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ABSTRACT

The merger of binary neutron stars is likely to lead to differentially rotating remnants. In this paper, we survey
several cold nuclear equations of state (EOSs) and numerically construct models of differentially rotating neutron
stars in general relativity. For each EOS we tabulate maximum allowed masses as a function of the degree of
differential rotation. We also determine effective polytropic indices and compare the maximum allowed masses
with those for the corresponding polytropes. We consistently find larger mass increases for the polytropes, but
even for the nuclear EOSs we typically find maximum masses 50% higher than the corresponding values for
nonrotating (Tolman-Oppenheimer-Volkoff) stars. We evaluate our findings for the six observed binary neutron
star (pulsar) systems, including the recently discovered binary pulsar J0737—3039. For each EOS we determine
whether their merger could automatically lead to prompt collapse to a black hole, or whether the remnant can be
supported against collapse by uniform rotation (possibly as a supramassive star) or differential rotation (possibly
as a hypermassive star). For hypermassive stars, delayed collapse to a black hole is likely. For the most recent
EOSs we survey the merger remnants can all be supported by rotation against prompt collapse, but their actual
fate will depend on the nonequilibrium dynamics of the coalescence event. Gravitational wave observations of
coalescing binary neutron stars may be able to distinguish these outcomes—no, delayed, or prompt collapse—

and thereby constrain possible EOSs.

Subject headings: gravitation — relativity — stars: neutron — stars: rotation

1. INTRODUCTION

The remnant formed in the coalescence of binary neutron
stars is likely to be differentially rotating (see, e.g., the dy-
namical simulations of Rasio & Shapiro 1992, 1994, 1999;
Shibata & Uryu 2000, 2002; Faber et al. 2001, 2003; Oechslin
et al. 2002; Shibata et al. 2003; see also the review of
Baumgarte & Shapiro 2003). It is likely that differential ro-
tation will play an important role in the dynamical stability of
these remnants, since it can be very effective in increasing
their maximum allowed mass (Baumgarte et al. 2000, here-
after BSS00; Lyford et al. 2003, hereafter LBS03).

Most neutron stars in binaries have individual gravitational
masses close to 1.4 M, (see Table 2). Furthermore, most recent
realistic nuclear equations of state predict a maximum allowed
mass for nonrotating neutron stars in the range of about 1.7—
2.3 Mg (see Table 1). Taken together, these facts seem to
suggest that the coalescence of binary neutron stars would lead
to prompt collapse to a black hole. However, rotation, and
especially differential rotation, can increase the maximum
allowed mass significantly.*

The maximum allowed mass of uniformly rotating stars is
limited by the spin rate at which the fluid at the equator moves
on a geodesic (the Kepler limit); any further speedup would
lead to mass shedding. Uniform rotation can therefore increase
the maximum allowed mass by about 20% at most for very stiff
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shock-induced thermal pressure, which can also increase the maximum
allowed mass, is found to have a smaller effect.
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equations of state (Cook et al.1992, 1994a, 1994b, hereafter
CST1, CST2, and CST3, respectively; see also Table 1), which
is not sufficient to stabilize remnants of binary neutron star
coalescence. Uniformly rotating neutron stars with rest masses
exceeding the maximum allowed rest mass for nonrotating
stars (for the same equation of state) are referred to as supra-
massive neutron stars.

Differential rotation, however, is much more effective in
increasing the maximum allowed mass. Unlike a uniformly
rotating star, the rotation rate at the core of a differentially
rotating star is not restricted to the maximum rotation rate at the
equator, so that the core can be supported by rapid rotation
without the equator having to exceed the Kepler limit. This
effect was demonstrated in Newtonian gravitation by Ostriker
et al. (1966) for white dwarfs and in general relativity by
BSS00 for n = 1 polytropes. BSS00 also showed by way of
illustration that stars with about 60% more mass than the
maximum allowed mass of the corresponding nonrotating
star can be dynamically stable against both radial and non-
axisymmetric modes. BSS00 refer to differentially rotating
equilibrium configurations with rest masses exceeding the
maximum rest mass of a uniformly rotating star as hyper-
massive neutron stars. LBS03 generalized the equilibrium
results of BSS00 to other polytropic indices in the range
0.5 < n < 2.9 and found that the largest relative increases in
the maximum allowed mass can be found for polytropic in-
dices close to n = 1. It is therefore not surprising that the
hypermassive binary neutron star remnants formed inthe n = 1
simulations of Shibata et al. (2003) do not collapse promptly to
black holes unless they exceed the maximum nonrotating mass
by more than about 70%. The merged remnants will be dy-
namically stable on a dynamical timescale. Viscous damping
and magnetic braking of differential rotation will likely occur
on a secular timescale (which is much greater than the dy-
namical timescale), leading to a delayed collapse and a delayed
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TABLE 1
MaxiMum MAss CONFIGURATIONS

