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EFFECTS OF DIFFERENTIAL ROTATION ON THE MAXIMUM MASS OF NEUTRON STARS
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ABSTRACT

The merger of binary neutron stars is likely to lead to differentially rotating remnants. In this paper, we
numerically construct models of differentially rotating neutron stars in general relativity and determine their
maximum allowed mass. We model the stars by adopting a polytropic equation of state and tabulate maxi-
mum allowed masses as a function of differential rotation and stiffness of the equation of state. We also pro-
vide a crude argument that yields a qualitative estimate of the effect of stiffness and differential rotation on
the maximum allowedmass.

Subject headings: gravitation — relativity — stars: rotation

1. INTRODUCTION

Neutron stars that are newly formed in the coalescence of
binary neutron stars (or in supernova collapse) are likely to
be differentially rotating (see, e.g., the fully dynamical simu-
lations of Rasio & Shapiro 1992, 1994; Shibata & Uryu
2000; Faber, Rasio, & Manor 2001; the review of Rasio &
Shapiro 1999 and references therein). Differential rotation
may play an important role in the stability of these rem-
nants, since it can be very effective in increasing their maxi-
mum allowed mass.

Assuming that neutron stars in binaries have individual
masses close to 1.4M� (Thorsett & Chakrabarty 1999) and
assuming that the maximum allowed mass of a nonrotating
neutron star is in the range of 1.8–2.3M� (Akmal, Pandhar-
ipande, & Ravenhall 1998), one might conclude that the
coalescence of binary neutron stars leads to immediate col-
lapse to a black hole. However, both thermal pressure and
rotation can increase the maximum allowedmass.

For coalescence from the innermost stable circular orbit,
thermal pressure is believed to have a small effect. The maxi-
mum mass of uniformly rotating stars is limited by the spin
rate at which the fluid at the equator moves on a geodesic;
any further speed-up would lead to mass shedding (the Kep-
ler limit). Uniform rotation can therefore increase the maxi-
mum allowed mass by at most about 20% for very stiff
equations of state (Cook, Shapiro, & Teukolsky 1992, 1994,
hereafter CST1 and CST2, respectively), which is not suffi-
cient to stabilize remnants of binary neutron star merger.
Uniformly rotating equilibrium configurations with rest
masses exceeding the maximum rest mass of nonrotating
stars constructed with the same equation of state are
referred to as supramassive stars (CST1; CST2).

Differential rotation, however, can be much more efficient
in increasing the maximum allowed mass. In differentially
rotating stars, the core may rotate faster than the envelope,
so that the core can be supported by rapid rotation without
the equator having to exceed the Kepler limit. This effect

was demonstrated in Newtonian gravitation by Ostriker,
Bodenheimer, & Lynden-Bell (1966) for white dwarfs and in
general relativity by Baumgarte, Shapiro, & Shibata (2000,
hereafter BSS) for n ¼ 1 polytropes. BSS also showed by
way of example that stars with about 60% more mass than
the maximum allowed mass of the corresponding nonrotat-
ing star can be dynamically stable against both radial and
nonaxisymmetric modes. BSS refer to differentially rotating
equilibrium configurations with rest masses exceeding the
maximum rest mass of a uniformly rotating star as ‘‘ hyper-
massive ’’ stars.

In this paper, we extend the findings of BSS for n ¼ 1
polytropes in two ways. We survey different polytropic indi-
ces and study the effect of both differential rotation and stiff-
ness of the equation of state on the maximum allowed mass.
We also introduce a very simple model calculation that illus-
trates these effects qualitatively and that, moreover, gives
surprisingly accurate results for soft equations of state and
moderate degrees of differential rotation.

This paper is organized as follows. In x 2, we present qual-
itative considerations leading to a simple estimate of the
maximum mass of differentially rotating neutron stars. In
x 3, we construct numerical models of fully relativistic, dif-
ferentially rotating neutron stars for different polytropic
indices. We briefly discuss our findings in x 4. We also
include an Appendix with tables of our numerical results.

