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ABSTRACT

We assemble the equations of general relativistic magnetohydrodynamics (MHD) in 3þ 1 form. These
consist of the complete coupled set of Maxwell’s equations for the electromagnetic field, Einstein’s equations
for the gravitational field, and the equations of relativistic MHD for a perfectly conducting ideal gas. The
adopted form of the equations is suitable for evolving numerically a relativistic MHD fluid in a dynamical
spacetime characterized by a strong gravitational field.

Subject headings:MHD — relativity

1. INTRODUCTION

Magnetic fields play a crucial role in determining the evo-
lution of many relativistic objects. In any highly conducting
astrophysical plasma, a frozen-in magnetic field can be
amplified appreciably by gas compression or shear. Even
when an initial seed field is weak, the field can grow in the
course of time to significantly influence the gasdynamical
behavior of the system. If, in addition, the gravitational field
is strong and dynamical, magnetic fields can even affect the
entire geometry of spacetime, according to general relativ-
ity. In this situation, terms involving magnetic and electric
fields are important not only as electromagnetic forces
acting on the matter in the equations of relativistic hydro-
dynamics but also as stress-energy sources governing the
metric in Einstein’s gravitational field equations.

In this paper we assemble the complete set of Maxwell-
Einstein magnetohydrodynamics (MHD) equations that
determines the self-consistent evolution of a relativistic,
ideal MHD fluid in a dynamical spacetime. Our goal is to
set down a formulation of the equations that is suitable for
numerical integration in full 3þ 1 dimensions. Subsets of
these equations have appeared elsewhere, but we recompile
the complete set here for convenience and future reference.
We reconcile several seemingly different, but equivalent,
forms of the equations that have appeared in the existing lit-
erature. We also correct some errors in previously published
results. In a companion paper (Baumgarte & Shapiro 2003,
hereafter Paper II) we use these general relativistic MHD
equations to follow the gravitational collapse of a magne-
tized star to a black hole.

We are motivated in part by the growing list of important,
unsolved problems that involve hydromagnetic effects in
strong-field dynamical spacetimes. The final fate of many of
these astrophysical systems, and their distinguishing obser-
vational signatures, hinges on the role that magnetic fields
may play during the evolution. Some of these systems are
promising sources of gravitational radiation for detection
by laser interferometers now under design and construction,

like LIGO, VIRGO, TAMA, GEO, and LISA. Others may
be responsible for gamma-ray bursts (GRBs). Recent exam-
ples of astrophysical scenarios involving strong-field
dynamical spacetimes in which MHD effects may play a
decisive role include the following:

1. The merger of binary neutron stars.—The merger can
lead to the formation of a hypermassive star supported by
differential rotation (Baumgarte, Shapiro, & Shibata 2000;
Shibata & Uryū 2000). While such a star may be dynami-
cally stable against gravitational collapse and bar forma-
tion, the radial stabilization due to differential rotation is
likely to be temporary. Magnetic braking and viscosity,
driven by differential rotation, combine to drive the star to
uniform rotation, even if the seed magnetic field and the vis-
cosity are small (Shapiro 2000). This process inevitably
leads to delayed collapse, which will be accompanied by a
delayed gravitational wave burst.
2. Core collapse in a supernova.—Core collapse may

again induce differential rotation, even if the rotation of the
progenitor at the onset of collapse is only moderately rapid
and almost uniform (see, e.g., Zwerger & Müller 1997;
Rampp,Müller, &Ruffert 1998 and references therein). Dif-
ferential rotation can wind up a frozen-in magnetic field to
high values, at which point it may provide a significant
source of stress. Hypermassive neutron stars may form and
survive until the fields are weakened by magnetic braking or
other instabilities.
3. The generation of GRBs.—Typical models for GRB

formation involve the collapse of rotating massive stars to a
black hole (MacFadyen & Woosley 1999), the merger of
binary neutron stars (Narayan, Paczynski, & Piran 1992),
or the tidal disruption of a neutron star by a black hole
(Ruffert & Janka 1999). In current scenarios, the burst is
powered by the extraction of rotational energy from the
neutron star or black hole or from the remnant diskmaterial
formed about the black hole (Vlahakis & Königl 2001).
Strong magnetic fields provide the likely mechanism for
extracting this energy on the required timescale and driving
collimated GRB outflows in the form of relativistic jets
(Mészáros & Rees 1997; Sari, Piran, & Halpern 1999; Piran
2003). Even if the initial magnetic fields are weak, they can
be amplified to the required values by differential motions
or dynamo action.
4. Supermassive star (SMS) collapse.—SMSs may form

in the early universe, and their catastrophic collapse may
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provide the origin of supermassive black holes (SMBHs)
observed in galaxies and quasars (see Rees 1984 and Baum-
garte & Shapiro 1999a for discussion and references). If an
SMS is uniformly rotating, cooling and secular contraction
will ultimately trigger its coherent dynamical collapse to an
SMBH, giving rise to a burst of gravitational waves (Saijo et
al. 2002; Shibata & Shapiro 2002). If an SMS is differentially
rotating, cooling and contraction will instead lead to the
unstable formation of bars or spiral arms prior to collapse
and the production of quasi-periodic waves (New& Shapiro
2001a, 2001b). Magnetic fields and turbulence provide the
principal mechanisms that can damp differential rotation in
such stars (Zeldovich & Novikov 1971; Shapiro 2000) and
thus determine their ultimate fate.
5. The r-mode instability in rotating neutron stars.—This