EOS MTOV a MgOV MUNI M})INI

((SM() /MO )UNI MDIF Mg)IF

(6Mo/M)P™ A

1.66 1.92 1.95 2.24
1.65 1.89 1.95 222
2.70 3.23 3.27 3.87
1.84 2.17 2.19 2.55
1.80 2.10 2.12 2.45
2.20 2.67 2.46 3.10

0.17 2.62 2.90 0.51 0.7
0.18 2.71 3.02 0.60 0.7
0.20 4.45 5.04 0.56 0.7
0.18 2.89 3.25 0.50 0.7
0.17 2.69 3.08 0.46 0.5
0.16 2.95 3.50 0.31 0.3

& All masses are in units of M.

® Reid soft core (Pandharipande 1971).

¢ Model V (Bethe & Johnson 1974).

9 Mean field (Pandharipande & Smith 1975).
° UV14 + TNI (Wiringa et al. 1988).
f'UV14 + TNI (Lorenz et al. 1993).

€ Al8 + dv + UIX* (Akmal et al. 1998).

burst of gravitational radiation (BSS00; Shapiro 2000; Cook
et al. 2003; Liu & Shapiro 2003).

In this paper, we generalize the results of BSS00 and
LBSO03 to realistic equations of state. We construct differen-
tially rotating neutron stars for a sample of six cold nuclear
equations of state and tabulate their maximum allowed masses
as a function of the degree of differential rotation. In addition,
we identify an “effective” polytropic index for each of these
equations of state and construct differentially rotating poly-
tropes for these indices. We consistently find larger mass
increases for the polytropes than for the nuclear equations
of state, which is due to a drop in the maximum density for
a rotating star with a large degree of differential rotation.
However, even for nuclear equations of state we find increases
in the maximum allowed rest mass of the order of about
50%, so that binary neutron star coalescence should often
result in hypermassive neutron stars. We explicitly predict the
fate of the six double neutron star binaries that have been
identified to date, using the results of our equilibrium model
calculations.

The paper is organized as follows. In § 2 we briefly sum-
marize the numerical method and discuss the nuclear equa-
tions of state adopted in our calculations. In § 3 we present
numerical results and compare our findings for nuclear
equations of state with those for polytropes. We summarize
our findings and discuss consequences for the six observed
binary neutron star systems in § 4. In the Appendix we tab-
ulate our numerical results. We adopt gravitational units and
set G=c=1.

2. CONSTRUCTING NUMERICAL MODELS
2.1. Equilibrium Models of Differentially Rotating Stars

As in BSS00 and LBS03, we use a modified version of the
numerical code of CST1 to construct equilibrium models of
differentially rotating neutron stars in general relativity. The
code is based on similar numerical methods developed by
Hachisu (1986) and Komatsu et al. (1989), and we refer to
CSTI1 for details.

Constructing differentially rotating neutron star models
requires choosing a rotation law F(Q) = u'u,, where u and u,
are components of the four-velocity u® and €2 is the angular
velocity. We follow CST1 and assume a rotation law F(2) =
A*(Q. — Q), where the parameter A4 has units of length and €2,
is the central value of the angular velocity. Expressing u' and

uy in terms of 2 and metric potentials yields equation (42) of
CSTI1, or

0

l—|—A #2 sin’6 M
in the Newtonian limit. Here we have rescaled 4 and 7 in terms
of the equatorial radius R.: 4 = A/R. and 7 = r/R,. The pa-
rameter A is a measure of the degree of differential rotation
and determines the length scale over which Q changes. Since
uniform rotation is recovered in the limit A" — 0, it is con-
venient to parameterize sequences by A", In the Newtonian
limit the ratio between the central and equatonal angular ve-
locities /€, is related to 4 by Q./Q, = 1 + A2, but for rel-
ativistic configurations this relation holds only approx1mately

