
Bowdoin College Bowdoin College 

Bowdoin Digital Commons Bowdoin Digital Commons 

Mathematics Faculty Publications Faculty Scholarship and Creative Work 

1-1-1995 

Extinction in competitive lotka-volterra systems Extinction in competitive lotka-volterra systems 

Mary Lou Zeeman 
The University of Texas at San Antonio 

Follow this and additional works at: https://digitalcommons.bowdoin.edu/mathematics-faculty-

publications 

Recommended Citation Recommended Citation 
Lou Zeeman, Mary, "Extinction in competitive lotka-volterra systems" (1995). Mathematics Faculty 
Publications. 80. 
https://digitalcommons.bowdoin.edu/mathematics-faculty-publications/80 

This Article is brought to you for free and open access by the Faculty Scholarship and Creative Work at Bowdoin 
Digital Commons. It has been accepted for inclusion in Mathematics Faculty Publications by an authorized 
administrator of Bowdoin Digital Commons. For more information, please contact mdoyle@bowdoin.edu, 
a.sauer@bowdoin.edu. 

https://digitalcommons.bowdoin.edu/
https://digitalcommons.bowdoin.edu/mathematics-faculty-publications
https://digitalcommons.bowdoin.edu/mathematics-faculty
https://digitalcommons.bowdoin.edu/mathematics-faculty-publications?utm_source=digitalcommons.bowdoin.edu%2Fmathematics-faculty-publications%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bowdoin.edu/mathematics-faculty-publications?utm_source=digitalcommons.bowdoin.edu%2Fmathematics-faculty-publications%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bowdoin.edu/mathematics-faculty-publications/80?utm_source=digitalcommons.bowdoin.edu%2Fmathematics-faculty-publications%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mdoyle@bowdoin.edu,%20a.sauer@bowdoin.edu
mailto:mdoyle@bowdoin.edu,%20a.sauer@bowdoin.edu


proceedings of the
american mathematical society
Volume 123,Number 1, January 1995

EXTINCTION IN COMPETITIVE LOTKA-VOLTERRASYSTEMS

MARYLOU ZEEMAN

(Communicated by Charles Pugh)

Abstract. It is well known that for the two species autonomous competitive

Lotka-Volterra model with no fixed point in the open positive quadrant, one of

the species is driven to extinction, whilst the other population stabilises at its

own carrying capacity. In this paper we prove a generalisation of this result to

arbitrary finite dimension. That is, for the «-species autonomous competitive

Lotka-Volterra model, we exhibit simple algebraic criteria on the parameters

which guarantee that all but one of the species is driven to extinction, whilst

the one remaining population stabilises at its own carrying capacity.

1. Introduction

Consider a community of n mutually competing species modeled by the

autonomous Lotka-Volterra system

(1) Xi = Xi \bi~yüijXj , i = 1, ... ,n,

where x¡ is the population size of the z'th species at time t, and x¡ denotes
dx.

It ■
Each k-dimensional coordinate subspace of R" is invariant under system

(l) (k e {1, ... ,«}), and we adopt the tradition of restricting attention to the
o

closed positive cone R" . We denote the open positive cone by R" .

The mutual competition between the species dictates that a¡¡ > 0 for all

i ^ j. In addition we assume throughout that, for each i, b, > 0 and <z„> 0,

meaning that each species, in isolation, would exhibit logistic growth. That is,

when we consider system (1) restricted to the z'thcoordinate axis, we have

x¡ = Xi(bi - auXi), bi, a,, > 0,

in which the repulsion at 0 (growth of small populations) and the repulsion at

oo (competition within large populations) balance at an attracting fixed point,

i?,, at the carrying capacity |f-. Note that the invariance of the axes ensures

that R¡ is also fixed by the full «-dimensional system. We call i?, the z'thaxial

fixedpoint of (1).
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88 MARYLOU ZEEMAN

It is well known that for the two-species competitive Lotka-Volterra model
o

with no fixed point in the open positive cone R+, one of the species is driven

to extinction, whilst the other population stabilises at its own carrying capacity.

In other words, one of the axial fixed points is a saddle, whilst the other is the
o

unique global attractor for R+.

There are many directions in which to consider generalisations of this re-

sult. For example, Ahmad [2] proves an analogous result for nonautonomous

two-dimensional competitive Lotka-Volterra systems. In this paper we prove a

generalisation to autonomous competitive Lotka-Volterra systems of arbitrary

finite dimension (Theorem 2.1). That is, we exhibit simple algebraic criteria

on the parameters which guarantee that all but one of the species is driven to

extinction, whilst the one remaining population stabilises at its own carrying

capacity.

2. Statement of result

Theorem 2.1. If system (1) satisfies the inequalities

(2) ^<-^V/<j, and *=L>Avz>;,
ajj au a,j atJ

then the axial fixed point

*,-(£.o,....o)

o

is globally attracting on W+.

In other words, for all strictly positive initial conditions, species x2, ... , x„

are driven to extinction, whilst species xx stabilises at its own carrying capacity.

Allowing for relabeling of the axes, we have:

Corollary 2.2. If there is a permutation 4>of the indices {1, ... , n), after which
o

system (1) satisfies inequalities (2), then R<j,-\(X)is globally attracting on R"

under the original system.

3. TWO DIMENSIONS

We begin by discussing the special case of two dimensions, to illuminate the

ideas behind the proof of Theorem 2.1.