instability has recently been proposed as a possible mecha-
nism for limiting the angular velocities in neutron stars and
producing observable quasi-periodic gravitational waves
(Andersson 1998; Friedman & Morsink 1998; Andersson,
Kokkotas, & Stergioulas 1999; Lindblom, Owen, &
Morsink 1998). However, preliminary calculations
(Rezzolla, Lamb, & Shapiro 2000; Rezzolla et al. 2001a,
2001b and references therein) suggest that if the stellar mag-
netic field is strong enough, r-mode oscillations will not
occur. Even if the initial field is weak, fluid motions pro-
duced by these oscillations may amplify the magnetic field
and eventually distort or suppress the r-modes altogether
(r-modes may also by suppressed by nonlinear mode
coupling [Arras et al. 2002; Schenk et al. 2002]).

This paper is partitioned as follows: In xx 2 and 3 we
review Einstein’s field equations andMaxwell’s equations in
3þ 1 form. In x 4 we discuss the approximation of ideal
magnetohydrodynamics and in x 5 the equations of general
relativistic hydrodynamics. In x 6 we then develop the equa-
tions of general relativistic MHD. We derive the MHD
source terms that appear in Einstein equations in x 7. We
compare our results with those of previous treatments in x 8.
Finally, we briefly summarize our analysis in x 9.

We adopt geometrized units throughout, setting
G ¼ 1 ¼ c, where G is the gravitation constant and c is the
speed of light.

2. EINSTEIN’S FIELD EQUATIONS IN 3þ 1 FORM

The spacetime geometry (i.e., metric) is determined by
integrating Einstein’s field equations of general relativity.
Most algorithms for performing this integration numeri-
cally are based on a 3þ 1 decomposition of Einstein’s equa-
tions, which is ideally suited for solving the general initial
value problem. Below we briefly summarize the key equa-
tions that result from recasting Einstein’s equations in 3þ 1
form.More detailed discussions may be found, for example,
in Misner, Thorne, & Wheeler (1973), York (1979, p. 83),
Evans (1984), and references therein.

In a 3þ 1 decomposition of Einstein’s field equations, the
four-dimensional spacetime M is foliated into a family of
nonintersecting spacelike three-surface �, which arise, at
least locally, as level surfaces of a scalar time function t. The
spatial metric �ab on the three-dimensional hypersurfaces �
is induced by the spacetime metric gab according to

�ab ¼ gab þ nanb ; ð1Þ

where na is the unit normal vector na ¼ �

D

at to the slices.

Here the normalization factor � is called the lapse function.
The time vector ta is constructed so that it is dual to the foli-
ation one-form

D

at:

ta ¼ �na þ �a ; ð2Þ

where the shift vector �a is spatial, i.e., na�a ¼ 0, but other-
wise arbitrary. In a coordinate system that is aligned with ta

and�, the components of na are

na ¼ ð��; 0; 0; 0Þ and na ¼ ��1 1; ��i
� �

: ð3Þ

We adopt the convention that latin indices a, b, c, d,. . .,
denote spacetime components, while i, j, k, l,. . ., denote
spatial components.

The spacetime metric can now be written in the ADM
form (Arnowitt, Deser, &Misner 1962):

ds2 ¼ ��2dt2 þ �ijðdxi þ �idtÞðdxj þ � jdtÞ : ð4Þ

The lapse function � determines by how much proper time
advances along the normal vector from one time slice to the
next, and the shift vector �i determines by how much spatial
coordinates are shifted on the new slice. The lapse function
and three components of the shift vector constitute gauge
potentials that may be freely specified. Together, � and �i

thus embody the four degrees of coordinate freedom inher-
ent in general relativity.

Einstein’s equation,

Gab ¼ 8�Tab ; ð5Þ

where Gab is the Einstein tensor associated with gab and Tab

is the stress-energy tensor, can be projected both along the
normal direction na and into the spatial slice �. The spatial
projection yields two constraint equations, which constrain
the fields within each slice �; they contain at most one time
derivative of the spatial metric. The projection along the
normal vector yields an evolution equation that describes
how the fields propagate from one slice to the next; it con-
tains second-order time derivatives of the spatial metric.
The constraint equations consist of the Hamiltonian
constraint,

Rþ K2 � KijK
ij ¼ 16�� ; ð6Þ

and the momentum constraint,

DjðKij � �ijKÞ ¼ 8�Si ; ð7Þ

and the evolution equation is

@tKij ¼ �DiDj�þ �ðRij � 2KikK
k
j þ KKijÞ

� 8�� Sij � 1
2 �ijðS � �Þ

� �
þL�Kij : ð8Þ

Here Kij is the extrinsic curvature, and its definition in terms
of the time derivative of the spatial metric is usually consid-
ered the second evolution equation,