We adopt this particular rotation law for convenience and
for easy comparison with many other authors who have as-
sumed the same law. However, as pointed out in LBS03, this
rotation law approximates reasonably well the angular ve-
locity profile of binary neutron star remnants in the fully
relativistic dynamical simulations of Shibata & Uryu (2000,
2002) and the post-Newtonian simulations of Faber et al.
(2001; see also Faber et al. 2003) for values of 4 ~ 1. This
suggests that the above rotation law may provide a reasonable
parameterization of differential rotation profiles that one might
expect to find in binary neutron star merger remnants.

We modified the numerical algorithm of CST1 by fixing the
maximum interior density instead of the central density for
each model. This change allows us to construct higher mass
models in some cases, since the central density does not al-
ways coincide with the maximum density and hence may not
specify a model uniquely.

For each equation of state and a given value of 4 we con-
struct a sequence of models for each value of the maximum
density by starting with a static, spherically symmetric star
and then decreasing the ratio of the polar to equatorial radius,
R = R,/R., in decrements of 0.015. This sequence ends when
we reach mass shedding (for large values of A), when the
code fails to converge or when R = 0 (beyond which the star
would become a toroid, a transition that current dynamical
simulations do not indicate). For each of these sequences, the
maximum achieved mass is recorded. We repeat this proce-
dure for different values of the maximum density, which yields
the maximum achieved mass as a function of maximum
density. The maximum of this curve is the maximum allowed
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Fig. 1.—Pressure as a function of rest-mass density for the six nuclear
equations of state adopted in this paper (see text and Table 1 for details).

mass for this particular equation of state and the chosen value
of 4. In the Appendix we tabulate our numerical results for
the equations of state described in § 2.2 and for 4~ =

0, 0.3, 0.5, 0.7, and 1.0. Clearly, our maximum allowed
masses are lower limits in the sense that even higher mass
models may exist for other values of 4 or different differential
rotation laws.

2.2. Equations of State

In this paper we adopt six cold, nuclear equations of state
(EOSs), which are listed, together with numerical results, in
Table 1. The first five, A, D, L, UT, and FPS, are adopted
from CST3 (who in turn adopted the labeling of Friedman
et al. 1986 for the first three EOSs). The last EOS, APR,
was adapted from Akmal et al. (1998) by Ravenhall and
Pandharipande (with the smooth matching between low and
high density provided by G. Cook). In Figure 1 we plot the
pressure P as a function of the rest-mass density py for these
EOS:s.

EOS A (Pandharipande 1971) models the interaction of
neutrons at high densities with a Reid soft-core potential. EOS
D is model V of Bethe & Johnson (1974). In EOS L the
nucleon interaction is modeled in terms of a mean scalar field
(Pandharipande & Smith 1975). Both EOSs UT (Wiringa et al.
1988) and FPS (Lorenz et al. 1993) are modern versions of an
earlier EOS proposed by Friedman & Pandharipande (1981),
which employs both two-body (U14) and three-body nucleon
interactions (TNI). EOS UT improves the treatment of matter
at high densities, while FPS describes the interactions in terms
of a Skyrme model. EOS APR (Akmal et al. 1998) adopts a
modern two-nucleon interaction (A18) together with boost
corrections, as well as the UIX three-nucleon potential.

The different descriptions of nucleon interactions affect
the EOS only at high densities. At low densities (py <
10* g cm™3), the EOSs employ the Feynman et al. (1949)
EOS, joining onto the Baym et al. (1971) EOS up to neutron
drip at pp ~ 4 x 10" g cm™3. Above neutron drip, EOSs A
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and D join onto the Baym et al. (1971) EOS, while EOSs L
and UT join onto the Negele & Vautherin (1973) EOS. EOS
APR joins onto the FPS EOS below a number density of
0.1 fm=3 (pg = 1.26 x 10 g cm™).

All EOSs are read into our numerical code in tabular form,
listing rest density pg, the total energy density e, and the
pressure P at discreet points. Intermediate values of these
quantities are computed by interpolation. Further details on
the numerical implementation of these EOSs, including the
fitting and tabulation, can be found in CST3.

