perturbative expressions from applying the energy functional approach to Approximation I and Approximation II. The solid and dashed lines coincide for d,
and §;. The open circles (outlined in black online) and filled squares (green online) denote our corresponding numerical results for Approximations I and II.
The triangles (purple online) in the §; and &7 plots represent the numerical results of Shibata et al. (2016b), who adopted Approximation II; they agree so well
with our results for Approximation II that they are difficult to distinguish in the plot. We find that Approximation I is closer to the exact treatment of the EOS

than Approximation II. Compare with fig. 3 of Paper II.

pressure has a significant effect on these parameters. The reason for
this behaviour is the fact that, to leading order, corrections to the
parameters scale with M~ and therefore decrease only slowly as
the mass increases (see equations I1.142 and I1.143). For moderate
values of S, or stellar masses <10° Mg, the analytic perturbative
treatment starts to deviate from the numerical results, while both
approximations implemented numerically continue to agree with

each other up to larger values of 8, and smaller masses. Ultimately,
Approximation II in particular shows increasing deviations from
the exact treatment as well.

As we had noted in Paper II, Approximation II results in
predictions for changes in the mass that differ from Approximation I
and the exact treatment even at leading order, both in the numerical
and perturbative treatments (see the right-hand panel in Fig. 5).
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Figure 6. The dimensionless parameters R/M and JIM? of the critical configuration, both as a function of f (top left and top right panels) and plotted against
each other (bottom panel). As expected from Fig. 5, our numerical results agree well with perturbative results for small values of 8. For larger values of S,
deviations between the exact treatment of the EOS and the two approximations increase as well, with Approximation I performing better than Approximation
II. When plotted against each other (bottom panel), values of R,/M and JIM? appear to lie on a single line, so that deviations in radius appear to be compensated
for by deviations in the angular momentum. Note, however, that, according to different approaches, individual configurations on this line correspond to different
values of B.
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Figure 7. Same as the top two panels in Fig. 6, expect plotted against the stellar mass M. Compared to Fig. 6, the differences between the numerical results
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appear to be slightly larger in this rendering, which is caused by differences in the rescaling of the mass (see the text).
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We believe that at least some of these deviations may be related
to the different scaling used for the different approaches: for
the exact treatment and Approximation I, we rescale dimensional
quantities with K*? (see equation 16), while for Approximation II
we rescale with K}'}/ *. Since K is only approximately constant,
this approximation may well be responsible for deviations that we
find in dimensional quantities.

In the top two panels of Fig. 6, we show the dimensionless
parameters R,/M and JIM? as a function of B. As before, we find that,
as the gas pressure becomes more important, Approximation Il leads
to larger deviations from the exact treatment than Approximation
I. In the bottom panel of Fig. 6, we plot R,/M versus J/M>.
Remarkably, all three approaches lead to results that appear to follow
a single line, even though, according to the different treatments of
the gas pressure, individual configurations on this line would be
identified with different values of B. Finally, we graph R,/M and
JIM? against stellar masses M in Fig. 7. The deviations between
the exact treatment of the EOS and Approximation II now appear
slightly larger than in the top two panels of Fig. 6, which we
attribute to the scaling of the mass, as discussed above.

5 SUMMARY AND DISCUSSION

Recent observations of increasingly young quasars have heightened
interest in the direct-collapse scenario for the formation of SMBHs,
in which an SMS becomes unstable and collapses gravitationally. A
number of groups have studied possible avenues for the formation
of SMSs (see e.g. Hosokawa et al. 2013; Schleicher et al. 2013;
Sakurai et al. 2015; Umeda et al. 2016; Woods et al. 2017;
Haemmerlé€ et al. 2018b,a; Wise et al. 2019, see also the discussion
in Section 1). In this paper, we continue the study of an idealized
version of a direct-collapse scenario, involving uniformly rotating
SMSs evolving along the mass-shedding limit until they reach a
critical configuration marking the onset of radial instability (see
Papers I and II). Identifying this critical configuration is important
since it determines the dynamics of the subsequent collapse to
a SMBH, including the accompanying gravitational wave signal
and the properties of the remnant. In fact, many fully relativistic
simulations of this collapse have adopted models of the critical
configuration as initial data (see e.g. Shapiro & Shibata 2002; Liu
et al. 2007; Montero et al. 2012; Shibata et al. 2016a; Uchida et al.
2017; Sun et al. 2019). In this paper, we study the effects of gas
pressure on the critical configuration. While we believe that our
findings are interesting in their own right, we also hope that they
will help improve future dynamical simulations of the collapse of
SMSs to SMBHs.

In Paper I, we found that the critical configuration is characterized
by unique values of R,/M and JIM? as long as the star is dominated
by radiation pressure. In Paper II, we computed leading-order
corrections to these values when some of the assumptions of Paper
I were relaxed; in particular we considered two different approxi-
mations to estimate the effects of gas pressure. Approximation I is
based on a formal expansion, while Approximation II accounts for
the effects of gas pressure by simply adjusting the polytropic index
in a polytropic EOS. The latter is therefore simple to implement and
has been used quite commonly. Somewhat surprisingly, we found
that some predictions stemming from these two approximations
differed.

In this paper, we apply the turning-point criterion to study more
systematically the effects of gas pressure on the critical config-
uration of maximally rotating SMSs, and determine the critical
configuration and its parameters for a large range of stellar masses.

Supermassive stars at the onset of collapse
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We also evaluate differences stemming from different treatments of
the gas pressure. To do so, we expand on our treatment in Paper I1
in two ways. Instead of employing a perturbative analysis within
a simple analytic energy functional model, we now compute fully
relativistic numerical models of rotating SMSs. We also include a
fully self-consistent, exact treatment of the EOS, in addition to the
two approximations discussed above, so that we can calibrate the
two approximations in the context of this idealized direct-collapse
scenario.

As expected, all methods agree well for large masses, M =
10° Mg, corresponding to large entropies, and hence to small 8 and
small effects of the gas pressure. In particular, our numerical results
confirm the perturbative results of Paper II that, even for these large
masses, the effects of gas pressure are important. Not surprisingly,
the perturbative treatment starts to deviate from the exact results
first as B increases and the mass decreases. Below M ~ 10° Mg,
both approximations lead to increasing deviations from the exact
treatment of gas pressure, but Approximation I remains much closer
to the exact results than Approximation II.
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