@t�ij ¼ �2�Kij þL��ij : ð9Þ

Here Di, Rij, and R ¼ �ijRij are the covariant derivative,
Ricci tensor, and scalar curvature associated with �ij,
respectively, whileK ¼ �ijKij is the trace of the extrinsic cur-
vature. The symbol L denotes a Lie derivative. The matter
and nongravitational field sources �, Si, and Sij are the
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projections of the stress-energy tensor into na and � and are
given by

� ¼ nanbT
ab ; ð10Þ

Si ¼ ��ianbT
ab ; ð11Þ

Sij ¼ �ia�jbT
ab : ð12Þ

The quantity � is the total mass-energy density as measured
by a normal observer, Si is the momentum density, and Sij is
the stress. Finally, S is defined as the trace of Sij:

S ¼ �ijSij : ð13Þ

We remark that if the constraint equations are satisfied on
an initial time slice �, the evolution equations guarantee
that the constraints will be satisfied on all subsequent time
slices.

Equations (6)–(9) are commonly referred to as the ADM
equations (Arnowitt et al. 1962). Numerical implementa-
tions of these equations have revealed that their numerical
stability can be improved dramatically by bringing them
into a slightly different form. One such modification, now
commonly referred to as ‘‘ BSSN,’’ is based on Shibata &
Nakamura (1995) and Baumgarte & Shapiro (1999b). This
system is widely used, and its enhanced stability properties
have been analyzed by several authors (e.g., Alcubierre et al.
2000; see Knapp, Walker, & Baumgarte 2002 for an electro-
magnetic analogy). Alternatively, several authors have
experimented with hyperbolic formulations of Einstein’s
equations (e.g., Anderson & York 1999). We refer the
reader to these papers for further details and references.

3. MAXWELL’S EQUATIONS

We decompose the Faraday tensor Fab as

Fab ¼ naEb � nbEa þ �abcBc ð14Þ

so that Ea and Ba are the electric and magnetic fields, respec-
tively, observed by a normal observer na. Both fields are
purely spatial, whereby

Eana ¼ 0 and Bana ¼ 0 ; ð15Þ

and the three-dimensional Levi-Civita symbol �abc is defined
by

�abc ¼ �abcdnd or �abc ¼ nd�dabc : ð16Þ

Note that �abc is nonzero only for spatial indices, while �abc
may be nonvanishing even if one index is timelike (see eq.
[32]). We also decompose the electromagnetic current four-
vectorJa according to

Ja ¼ na�e þ Ja ; ð17Þ

where �e and Ja are the charge density and current, respec-
tively, as observed by a normal observer na. Note that Ja is
purely spatial, Jana ¼ 0.

With these definitions,Maxwell’s equations,

D

bF
ab ¼ 4�Ja ð18Þ

and

D

½aFbc� ¼ 0 ; ð19Þ

where

D

is the four-dimensional covariant derivative opera-
tor associated with gab, can be brought into the 3þ 1 form:

DiE
i ¼ 4��e ; ð20Þ

@tE
i ¼ �ijkDjð�BkÞ � 4��Ji þ �KEi þL�E

i ; ð21Þ
DiB

i ¼ 0 ; ð22Þ
@tB

i ¼ ��ijkDjð�EkÞ þ �KBi þL�B
i ð23Þ

(see, e.g., Thorne & MacDonald 1982). The charge conser-
vation equation,

D

aJ
a ¼ 0 ; ð24Þ

which is implied by equation (18), becomes

@t�e ¼ �Dið�JiÞ þ �K�e þL��e : ð25Þ

The special relativistic Maxwell’s equations can be recov-
ered very easily by evaluating the above equations for a
Minkowski spacetime with �ij ¼ fij , where fij is the flat
spatial metric in an arbitrary coordinate system, � ¼ 1,
K ¼ 0, and �i ¼ 0.

It is convenient to introduce a four-vector potential Aa,
which can be decomposed into

Aa ¼ �na þ Aa ; ð26Þ

where Aa is purely spatial: Aana ¼ 0. Inserting equation (3),
this implies

At ¼ �iAi ; ð27Þ

whileAt ¼ 0, as for any spatial vector. In terms of the vector
potential, the Faraday tensor can be written

Fab ¼ Ab;a �Aa;b ¼ naEb � nbEa þ �abcB
c : ð28Þ

Contracting this equation with �abc yields

�abcðAb;a �Aa;bÞ ¼ �abc�abdB
d ¼ 2Bc ð29Þ

or

Bi ¼ �ijkAk; j : ð30Þ

Note that with this identification, the magnetic field Bi auto-
matically satisfies the constraint equation (22).