3. RESULTS

Our numerical results are summarized in Table 1, where
we list, for each equation of state, the nonrotating Tolman-
Oppenheimer-Volkoff (TOV) maximum masses (both gravi-
tational mass MTOV and rest mass M(°V), the maximum
masses for uniform rotation, and the maximum masses that we
found in our survey of differential rotation. For convenience,
we also list fractional mass increases with respect to the TOV
maximum mass, as well as the parameter 4~' for which the
maximum mass was encountered. More detailed results, with
results for all values of 4~! considered in this paper, are
tabulated in the Appendix.

The fractional mass increases are typically of the order of
50%. These increases are still large enough to support the
remnant of a coalescing binary neutron star system in many
cases (see § 4). However, they are noticeably below the
increases for polytropic EOSs. LBS03 found that the frac-
tional mass increases depend strongly on the polytropic index
n, 1.e., the stiffness of the EOS. For values of n between 0.75
and 1.25, corresponding to moderately stiff EOSs, they found
relative mass increases exceeding 100%. It is therefore
somewhat surprising that the nuclear EOSs considered in this
paper yield significantly smaller numbers.

To understand this result, we construct models of differen-
tially rotating neutron stars for polytropic EOSs,

P=Kp"", (2)

where K is a polytropic constant and # is the polytropic index.
For each nuclear EOS we identify an “effective” polytropic
index nqs as follows. We first construct, for a nuclear EOS, the
nonrotating (TOV) maximum mass model and compute for
this model the central concentration (e./€),,,- Here €. is the
central value of the energy density ¢, and we define the av-
erage energy density from

3M
47R3’

3)

€=

where M is the gravitational mass and R is the circumferential
radius. In Newtonian gravitation, this central condensation
would correspond to a unique value of n. In general relativity,
however, this is no longer the case. To identify the effective
polytropic index n.y, we therefore construct TOV maximum
mass configurations for a large sample of polytropic indices, n
and compute their central condensation (. /€),,, as described
above (see Table 1 in LBS03). We then interpolate between
the polytropic values of the central condensation (e./€),,y to
the desired nuclear value (e./€),,, and thereby identify the
effective polytropic index n.s. We fix the polytropic constant
K in equation (2) by setting the mass of the polytropic max-
imum mass TOV model, which scales with K"/2, equal to its
counterpart for the corresponding nuclear EOS.
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Fic. 2.—Maximum rest mass as a function of maximum density, €pax, for
different values of 4. We include results for the FPS equation of state (solid
lines), as well as for an n = 0.648 polytrope (dashed lines). The agreement is
quite good for large values of enx, but less so for smaller values of ep,y (for
rotating as well as nonrotating stars). This can be understood in terms of the
nuclear polytropic index npps, which we show as a function of the density € in
the inset (solid line; as computed from eq. [5]). For small values of the density,
the nuclear polytropic index npps drops significantly below the effective
polytropic index n.s as computed from central condensation (inset, dashed
line). The raggedness of some of the lines is a consequence of the finite step
size in the parameter R that is varied along our constant density sequences and
is a measure of the numerical error in our results.

We consistently find that the agreement between the nuclear
EOS models and the corresponding polytropes is quite good
(to within 10% or so) for those models that have a maximum
density €max similar to the maximum mass TOV star. How-
ever, for larger degrees of differential rotation the maximum
mass models shift to lower values of ¢, as the star become
increasingly “toroidal” and bloated perpendicular to the ro-
tation axis. We show this effect for EOS FPS in Figure 2, and
we find qualitatively identical results for all other EOSs (see
also Fig. 1 in BSS00).

This behavior can be understood by computing, as an al-
ternative to our construction above, a ‘“nuclear” polytropic
index from the slope of the graphs in Figure 1. Using the adia-
batic index,

r— 8lnP’
811’1;)0

(4)

we define a nuclear polytropic index by

1
Nnucl = ﬁ (5)

Clearly, this index is a function of density, and its value
reflects different interactions dominating different density
regimes. Across phase transitions, ny, can even change dis-
continuously. We include a plot of ngps as a function of the
density € in Figure 2 (inset).