2. QUALITATIVE CONSIDERATIONS

When magnetic fields and relativistic effects can be
neglected, rotating stars in equilibrium satisfy the Newto-
nian virial theorem,

W þ 2T þ 3� ¼ W 1� 2
T

jW j

� �
þ 3� ¼ 0 ð1Þ

(Shapiro & Teukolsky 1983). Here the rotational kinetic
energy T scales as

T � J2

MR2
e

; ð2Þ

the potential energy as

W � �M2

Re
� �M5=3�1=3 ; ð3Þ
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and the internal energy, computed from a volume integral
of the pressure, as

� � �1=nM ; ð4Þ

where J is the angular momentum,M the mass,Re the equa-
torial radius, and � the mass density. We have also assumed
a polytropic equation of state,

P ¼ K�1þ1=n ; ð5Þ

where K is a constant and n the polytropic index. Here and
throughout we set the gravitation constantG ¼ 1.

Inserting the above expressions into the virial equation
(1), we find

��M5=3�1=3 1� 2
T

jW j

� �
þ ��1=nM ¼ 0 ; ð6Þ

where � and � are the appropriate coefficients. In general, �
depends on the eccentricity of the star, but restricting our
analysis to small values of T=jW j and hence to nearly spher-
ical stars, we assume that both � and � are constant.

For nonrotating stars (T ¼ 0), we solve equation (6) to
find

M ¼ �

�

� �3=2

�ð3�nÞ=ð2nÞ ; ð7Þ

while for rotating stars we obtain

Mrot ¼ M 1� 2
T

jW j

� ��3=2

: ð8Þ

For small values of T=jW j, the right-hand side can be
expanded, and we then find for the mass increase
�M � Mrot �M,

�M

M
¼ 3

T

jW j ð9Þ

(cf. Shapiro & Teukolsky 1983, eq. [7.4.40]). This expression
determines the fractional mass increase as a function of
T=jW j for a constant value of the density �. We will use this
result to estimate the increase in the maximum allowed mass
of a neutron star, even though typically rotating stars
assume their maximum masses at slightly different densities
than the corresponding nonrotating stars.

To evaluate T and jW j, we further simplify the problem
by assuming that the star’s density profile is a step function
with a constant density �c (equal to the original central den-
sity) inside a spherical core of radius Rc and zero outside.
From requiring that the mass of this model star,

M ¼ 4�

3
�cR

3
c ; ð10Þ

be equal to the original mass,

M ¼ 4�

3
���R3

e ; ð11Þ

where ��� is the average density, we find the following relation
between the central condensation and the ratio of the radii:

Re

Rc
¼ �c

���

� �1=3

: ð12Þ

Further assuming that the core is uniformly rotating with
the central angular velocity�c, we find

T ¼ 1

2
I�2

c ¼
MR2

c

5
�2

c : ð13Þ

Inserting this relation together with the potential energy,

W ¼ � 3

5

M2

Rc
; ð14Þ

into equation (9) yields

�M

M
� R3

c�2
c

M
: ð15Þ

To find the increase in the maximum allowed mass, it is use-
ful to assume that the star rotates at the mass-shedding limit

�2
e ¼

M

R3
e
; ð16Þ

where �e is the equatorial angular velocity. This equation
can now be used to eliminate the mass M in equation (15),
which, together with (12), yields

�M

M
� ���

�c

�c

�e

� �2

: ð17Þ

Equation (17) provides a very simple estimate for the
increase of the maximum allowed mass. It depends only on
the central condensation of the nonrotating star, which is a
function of the stiffness of the equation of state, and the
ratio of the angular velocities at the center and equator,
which is a function of the degree of differential rotation. For
uniformly rotating stars, the maximummass increase is esti-
mated to be simply the inverse of the central condensation.
In Table 1, we compare this estimate with the numerical
findings of CST2 and find remarkably good agreement for
soft equations of state. Table 1 also illustrates an ambiguity;
in Newtonian gravity, the central condensation is uniquely
determined by the polytropic index, but in general relativity,
the central condensation of a star depends on the central
density. We therefore compute a relativistic central conden-
sation �c=���jTOV from the central energy density �c and an
average density defined as

��� ¼ 3M

4�R3
ð18Þ

of the nonrotating maximum mass model, where M is the
total mass energy of the star and R is the circumferential
radius. We find that this value yields better agreement with
the numerical values of the maximum mass increase than
adopting the Newtonian central condensation.