It is possible, and often convenient (see Paper II), to
rewrite Maxwell’s equations completely in terms of Ei

and Ai, thereby eliminating Bi. Evaluating equation (28)
for the components a ¼ t and b ¼ i with Ai ¼ Ai and
At ¼ ���þ �iAi yields

@tAi ¼ ��Ei þ �tijB
j � ð��� � jAjÞ;i : ð31Þ

Using equation (16), we can rewrite

�tij ¼ nd�dtij ¼ ���1�k�ktij ¼ ���1�k�tikj

¼ � �knd�dikj ¼ ��k�ikj ; ð32Þ

so that

@tAi ¼ ��Ei � �ijk�
jBk � ð��� � jAjÞ;i : ð33Þ

With equation (30), �ijk�
jBk can be expressed in terms of
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Ai as

�ijk�
jBk ¼ �ijk�

klm� jAm;l

¼ �li�
m
j � �lj�

m
i

� �
� jAm;l

¼ � jAj;i � � jAi;j : ð34Þ

Inserting this into equation (33) yields

@tAi ¼ ��Ei � @ið��Þ þL�Ai : ð35Þ

In equation (21), the magnetic field Bi can be eliminated
similarly:

�ijkDjð�BkÞ ¼ �ijkDjð��klmDlAmÞ
¼ �ijk�klmDjð�DlAmÞ
¼ ð�il�

j
m � �im�

j
l ÞDjð�DlAmÞ

¼ Djð�DiAjÞ �Djð�DjAiÞ : ð36Þ

Inserting this into equation (21) yields

@tE
i ¼ Djð�DiAjÞ �Djð�D jAiÞ � 4��Ji þ �KEi þL�E

i :

ð37Þ

Equations (35) and (37) form a system of equations for
Ei and Ai alone. In the special relativistic limit, they
again reduce to familiar expressions. We also note that in
terms of partial derivatives, equation (37) can be
expanded to yield

@tE
i ¼ ��1=2½��1=2ð�il� jm � �im� jlÞAm;l �;j

� 4��Ji þ �KEi þL�E
i ; ð38Þ

where � is the determinant of the spatial metric �ij. This
form of the electric field evolution equation will be useful
for applications in Paper II.

4. IDEAL MAGNETOHYDRODYNAMICS
APPROXIMATION

Ohm’s law can be written (see, e.g., problem [11.16] in
Jackson 1999)

Ja � ~��eua ¼ �Fabu
b ; ð39Þ

where � is the electrical conductivity and ~��e ¼ �Jaua is
the charge density as seen by an observer comoving with
the fluid four-velocity ua (in contrast to �e, which was
defined as the charge density as observed by a normal
observer na).

A 3þ 1 decomposition of Ohm’s law can be derived by
contracting equation (39) with na and �ba . The former yields

W ~��e ¼ �e � �uaE
a ; ð40Þ

where we have defined W as the Lorentz factor between
normal and fluid observers:

W � �nau
a ¼ �ut : ð41Þ

Projecting equation (39) into �, or equivalently, evaluating

the spatial components a ¼ i of equation (39), yields

Ji � ~��eui ¼ �Fiau
a ¼ �ðFitu

t þ Fiju
jÞ

¼ �ð�Eiu
t þ �itkB

kut þ �ijkB
ku jÞ

¼ �½WEi þ �ijkð� jBkut þ Bku jÞ�
¼ �½WEi þ �ijkðv j þ � jÞBkut� : ð42Þ

Here we have defined

vi � ui

ut
ð43Þ

and have used equation (32) to relate �itk to �ijk, giving rise to
the shift term in equation (42) (the shift term is missing in
some previous treatments; see x 8).

Dividing Ohm’s law (eq. [39]) by � and allowing � ! 1
yields the perfect conductivity condition:

Fabu
b ¼ 0 : ð44Þ

According to equations (40) and (42), this result is equiva-
lent to the condition that the electric field vanish in the fluid
rest frame:

uaE
a ¼ 0 ; ð45Þ

or

�Ei ¼ ��ijkðv j þ � jÞBk ; ð46Þ

which is often called the ideal MHD relation. When eval-
uated in a Minkowski spacetime, the last equation reduces
to the familiar expression Ei ¼ ��ijkvjBk or E ¼ �v� B.

We can now evaluate Faraday’s law (eq. [23]) under the
assumption of perfect conductivity. Taking the trace of
equation (9) yields

�K ¼ �@t ln �
1=2 þDi�

i : ð47Þ

The above expression can be combined with the Lie deriva-
tiveL�B

i to give

�KBi þL�B
i ¼ Djð� jBi � �iB jÞ � Bi@t ln �

1=2 ; ð48Þ

where we have used equation (22). Inserting equation (48)
together with the ideal MHD equation (46) into Faraday’s
law (eq. [23]) reveals that all the shift terms cancel, leaving

1

�1=2
@tð�1=2BiÞ ¼ DjðviB j � v jBiÞ : ð49Þ

It is convenient to introduce the magnetic vector density

Bi � �1=2Bi ; ð50Þ

in terms of which equations (49) and (22) reduce to the par-
ticularly simple forms

@tB
i ¼ @jðviB j � v jBiÞ ð51Þ

and

@iB
i ¼ 0 : ð52Þ

In x 8 we compare our results with previous treatments
and correct errors in some previously published equations.
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5. GENERAL RELATIVISTIC HYDRODYNAMICS

For a perfect fluid, the stress-energy tensor Tab
fluid can be

written

Tab
fluid ¼ �0hu

aub þ Pgab : ð53Þ

Here �0 is the rest-mass density as observed by an observer
comoving with the fluid ua, P is the pressure, and h is the
specific enthalpy:

h ¼ 1þ �þ P=�0 ; ð54Þ

where � is the specific internal energy density.
In the absence of electromagnetic fields, the equations of

motion for the fluid can be derived from the local conserva-
tion of energy momentum,