Vol. 610

For a polytropic EOS, on the other hand, = is strictly in-
dependent of the density. We can therefore expect good
agreement between polytropic and nuclear models only as
long as ng is close to nyy for most of the matter in the star.
As can be seen in Figure 2 (inset), ne is very close to ngps for
densities in the range (1.5-3)x 10'> g cm™3. This coincides
quite well with the regime of maximum densities in equilib-
rium models for which the agreement between the polytropic
and nuclear models is fairly good. For lower densities, npps
drops significantly below n.g, and it is therefore not surprising
that stellar models with maximum densities in this regime no
longer agree very well.

For all other EOSs we find very similar results. In all cases,
the nuclear adiabatic index ny, is very close to the effective
polytropic index n.s (as determined from the central con-
densation) for densities close to the maximum density of the
maximum mass TOV star. Matter in this density regime
dominates the structure of the star for uniform and moderate
degrees of differential rotation, leading to good agreement
between nuclear and polytropic models. For larger degrees of
differential rotation, the star becomes increasingly “toroidal”
and bloated, and the maximum density shifts to smaller val-
ues. As a consequence, the star is dominated by matter at
smaller densities, for which 7y, no longer agrees with 7.
Accordingly, the results for the polytropic models are no
longer in good agreement with the nuclear models.

4. SUMMARY AND DISCUSSION

We have constructed models of differentially rotating neu-
tron stars in general relativity for a sample of realistic nuclear
equations of state. We find that their maximum rest masses are
typically larger than those of nonrotating neutron stars by
about 50%. This increase is significantly less than the
increases for moderately stiff polytropic equations of state
(cf. LBS03). This deviation can be explained in terms of a
drop in the maximum density for stars with large degrees of
differential rotation. At these smaller densities, the stiffness of
the nuclear equation of state, as determined from equation (5),
is different from that at the maximum density of maximum
mass nonrotating or uniformly rotating stars. Consequently,
predictions based on simple polytropic models break down for
sufficiently large degrees of differential rotation.

Even a mass increase of 50% may well be sufficient to
support the remnant of binary neutron star coalescence. In
fact, our findings can be used to predict possible fates for the
six known double neutron star binaries as listed in Table 2. For
four of those, B1524+12, B1913+16, B2127+11C, and the
newly discovered binary J0737—3039, the individual gravi-
tational masses are known to high accuracy (Thorsett &
Chakrabarty 1999; Burgay et al. 2003; Lyne et al. 2004). For
the two remaining ones, J1518+4904 and B2303+46, the or-
bital inclination is unknown, so that the combined gravitational
mass is known to much higher accuracy than the individual
masses. Assuming no mass loss during the coalescence and
merger (Faber et al. 2003), the total rest mass of the binary is
conserved (the total gravitational mass is not conserved be-
cause of neutrino and gravitational radiation losses). The rest
mass corresponding to a particular gravitational mass depends
on the equation of state, as is shown in Figure 3 for the four
binaries with well-established individual masses.

The total rest mass My" of the binary is an indicator of
the fate of the merger remnant. If the total rest mass is less
than the maximum (nonrotating) TOV mass M °V, then the
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TABLE

2

Mass DaTa FOR DoUBLE NEUTRON STAR BINARIES

Gravitational Masses ~ Combined Mass

Binary (M) (M) A? D L UT FPS APR
J1518+4904> ... 1.05, 1.56 2.62 £ 0.07 BH HNS NS HNS HNS SNS
BIS34+12° ..., 1.339, 1.339 2678+0012 BH HNS NS HNS HNS SNS
BI9I3+165 ... 1.3874, 1.4411 28285+ 00014 BH BH NS HNS BH HNS
B2127+11CC.. 1.349, 1363 27122+ 00006 BH HNS NS HNS HNS SNS
B2303+46"° . 1.30, 1.34 2.64 + 0.05 BH HNS NS HNS HNS SNS
J0737-3039¢ 1.250, 1.337 2588 +0003 HNS HNS NS HNS HNS SNS

# Possible outcomes of binary merger for each equation of state according to computed total rest mass: NS,
neutron star; SNS, supramassive neutron star; HNS, hypermassive neutron star; BH, black hole.
® For these systems the binary inclination angle has not been determined precisely, so that the combined mass is

known to much higher accuracy than the individual neutron

star masses.

¢ Thorsett & Chakrabarty (1999). Lower and upper limits for combined mass are 95% central limits.