The ratio T=jW j provides a useful criterion for the onset
of secular (T=jW j � 0:14) or dynamical (T=jW j � 0:27)
nonaxisymmetric instabilities. Inserting these limits into
equation (8) shows that mass increases of secularly stable
stars are limited by �M=Md1:63, while mass increases of
dynamically stable stars are limited by �M=Md3:2. These
values agree quite well with the respective limits of 1.70 and
3.51 found by Shapiro & Teukolsky (1983, eqs. [7.4.41]
and [7.4.42]), who also take stellar deformations into
account.

3. NUMERICAL RESULTS

We use a modified version of the numerical code of CST1
and CST2 to construct models of differentially rotating neu-
tron stars. The code is based on similar algorithms devel-
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oped by Hachisu (1986) and Komatsu, Eriguchi, & Hachisu
(1989), and we refer to CST1 for details. We adopt a poly-
tropic equation of state,

P ¼ K�
1þ1=n
0 ; ð19Þ

where �0 is the rest-mass density and where equation (19)
reduces to equation (5) in the Newtonian limit. We take the
polytropic constant K to be unity without loss of generality.
Since Kn=2 has units of length, all solutions scale according
to �MM ¼ K�n=2M, ���0 ¼ Kn�0, etc., where the barred quanti-
ties are dimensionless quantities corresponding to K ¼ 1,
and the unbarred quantities are physical quantities (com-
pare CST1).

Constructing differentially rotating neutron star models
requires choosing a rotating law Fð�Þ ¼ utu�, where ut and
u� are components of the four-velocity u� and� is the angu-
lar velocity. We follow CST1 and assume the rotation law
Fð�Þ ¼ A2ð�c � �Þ, where the parameter A has units of
length. Expressing ut and u� in terms � and metric poten-
tials yields equation (42) in CST1, or, in the Newtonian
limit,

� ¼ �c

1þ ÂA�2r̂r2 sin2 �
: ð20Þ

Here we have rescaled A and r in terms of the equatorial
radius Re: ÂA � A=Re and r̂r � r=Re. The parameter ÂA is a
measure of the degree of differential rotation and determines
the length scale over which � changes. Since uniform rota-
tion is recovered in the limit ÂA ! 1, it is convenient to
parameterize sequences by ÂA�1. In the Newtonian limit, the
ratio �c=�e that appears in the estimate (17) is related to
ÂA�1 by �c=�e ¼ 1þ ÂA�2, but for relativistic configurations,
this relation holds only approximately.

We adopt this particular rotation law for convenience
and for easy comparison with many other authors who have
assumed the same law. We also compared with the rem-
nants’ angular momentum distribution in the fully relativis-
tic dynamical merger simulations of Shibata & Uryu (2000)
and to the post-Newtonian simulations of Faber, Rasio, &
Manor (2001). We have found that their numerical results
can be fitted reasonably well by our adopted differential
rotation law.

We modify the numerical algorithm of CST1 by fixing the
maximum interior density instead of the central density for
each model. This change allows us to construct higher mass

models in some cases, since the central density does not
always coincide with the maximum density and hence may
not specify a model uniquely.

For a given a value of n and ÂA, we construct a sequence of
models for each value of the maximum density by starting
with a static, spherically symmetric star and then decreasing
the ratio of the polar to equatorial radius, Rpe ¼ Rp=Re, in
decrements of 0.025. This sequence ends when we reach
mass shedding (for large values of ÂA) or when the code fails
to converge (indicating the termination of equilibrium solu-
tions) or when Rpe ¼ 0 (beyond which the star would
become a toroid). For each one of these sequences, the max-
imum achieved mass is recorded. We repeat this procedure
for different values of the maximum density, covering about
a decade below the central density of the nonrotating maxi-
mum mass model, which yields the maximum allowed mass
for the chosen values of n and ÂA. Our numerical results are
tabulated in the Appendix. Our maximum mass increases
are lower limits in the sense that even higher mass models
may exist but that we have not been able to construct them
numerically.