D

bT
ab
fluid ¼ 0 ; ð55Þ

and the conservation of baryons,

D

að�0uaÞ ¼ 0 : ð56Þ

The resulting equations can be cast in various forms,
depending on how the primitive fluid variables are chosen
(see, e.g., Font 2000 for a recent review). The most fre-
quently adopted relativistic formalism was originally devel-
oped by Wilson (1972; see also Hawley, Smarr, & Wilson
1984), who defined a rest-mass density variable,

D � �0W ; ð57Þ

an internal energy density variable,

E � �0�W ; ð58Þ

and amomentum variable,

Sa � �0hWua ¼ ðDþ E þ PWÞua : ð59Þ

Note that the spatial vector Si defined above is the fluid con-
tribution to the source term Si appearing in Einstein’s field
equations (see eq. [11]). In terms of these variables, the equa-
tion of continuity becomes

@tð�1=2DÞ þ @jð�1=2Dv jÞ ¼ 0 : ð60Þ

Contracting equation (55) with ub yields the energy equa-
tion

@tð�1=2EÞ þ @jð�1=2Ev jÞ
¼ �P½@tð�1=2WÞ þ @ið�1=2WviÞ� ; ð61Þ

while the spatial components of equation (55) yield the
Euler equation

@tð�1=2SiÞ þ @jð�1=2Siv
jÞ ¼ ���1=2 @iPþ SaSb

2�St
@ig

ab

� �
:

ð62Þ

For gamma-law equations of state,

P ¼ ð�� 1Þ�0� ; ð63Þ

the right-hand side of the energy equation (61) can be elimi-
nated to yield

@tð�1=2E�Þ þ @jð�1=2E�v jÞ ¼ 0 ; ð64Þ

where we have introduced the energy variable E*, defined as

E� � ð�0�Þ1=�W ð65Þ

(see Shibata 1999, who also absorbed the determinant �1/2

into the definition of the fluid variables; see also Shibata,
Baumgarte, & Shapiro 1998). This simplification has great
computational advantages since the time derivatives on the
right-hand side of equation (61) are difficult to handle in
strongly relativistic fluid flow (compare Norman &Winkler
1986).

For given values of ui, W can be found from the normal-
ization relation uaua ¼ �1,

W ¼ �ut ¼ 1þ �ijuiuj
� �1=2

; ð66Þ

and vi from

vi ¼ ��ijuj
W

� �i : ð67Þ

Finite difference implementations of the above equations
must be adapted to handle the appearance of shock discon-
tinuities. Two strategies are commonly adopted.

The more traditional approach is to add an artificial vis-
cosity term to the equations (von Neuman & Richtmyer
1950). Typically, the artificial viscosity term Q is nonzero
only where the fluid is compressed and is added to the pres-
sure on the right-hand sides of both the energy equation
(61) and the Euler equation (62). The artificial viscosity
spreads the shock discontinuity over several grid zones. For
shocks occurring in Newtonian fluids with modest Mach
numbers, artificial viscosity generates the Rankine-
Hugoniot jump conditions to reasonable accuracy. Artifi-
cial viscosity has also been used successfully in relativistic
applications (see, e.g., Wilson 1972; Shibata 1999), but it
leads to less satisfactory results for highly relativistic flows
or highMach numbers (Norman &Winkler 1986).

An alternative approach to handling shocks is a high-
resolution shock capturing (HRSC) scheme (see, e.g., Martı́
& Müller 1999 for a recent review). In such a scheme, one
treats all fluid variables as constant in each grid cell. The dis-
continuous fluid variables at the grid interfaces serve as ini-
tial conditions for a local Riemann shock-tube problem,
which can be solved either exactly or approximately. Allow-
ing for discontinuities, including shocks, lies at the core of
these schemes and does not require any additional artificial
viscosity. Constructing Riemann solvers for HRSC requires
knowledge of the local characteristic structure of the equa-
tions to be solved. This has motived the development of sev-
eral flux-conservative hydrodynamics schemes, which do
not contain any derivatives of the fluid variables in the
source terms and for which this characteristic structure can
be determined (see, e.g., Font 2000; Font et al. 2002).

6. GENERAL RELATIVISTIC
MAGNETOHYDRODYNAMICS

To derive the equations of general relativistic magneto-
hydrodynamics, we now add the electromagnetic stress-
energy tensor Tab

em to the fluid stress-energy tensor:

Tab ¼ Tab
fluid þ Tab

em : ð68Þ

Local conservation of energy momentum demands that the
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divergence of the sumTab vanish. The divergence of the indi-
vidual stress-energy tensors Tab

fluid and Tab
em do not vanish in

general since the fluid and electromagnetic fields may
exchange energy andmomentum. In particular, one finds

D

bT
ab
fluid ¼ �

D

bT
ab
em ¼ FabJb ð69Þ

(see eq. [5.40] in Misner et al. 1973). The right-hand side of
equation (69) now includes the Lorentz force in the equa-
tions of relativistic hydrodynamics. Note that the baryon
conservation equations (56) and (60) remain unchanged.