4 Lyne et al. (2004).

remnant can be supported against gravitational collapse even
without rotation. This possibility is identified by “NS” in
Table 2. If M is greater than M(°V, but less than the max-
imum mass of uniformly rotating stars M{™!, then the merger
could lead to a supramassive star, supported by uniform ro-
tation (denoted by “SNS” in Table 2). If M is greater than
MM but less than the maximum mass we find for differen-
tially rotating stars M{'", merger may lead to a hypermassive
neutron star supported by differential rotation (denoted by
“HNS”). If, finally, M is greater than MP', the remnant will

1.5 — 7

1.45 27 —
72

- B1534+12 A
1.4 NI

M, / Mg

1.5

1.45 72 7

- B2127
|

+11C A

1.35 1.

M

promptly collapse to a black hole (“BH”). Clearly, these
limits are only approximations, and the true outcome will
depend not only on the mass and EOS but also on the non-
equilibrium dynamics of the merger.

Since the rest masses of the observed binaries depend on the
equation of state, so do the possible fates. Moreover, since all
binary neutron star systems known to date have similar total
masses, their fate, for a given equation of state, is presumably
similar. In Table 2, the predictions for four of the six binaries
are identical; only the high-mass binary B1913+16 and the

Z

1.6 F 7
? s

: 4

1.55 F_~ -
2 jxe -
Lo B1913+16 -
- TP

1.4 1.45

1.5
1.45
1.4
1.35
1.3

4 1.25 1.3 1.35

/ Mg

Fic. 3.—Rest mass M as a function of gravitational mass M for the six nuclear equations of state (labeled as in Fig. 1). The vertical lines mark the gravitational
mass of the individual neutron stars in those four binary neutron star systems for which the individual masses have been well established.
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low-mass binary J0737—3039 show any differences for some
of the equations of state.

Table 2 suggests two immediate conclusions. For all the
recent equations of state we survey and for all binaries except
for B1913+16, the coalescence is likely to lead to a neutron star.
For three of the six equations of state, the merger of these
binaries could lead to a hypermassive neutron star. Unlike
supramassive neutron stars, hypermassive neutron stars last
only a fairly short time, until magnetic fields or viscous dissi-
pation drive the objects toward uniform rotation, triggering a
delayed collapse to a black hole (see BSS00; Duez et al. 2004).

Second, Table 2 shows that the outcome of binary neutron
star coalescence is quite sensitive to the equation of state. This
means that the observational identification of a merger rem-
nant, and its possible delayed collapse to a black hole, could
place a tight constraint on the equation of state. Advanced
Laser Interferometer Gravitational Wave Observatory (LIGO)

MORRISON, BAUMGARTE, & SHAPIRO

Vol. 610

and other new gravitational wave laser interferometers may be
able to observe binary neutron star coalescence. Comparing
the most recent equations of state, UT, FPS, and APR, it seems
likely that the coalescence will lead to a rotationally supported
neutron star. Observation of the remnant’s delayed collapse to
a black hole, or its absence, would then help to put constraints
on possible equations of state.

It is a pleasure to thank G. Ravenhall and V. J. Pandharipande
for providing the data for the equation of state APR. This paper
was supported in part by NSF grant PHY 01-39907 at Bowdoin
College and NSF grants PHY 00-90310 and PHY 02-05155 and
NASA grant NAG5-10781 at the University of Illinois at
Urbana-Champaign. I. A. M. gratefully acknowledges support
through a Maine Space Grant Consortium fellowship for un-
dergraduate students.

APPENDIX
NUMERICAL RESULTS FOR MAXIMUM MASSES

In Tables 3-8 we list values for the maximum rest masses for uniformly and differentially rotating polytropes. For each equation
of state we tabulate the differential rotation parameter 4!, the maximum energy density €.y, the ratio of the central and equatorial
angular velocity €./(2,, the ratio between polar and equatorial radii R, /R., the ratio of the (relativistic) rotational kinetic energy
and the gravitational binding energy 7'/|W|, the maximum rest mass M "™, and the fractional rest mass increase (6Mo/Mj). We also
construct differentially rotating polytropes for effective polytropic indices 7.y as described in § 3 and listed in each table heading.
We include in the tables the fractional mass increases (6My/Mo),,, for these polytropes.