4. DISCUSSION AND SUMMARY

Our numerical results are tabulated in Tables 2–9 in the
Appendix. We also compare the increases in the maximum
allowed mass with the estimate (17) and find surprisingly
good agreement for soft equations of state and moderate
degrees of differential rotation.

In particular, we find that the fractional maximum rest-
mass increase �M=M for uniformly rotating stars is well
approximated by the inverse of the central concentration
(see also Table 1). For moderate degrees of differential rota-
tion, �M=M increases approximately with the square of the
ratio between the central and equatorial angular velocity
(�c=�e), in accord with equation (17).

For all equations of state, we find that �M=M increases
with �c=�e only up to a moderate value of �c=�e and starts
to decrease again for larger values (at least with our code
and algorithm, we do not find monotonically increasing
mass configurations). For stiff equations of state this turn-
around occurs for smaller values of �c=�e than for soft
equations of state. For moderate degrees of differential rota-
tion (�c=�ed2), a given value of �c=�e will lead to a larger
increase in the maximum allowed mass for a stiffer equation
of state, as expected from the estimate (17).

TABLE 1

MaximumMass Increase for Uniformly Rotating Polytropes

na �MMmax
0

b �RRmax c ���max
d �M=MjCSTe ���=�cjTOV

f ���=�cjNewt
g

0.5... 0.151 0.395 1.29 0.224 0.375 0.545

1.0... 0.180 0.763 0.42 0.146 0.209 0.304

1.5... 0.276 1.97 0.072 0.099 0.115 0.167

2.0... 0.523 6.94 5.8� 10�3 0.066 0.063 0.088

2.5... 1.25 41.0 1.26� 10�4 0.040 0.034 0.043

2.9... 3.23 620 1.54� 10�7 0.023 0.021 0.021

a Polytropic index.
b Maximum rest mass of nonrotating polytrope (CST2).
c Circumferential radius of the nonrotatingmaximummass configuration (CST2).
d Maximum energy density of the nonrotating maximummass configuration (CST2).
e Fractional rest-mass increase (CST2).
f Estimate (17) using relativistic central condensation.
g Estimate (17) using Newtonian central condensation.
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We find the largest maximum mass increases for moder-
ately stiff equations of state. Some of these configurations
exceed the maximum allowed mass of the corresponding
nonrotating star by more than a factor of 2. These configu-
rations typically have large values of T=jW je0:27, indicat-
ing that such stars may by dynamically unstable against bar
formation (but see Shibata, Karino, & Eriguchi 2002, who
found mild bar mode instabilities at very small values of
T=jW j for extreme degrees of differential rotation). They
are also toroidal, i.e., assume their maximum density on a
torus around the center of the star, which may indicate an
m ¼ 1 instability at even smaller values of T=jW j (Centrella
et al. 2001). However, even restricting attention to those
configurations that are not toroidal and have T=jW j
< 0:27, we find configurations with masses larger than the
maximum mass of the corresponding nonrotating star by
over 60%. BSS demonstrated that at least some of these
models are dynamically stable. Shibata & Uryu (2000) dem-
onstrated that binary mergers may result in similarly stable
hypermassive stars when the progenitor masses are not too
close to the maximummass.

To summarize, we find that differential rotation is very
effective in increasing the maximum allowed mass, espe-
cially for moderately stiff equations of state. The effect is
probably large enough to stabilize the remnants of a binary
neutron star merger, which is likely to be differentially rotat-
ing. Binary neutron star coalescence may therefore lead to
secularly stable, hypermassive neutron stars. As discussed
in BSS (see also Shapiro 2000), magnetic braking is likely to
bring such differentially rotating stars into uniform rota-
tion, which reduces the maximum allowed mass and induces
a delayed collapse to a Kerr black hole.

This work was supported in part by NSF grants PHY-
0090310 and PHY-0205155, NASA grant NAG5-10781 at
the University of Illinois at Urbana-Champaign, and NSF
grant PHY-0139907 at Bowdoin College. N. D. L. grate-
fully acknowledges support through an Undergraduate
Research Assistantship from the Department of Physics
and Astronomy at Bowdoin College.