In the energy equation (61), which was derived from the
contraction ub

D

aTab, the addition of the Lorentz force
yields

@tð�1=2EÞ þ @jð�1=2Ev jÞ
¼ �P½@tð�1=2WÞ þ @ið�1=2WviÞ� � ��1=2uaF

abJb : ð70Þ

For a gamma-law equation of state, the above equation
may be written in terms of E* according to

@tð�1=2E�Þ þ @jð�1=2E�v jÞ ¼ �uaF
abJb

E�
W

� �1��
��1=2

�
;

ð71Þ

which now takes the place of equation (64) in general. The
Euler equation (62) now becomes

@tð�1=2SiÞ þ @jð�1=2Siv
jÞ

¼ ���1=2 @iPþ SaSb

2�St
@ig

ab

� �
þ ��1=2FiaJ

a : ð72Þ

In the case of ideal MHD, the new terms on the right-
hand sides of the energy equations (70) and (71) vanish
because of equation (44). This result is understandable since
it corresponds to the absence of Joule heating in the limit of
infinite conductivity.

We now proceed to determine the Lorentz force FiaJ
a in

the Euler equation (72). Since Ja is not known a priori, we
first use equation (18) to express Ja in terms of the electro-
magnetic fields. Note that Ja is the current four-vector as
opposed to its spatial projection Ji. We could express Ji

immediately using the spatial Maxwell equation (21).
Instead, we need to derive the four-dimensional equivalent
of equation (21) to express Ja, which we then can contract
with the Faraday tensor (eq. [14]) to obtain the Lorentz
force.

The divergence of the Faraday tensor in equation (69) is

D

bF
ab ¼ na

D

bE
b þ Eb D

bn
a � nb

D

bE
a � Ea D

bn
b þ

D

b�
abcBc :

ð73Þ

We now decompose the four-dimensional derivatives

D

a in
each term above.

The Lie derivative of Ea along �na is

L�nE
a ¼ �nb

D

bE
a � �Eb D

bn
a � Ebna

D

b� ; ð74Þ

or, with equation (2),

1

�
ð@t �L�ÞEa ¼ nb

D

bE
a � Eb D

bn
a � Ebna

D

b ln� : ð75Þ

The four-dimensional divergence

D

aEa can be expressed in

terms of the three-dimensional divergenceDiE
i:

DaE
a ¼ �ba

D

bE
a ¼ gba þ nan

b
� � D

bE
a

¼

D

aE
a � EaDa ln� ; ð76Þ

where we have used naEa ¼ 0 and

nb

D

bna ¼ aa ¼ Da ln� : ð77Þ

Here aa is the four-acceleration of a normal observer. Since
the extrinsic curvatureKab can be written

Kab ¼ �

D

anb � naab ; ð78Þ

the divergence of na satisfies

D

an
a ¼ �K : ð79Þ

Inserting these expressions into equation (73), we now find
the intermediate result

D

bF
ab ¼ naDbE

b þ KEa � 1

�
ð@t �L�ÞEa þ

D

b�
abcBc ;

ð80Þ

where we have also used EaDa ln� ¼ Ea

D

a ln�.
The term involving Ba in equation (80) can be rewritten as

D

b�
abcBc ¼ �abcd

D

bBcnd ¼ �abcdðnd

D

bBc þ Bc

D

bndÞ
¼ �abcdðndDbBc � BcnbadÞ
¼ ��1�abcdð�ndDbBc þ ndBcDb�Þ
¼ ��1�abcDbð�BcÞ; ð81Þ

where we have used equations (16), (77), and (78). Inserting
this expression into equation (80) now yields

4��Ja ¼ �

D

bF
ab ¼ � ð@t �L�ÞEa þ �abcDbð�BcÞ

þ �naDbE
b þ �KEa : ð82Þ

Not surprisingly, this is the four-dimensional version of
equation (21), which can be found by taking the spatial pro-
jection of equation (82).

The next step is to contract equation (82) with the
Faraday tensor (eq. [14]). Using naEa ¼ 0, na�abc ¼ 0, and
naL�nEa ¼ 0, several terms cancel, and one finds

4��JbFab ¼ �EaDbE
b

þ na
�
� Eb @t �L� � �K

� �
Eb þ Eb�

bcdDc �Bdð Þ
�

� Bc�cab
�
@t �L� � �K
� �

Eb � �bdeDd �Beð Þ
�
: ð83Þ

This expression can now be inserted into the Euler equation
(72). For spatial components ni ¼ 0, so that the second line
in equation (83) vanishes. The source term ��1/2FiaJ

a can
then be rewritten

��1=2FiaJ
a ¼ �1=2

4�

�
� Bj�jik @t �L� � �K

� �
Ek

þ �Ei DjE
j

� �
þ BjDjð�BiÞ � BjDið�BjÞ

�
:

ð84Þ

If desired, the covariant derivatives in the last two terms can
be converted into partial derivatives, which finally yields the
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Euler equation

@tð�1=2SiÞ þ @jð�1=2Siv
jÞ ¼

� ��1=2 @iPþ SaSb

2�St
@ig

ab

� �
þ �

�1=2

4�
Ei DjE

j
� �

� �1=2

4�
Bj
�
�jik @tE

k � �l@lE
k þ El@l�

k � �KEk
� �

þ @i �Bj

� �
� @j �Bið Þ

�
; ð85Þ

where we have expanded the Lie derivative of Ei. Note that
in this equation the electric field terms enter with the oppo-
site sign from those in the corresponding equation (3.2) of
Sloan & Smarr (1985, hereafter SS85), who further assume
� ¼ 0 ¼ K.