All models are computed with 64 zones both in the radial and angular direction and with the Legendre polynomial expansion
truncated at / = 16 (see CST1 for details of the numerical implementation). The error in the ratio R, /R, is determined by our step
size of 0.015 in this ratio (see § 2.1). We finally note that highly toroidal configurations depend very sensitively on the input
parameters, so that those mass increases depend on the parameters adopted in our restricted survey.

TABLE 3
A: MTOV =1.92 My, €/e. = 0.326, neg = 0.621

Ail ‘»max/lols g Cm73 QC/QE Rp/Re T/‘ Wl M(T)naX/M: (6MO/MO) (6M0/M0)p0|y
3.55 1.000 0.565 0.120 2.24 0.17 0.19
3.45 1.465 0.460 0.180 2.50 0.30 0.34
1.87 2.026 0.415 0.227 2.69 0.40 0.56
0.938 2.448 0.220 0.293 2.90 0.51 0.76
1.12 3.584 0.310 0.235 2.34 0.22 0.43
TABLE 4
D: MOV = 1.89 Mg, €/e. = 0.284, ney = 0.738
AL] fmax/lols g Cl‘l‘l73 QL/“( Rp/Rc T/‘ W| M([)naX/MD (6M0/M0) (6M0/M0)poly

2.73 1.000 0.565  0.110 2.22 0.18 0.18

2.64 1.344 0.505 0.153 241 0.28 0.28

1.51 1.963 0.385  0.235 2.95 0.56 0.55

0.884 2.455 0.275 0.279 3.02 0.60 1.0

0.774 3.463 2965  0.224E-07 2.97 0.57 0.66

TABLE 5
L: M{%V =323 Mo, €/e. = 0.339, n.g = 0.586
At ema/10% gem™  Q/Q  R,/R. T/IW|  MP™/M.  (5Mo/Mo)  (6Mo/Mo)y

1.26 1.000 0.550 0.134 3.87 0.20 0.19
1.13 1.505 0.425 0.210 4.52 0.40 0.37
0.498 1.970 0.320 0.273 4.78 0.48 0.52
0.378 2.502 0.010 0.298 5.04 0.56 0.69
0.374 3.464 0.025 0.272 4.06 0.26 0.35
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UT: MEOV =217 My, €/e. = 0.321, nex = 0.635

TABLE 6

EFFECT OF DIFFERENTIAL ROTATION

A emax/10° gem™  Q./Q, R, /R,  T/IW|  MJ™/My  (5Mo/Mo)  (6Mo/Mo)posy
0.0 2.73 1.000 0.565 0.122 2.56 0.18 0.19
0.3 s 2.66 1.455 0.460 0.182 2.86 0.32 0.33
0.5 2.02 2.145 0.490 0.195 291 0.34 0.57
[ 0.763 2.441 0.220 0.293 3.25 0.50 0.81
1.0 0.744 3.468 0.010 0.273 2.97 0.37 0.47
TABLE 7
FPS: M3V =2.10 My, ¢/e. = 0.316, neg = 0.648
A‘il Emax/1015 g cm’3 Qc’/Qe R]:/Re T/‘ W| M(r)nax/Ms (6M0/M0) (6M0/M0)p0]y
2.92 1.000 0.565 0.117 2.45 0.17 0.19
2.83 1.440 0.475 0.172 2.72 0.29 0.32
1.36 1.942 0.360 0.248 3.08 0.46 0.59
0.836 2.446 0.275 0.278 3.06 0.45 0.82
0.748 3.469 0.010 0.275 2.99 0.42 0.47
TABLE 8
APR: MOV =2.67 My, €/e. = 0.377, neg = 0.495
ALI 6max/lo15 g Cm73 Qc/ﬂe Rp/Re T/‘ Wl M(‘)“BX/MSJ‘ (6M0/M0) (5M0/M0)poly
0.00ciiiieies 2.44 1.000 0.580 0.132 3.10 0.16 0.20
1.77 1.553 0.445 0.210 3.49 0.31 0.42
1.06 1.970 0.370 0.245 3.34 0.25 0.76
0.770 2.449 0.280 0.275 3.19 0.19 0.46
0.691 3.451 0.010 0.276 3.12 0.17 0.81
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