APPENDIX

NUMERICAL RESULTS FOR MAXIMUM MASSES

We list below, in Tables 2–9, values for the maximum rest-mass increase for uniformly and differentially rotating polytropes.
For each polytropic index n, we tabulate the differential rotation parameter ÂA�1, the ratio of the central and equatorial angular
velocity �c=�e (which reduces to [20] in the Newtonian limit, i.e., for soft equations of state), the numerically determined frac-
tional rest-mass increase ð�M=MÞnum, the ratio of the (relativistic) rotational kinetic energy and the gravitational binding
energy T=jW j, the ratio between polar and equatorial radius Rp=Re, the maximum density ���max, and the estimate ð�M=MÞest
according to equation (17). In these estimates, we used the numerically determined ratios �c=�e and the central condensations
according to equation (18). For n � 1:25, some of the maximum mass configurations are toroidal, i.e., assume the maximum
density on a toroid about the center. For these polytropic indices, we also include the ratio �c=�max.

All models are computed with the code of CST1 and CST2 using 64 zones in both the radial and angular directions and trun-
cating the Legendre polynomial expansion at ‘ ¼ 16 (see CST1 for details of the numerical implementation). The accuracy of
individual stellar models can be tested, for example, by computing a relativistic Virial theorem (Gourgoulhon & Bonazzola
1994; Cook, Shapiro, & Teukolsky 1996; see also Nozawa et al. 1998 for a comparison of several different computational
methods). In our analysis, however, the error in the maximum mass and related quantities is dominated by the finite step size

TABLE 3

Numerical Results, n ¼ 0:75:Mmax

0 ¼ 0:159; ���=�cjTOV ¼ 0:28

ÂA�1 �c=�e ð�M=MÞnum T=jW j Rp=Re ���max �max=�c ð�M=MÞest

0.0.... 1.00 0.18 0.11 0.575 0.67 1 0.28

0.3.... 1.35 0.27 0.15 0.5 0.64 1 0.52

0.5.... 1.92 0.51 0.22 0.4 0.42 1 1.04

0.7.... 2.49 1.07 0.30 0.025 0.16 0.021 1.75

1.0.... 3.48 0.68 0.27 0.025 0.16 0.019 3.42

1.5.... 6.33 0.19 0.16 0.425 0.27 0.74 11.3

TABLE 2

Numerical Results, n ¼ 0:5:Mmax

0 ¼ 0:151; ���=�cjTOV ¼ 0:375

ÂA�1 �c=�e ð�M=MÞnum T=jW j Rp=Re ���max �max=�c ð�M=MÞest

0.0.... 1.00 0.22 0.15 0.55 1.02 1 0.38

0.3.... 1.51 0.41 0.23 0.425 0.73 1 0.86

0.5.... 1.93 0.62 0.31 0.2 0.30 0.77 1.40

0.7.... 2.46 0.46 0.30 0.025 0.29 0.085 2.27

1.0.... 3.54 0.20 0.27 0.1 0.31 0.29 4.70
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TABLE 4