For numerical implementations, the most challenging
term in Euler’s equation is probably the time derivative of
the electric field. For ideal MHD, this term can be rewritten
by first expressing Ei in terms of the magnetic fields Bi using
the ideal MHD relation (eq. [46]) and then using equation
(49) to eliminate the time derivative of Bi (see Zhang 1989,
hereafter Z89). This term is likely to be small in most appli-
cations; for example, it is Oðv2=c2Þ times smaller than the
last two terms on the right-hand side of equation (85). In
such cases, extrapolating and iterating, or some other simple
treatment, may be adequate to account for its contribution.

It is instructive to take the Newtonian limit of equation
(85) and recover a familiar expression. With g00 !
�ð1þ 2	Þ, where 	 is the Newtonian potential, we find

1

2

SaSb

�St
@ig

ab ! � 1

2
�@ig

00 ¼ �@i	 : ð86Þ

In Cartesian coordinates (�1=2 ¼ 1), the Newtonian limit of
equation (85) then becomes

@tSi þ @jðSiv
jÞ ¼ � @iP� �@i	þ �eEi

� 1

8�
@iðB jBjÞ þ

1

4�
B j@jBi ð87Þ

or, equivalently,

�
dv

dt
¼ �

D

ðPþ PMÞ � �

D

	þ 1

4�
ðB x

D

ÞB þ �eE ; ð88Þ

where we have defined the magnetic pressure

PM ¼ B2

8�
ð89Þ

and where

D

is the spatial gradient operator. Note that for a
neutral plasma �e ¼ 0, the electric field Ea disappears
entirely from the above Newtonian equation.

7. SOURCE TERMS FOR THE GRAVITATIONAL
FIELD EQUATIONS

We now catalog the source terms � (eq. [10]), Si (eq. [11]),
Sij (eq. [12]), and S (eq. [13]) that appear in the Hamiltonian
constraint (eq. [6]), the momentum constraint (eq. [7]), and
the evolution equation (8). Inserting the fluid stress-energy
tensor (eq. [53]) into equations (10)–(13) yields the fluid

contributions to the source terms:

�fluid ¼ �0hW
2 � P ; ð90Þ

Sfluid
i ¼ �0hWui ; ð91Þ

Sfluid
ij ¼ P�ij þ

Sfluid
i Sfluid

j

�0hW 2
; ð92Þ

Sfluid ¼ 3Pþ �0hðW 2 � 1Þ : ð93Þ

Next we assemble the electromagnetic contributions to
the source terms. To do so, we first need to construct the
electromagnetic stress-energy tensor Tab

em from the Faraday
tensor Fab:

4�Tab
em ¼ FacFb

c � 1
4 g

abFcdF
cd : ð94Þ

Inserting equation (14), we first find

FabF
ab ¼ 2ðBiB

i � EiE
iÞ ; ð95Þ

where we have used �abc�abd ¼ 2�dc . With �abc�dea ¼
�bd�ce � �be�cd , the first term in equation (94) becomes

FacFb
c ¼ nanbEiE

i þ 2nða�bÞcdEcBd

� EaEb � BaBb þ �abBiB
i : ð96Þ

Combining the last two equations then yields the electro-
magnetic stress-energy tensor in 3þ 1 form

4�Tab
em ¼ 1

2 nanb þ �ab
� �

EiE
i þ BiB

i
� �

þ 2nða�bÞcdEcBd � EaEb þ BaBb
� �

: ð97Þ

This stress-energy tensor can now be inserted into equa-
tions (10)–(13) to obtain the electromagnetic source terms.
For the mass-energy density �em, we find

4��em ¼ nanb4�T
ab
em ¼ 1

2 EiE
i þ BiB

i
� �

¼ 1
2 E2 þ B2
� �

; ð98Þ

which is the energy density of the electromagnetic fields.
The energy flux Sem

i reduces to the Poynting vector

4�Sem
i ¼ ��ianb4�T

ab
em ¼ ��ianbn

b�acdEcBd

¼ �ijkE
jBk ¼ ðE � BÞi: ð99Þ

The stress tensor Sem
ij is

4�Sem
ij ¼ �ia�jb4�T

ab
em ¼ �EiEj � BiBj þ 1

2 �ijðE
2 þ B2Þ :

ð100Þ

Its trace equation (13), finally, is equal to the mass-energy
density �em:

4�Sem ¼ 1
2 ðE

2 þ B2Þ : ð101Þ

The above results are not surprising: expressed in terms of
the electromagnetic field components as measured by a nor-
mal observer, na, i.e., an observer who is at rest with respect
to the slices �, the 3þ 1 source terms have the same form as
in flat space (compare exercise [5.1] inMisner et al. 1973).

8. COMPARISON WITH PREVIOUS TREATMENTS

In this section we compare our notation and findings with
those of SS85, Evans & Hawley (1988, hereafter EH88),
Hawley & Evans (1989, hereafter HE89), and Z89.
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SS85 define the three-velocity viSS by writing the four-
velocity ua as

ua ¼ ��1W 1; �viSS � �i
� �

ð102Þ

and

ua ¼ W ��þ vSSi �i; vSSi
� �

ð103Þ

(see eq. [2.1] of SS85). HereW is the Lorentz factor between
ua and na:

W ¼ �nau
a ¼ �ut ; ð104Þ

as in equation (41). The normalization uaua ¼ �1 leads to

W ¼ 1� viSSv
SS
i

� ��1=2
; ð105Þ

which shows that viSS is the velocity of the fluid with respect
to a normal observer.

Z89 adopts the same formulation as SS85, but denotesW
with � (see eq. [2.11] of Z89).

HE89 adopt the same definition of three-velocity as we
do, defining the three-velocity vi to be the velocity with
respect to coordinate observers:

viW ¼ ui

ut
ð106Þ

(see eq. [43]). We use the subscript ‘‘W ’’ since this definition
is used in Wilson’s equations of relativistic hydrodynamics
(see Wilson 1972; Hawley et al. 1984). With equation (106),
the four-velocity ua can be written

ua ¼ ��1W 1; viW
� �

: ð107Þ

Comparing equations (102) and (107) shows that the two
definitions of vi are related by

viW ¼ �viSS � �i : ð108Þ

We can now compare the ideal MHD equation (46) in the
different treatments. Since HE89 adopt the same definition
for vi ¼ viW as we do, their equations (eq. [A14] from EH88
and eq. [14] from HE89) should be identical to our equation
(46). In their expression, however, the shift term is absent.
This absent shift term can be traced back to equation (13)
from HE89, which does not agree with our equation (42). It
is likely that the shift term was missed by dropping the term
�itj. The alignment of indices is incorrect in SS85’s
equation (2.9) (which they express in terms of ui instead of
vi). Fixing it and utilizing equations (103) and (108) make
their equation equivalent to equation (46).

To compare with Z89’s ideal MHD equation (eq. [2.12] of
Z89), we insert equation (108) into equation (46), which
immediately yields the Z89 result,

Ei ¼ ��ijkv
j
SSB

k ; ð109Þ

showing that our result agrees with that of Z89.
We find similar errors in the Faraday equation. We found

that the shift terms in equation (46) cancel all other shift
terms when inserted into equation (23), ultimately yielding
equations (49) and (51), which do not include any shift
terms. With the shift terms being absent in equation (14)
from HE89, the corresponding terms do not cancel, leading

to the incorrect equations (17) and (18) from HE89 (see also
eqs. [2.8] and [A17] from EH88).

Z89’s expression for the Faraday equation (eq. [2.13] of
Z89) can be recovered by inserting equation (108) into
equation (51):

@tB
i ¼ @j½ð�viSS � �iÞB j � ð�v j

SS � � jÞBi� ; ð110Þ

which can be rewritten as

1

�1=2
@tð�1=2BiÞ ¼ Dj½ð�viSS � �iÞB j � ð�v j

SS � � jÞBi� ð111Þ

or

1

�1=2
@tð�1=2BÞ ¼

D

� �vSS � �ð Þ � B½ � : ð112Þ

This shows that our equations (49) and (51) again agree with
the expressions of Z89.

Interestingly, Z89 refers to EH88, and in fact their equa-
tions look quite similar in that they both contain the above
shift terms. However, Z89 uses viSS as the three-velocity,
while EH88 use viW. Therefore, the shift terms are correct in
the former but incorrect in the latter.

Finally, we show that our equation (42) is equivalent to
Z89’s equation (2.10). On the left-hand side of equation (42)
we rewrite

~��e ¼ uaJ
a ¼ ua na�e þ Jað Þ ¼ �W�e þ uiJ

i

¼W vSS x J � �eð Þ ; ð113Þ

where we have used the decomposition equation (17).
Inserting this and equation (108) into equation (42) yields

J þW 2ðvSS x J � �eÞvSS ¼ �WðE þ vSS � BÞ ; ð114Þ

which is identical to equation (2.10) of Z89.

9. SUMMARY

We have assembled a complete set of Maxwell-Einstein
MHD equations, describing the structure and evolution of a
relativistic, ideal MHD gas in a dynamical spacetime. We
compare with previous treatments and correct some errors
in the existing literature.

Our compilation of these equations is motivated by a
large number of problems in relativistic astrophysics in
which magnetic fields are likely to play an important role
(see the incomplete list in x 1). Self-consistent solutions to
the Maxwell-Einstein MHD equations will be necessary for
a thorough understanding of these problems, and we there-
fore anticipate that relativistic MHD in dynamical space-
times will attract much interest in the future. We hope that
our compilation of these equations will be useful for such
investigations, particularly for treatments that will rely on
numerical simulations. In Paper II we use these equations to
model the collapse of a magnetized star to a black hole.
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