Numerical Results, n ¼ 1:Mmax

0 ¼ 0:180; ���=�cjTOV ¼ 0:209

ÂA�1 �c=�e ð�M=MÞnum T=jW j Rp=Re ���max �max=�c ð�M=MÞest

0.0..... 1.00 0.15 0.083 0.575 0.35 1 0.21

0.3..... 1.24 0.20 0.10 0.55 0.33 1 0.32

0.5..... 1.65 0.31 0.14 0.475 0.32 1 0.57

0.7..... 2.33 0.61 0.21 0.375 0.23 1 1.14

0.8..... 2.66 1.12 0.28 0.25 0.083 0.65 1.48

0.85 ... 2.78 1.40 0.29 0.025 0.068 5.0� 10�3 1.60

1.0..... 3.39 1.22 0.28 0.025 0.075 4.7� 10�3 2.28

1.5..... 6.33 0.31 0.15 0.475 0.23 0.81 8.37

TABLE 5

Numerical Results, n ¼ 1:25:Mmax

0 ¼ 0:216; ���=�cjTOV ¼ 0:15

ÂA�1 �c=�e ð�M=MÞnum T=jW j Rp=Re ���max �max=�c ð�M=MÞest

0.0.... 1.00 0.12 0.063 0.6 0.15 1 0.15

0.3.... 1.19 0.16 0.075 0.575 0.15 1 0.21

0.5.... 1.51 0.21 0.10 0.525 0.15 1 0.33

0.7.... 1.98 0.32 0.13 0.475 0.14 1 0.58

1.0.... 3.39 1.78 0.28 0.025 0.037 1.1� 10�3 1.69

1.5.... 5.26 0.27 0.12 0.575 0.101 0.99 4.10

TABLE 6

Numerical Results, n ¼ 1:5:Mmax

0 ¼ 0:276; ���=�cjTOV ¼ 0:115

ÂA�1 �c=�e ð�M=MÞnum T=jW j Rp=Re ���max ð�M=MÞest

0.0.... 1.00 0.10 0.047 0.625 0.061 0.12

0.3.... 1.15 0.12 0.055 0.6 0.060 0.15

0.5.... 1.42 0.16 0.068 0.575 0.059 0.23

0.7.... 1.81 0.22 0.089 0.525 0.056 0.38

1.0.... 2.65 0.40 0.137 0.45 0.047 0.81

1.5.... 4.75 0.25 0.098 0.625 0.050 2.60

TABLE 7

Numerical Results, n ¼ 2:0:Mmax

0 ¼ 0:523; ���=�cjTOV ¼ 0:063

ÂA�1 �c=�e ð�M=MÞnum T=jW j Rp=Re ���max � 103 ð�M=MÞest

0.0.... 1.00 0.067 0.027 0.65 5.1 0.063

0.3.... 1.12 0.076 0.031 0.625 5.1 0.079

0.5.... 1.33 0.092 0.036 0.625 5.1 0.11

0.7.... 1.63 0.12 0.045 0.6 4.9 0.17

1.0.... 2.28 0.18 0.064 0.55 4.4 0.33

1.5.... 4.03 0.15 0.059 0.7 7.0 1.03

TABLE 8

Numerical Results, n ¼ 2:5:Mmax

0 ¼ 1:25; ���=�cjTOV
¼ 0:034

ÂA�1 �c=�e ð�M=MÞnum T=jW j Rp=Re ���max � 104 ð�M=MÞest

0.0.... 1.00 0.043 0.016 0.675 1.15 0.034

0.3.... 1.10 0.048 0.017 0.65 1.15 0.041

0.5.... 1.28 0.056 0.020 0.65 1.1 0.056

0.7.... 1.54 0.069 0.024 0.625 1.1 0.081

1.0.... 2.10 0.098 0.034 0.6 1.1 0.15

1.5.... 3.50 0.102 0.035 0.75 1.05 0.42

2.0.... 5.44 0.053 0.019 0.875 1.1 1.01



in the sequences over Rp=Re and ���max, which result in errors typically in the order of a few percent. For soft equations of state,
the mass as a function of central density is a very slowly varying function, making it quite difficult to determine the central den-
sity of the maximum mass configuration very accurately. The error in the Rp=Re is determined by our step size of 0.025. We
finally note that highly toroidal configurations depend very sensitively on the input parameters, so that those mass increases
should only be taken as estimates.
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TABLE 9

Numerical Results, n ¼ 2:9:Mmax

0 ¼ 3:23; ���=�cjTOV
¼ 0:021

ÂA�1 �c=�e ð�M=MÞnum T=jW j Rp=Re ���max � 107 ð�M=MÞest

0.0.... 1.00 0.028 0.010 0.675 1.4 0.021

0.3.... 1.09 0.031 0.011 0.675 1.3 0.025

0.5.... 1.25 0.037 0.013 0.675 1.3 0.033

0.7.... 1.50 0.044 0.015 0.65 1.3 0.047

1.0.... 2.02 0.062 0.020 0.625 1.3 0.085

1.5.... 3.29 0.069 0.022 0.775 1.3 0.227

2.0.... 5.07 0.035 0.012 0.9 1.4 0.540
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