When n = 2, inequalities (2) reduce to

/i\ b2 bx bx b2
(3) — < — and — > —.

a22 aX2 axx a2x

It is well known that this corresponds to the case mentioned in the introduc-
o

tion, in which Rx is globally attracting on R^.. The classical way to see this is

by a geometric analysis of the nullclines of the system: the sets on which one

component of the vector field vanishes. The xx nullcline is given by

xx = 0 o xx(bx - axxxx - ax2x2) = 0 & I ' ~~ , ,
1V Ll [or axxxx +ax2x2 = bx
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(0,bdan)

R2= (0, b2la22)

,2,u2i

Figure 1. The nullclines and dynamics in two dimensions.

Each fixed point is represented by a closed dot • .

and so consists of the X2-axis together with the line Nx which has axial inter-

cepts Rx = (-^, 0) and (0, -j1-). Similarly, the x2 nullcline consists of the

Xi-axis together with the line N2 with axial intercepts

b2Xo
a2X

and R2 = 0,
a22

See Figure 1.

The fixed points of the system lie at the intersections of the two nullclines.

Generically, there are four such intersections. They are at 0, Rx, R2 , and the

point Nxn N2. Now, inequalities (3) provide information about the geometric

configuration of the N¡ via the axial intercepts. More precisely, the inequalities

ensure that on each axis the N2 intercept is smaller than the Nx intercept, so

that Nx n N2 g R+ . See Figure 1. With this fixed point information there are

plenty of elementary arguments with which to verify that Rx is indeed globally
o

attracting on R^ . See May [7], Hofbauer and Sigmund [6], Zeeman [9], or

apply the Liapunov function of Theorem 5.1.

In summary, inequalities (3) were translated into nonintersection properties

of the nullclines, from which the dynamical result followed. Inequalities (2)

generalise these geometric nonintersection properties to higher dimensions, and

we shall adopt the same nullcline viewpoint to prove Theorem 2.1.

First some preliminaries.

4. The carrying simplex

It is easy to see that 0 is a repelling fixed point of system (1), and that the

basin of repulsion of 0 in R" is bounded. We denote by I the boundary of
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that basin. To be precise, we define B(0) = {x e R" : a(x) = 0}, and X =

95(0) \ 5(0), where a(x) denotes the alpha-limiX set of the trajectory through

x and 05(0) denotes the boundary of 5(0) taken in R!f.. We remove 5(0)

from 95(0) to avoid topological awkwardness at the coordinate subspaces. The

unit simplex in R" has the standard meaning of t/nl", where U denotes

the hyperplane with equation

5> =i.

Applying a theorem of M. W. Hirsch [5, Theorem 1.7], we have:

Theorem 4.1 (Hirsch). Given system (I), every trajectory in R" \ {0} is asymp-

totic to one in £, and X is a Lipschitz submanifold homeomorphic to the unit

simplex in W\_by radial projection.

Remarks. This theorem generalises the idea of the carrying capacity of the single

species equation. The growth of small populations and the competition between

large populations balance at the hypersurface I, which we call the carrying

simplex. All the nonzero cu-limit sets of system (1) lie in X, and in particular

X meets the xy-axis precisely at the axial fixed point Rj.

It should be noted that the carrying simplex is not just Lipschitz. Recent

results of Brunovski [3] and Mierczynski [8] show that under mild restrictions,

it is at least C1.

5. A Liapunov function

We shall make use of the Liapunov function given in the following theorem.

For details and a proof, see Hofbauer and Sigmund [6, §9.2].

o

Theorem 5.1. If system (1) has no fixed point in R", then there is a vector

c = (c\, ... , c„) eW , such that the function

n

V= l[xiCi
i=i

o

is a strict Liapunov function for system (1) on R" .

Remarks. By a strict Liapunov function, we mean that V is strictly monotone
o

(increasing, in this case) along orbits of system (1) in R" . Thus the system
o

has no limit points in R£ , and all nonzero trajectories must be asymptotic to a
o

trajectory in 91. That is, all trajectories in R" must approach the coordinate

subspaces.

Note that to simplify the differentiation, it is convenient to require that c, ^

-1 for each i. This condition is easy to satisfy by a scaling of c if necessary.

Note also that V may not give dynamical information about the flow on

the coordinate subspaces of R" . Indeed, on each coordinate subspace H, the

function V could be either undefined, or constant, depending on the signs of

the c,. However, system (1) restricted to Ü is a competitive Lotka-Volterra

system of lower dimension, to which we can reapply Theorem 5.1, and thus find
o

a (different) Liapunov function defined on H+ .



EXTINCTION IN COMPETITIVELOTKA-VOLTERRASYSTEMS 91

Figure 2. The nullclines of systems (4)(a) and (4)(b). Each

fixed point is represented by a closed dot •.
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6. Three dimensions

The proof of Theorem 2.1 (below) uses geometric properties of the nullclines

of system (1) in arbitrary dimensions. Figure 2 shows the nullclines of the fol-

lowing two examples of three-dimensional competitive Lotka-Volterra systems:

(4)

{xx = jci( 12—2xx - 2x2 - 3xí) (xx = xx(6 - xx - x2 - 2x$)

x2 = x2(12 - 4xx - 3x2 - 4xA) (b) <x2 = x2(6 - 3xx - 2x2 - jc3)

X3= X3(12 - 6xx - 6x2 - 6x3) (Xi = ^3(6 - 2xx - 3x2 - 3x^)

It is easy to verify that both of these systems satisfy inequalities (2). Thus
o

by Theorem 2.1, Rx is globally attracting on R\ in both cases.

From Figure 2(a), we can see that the nullclines of system (4)(a) are disjoint,

thus generalising the two-dimensional picture (Figure 2) in a simple way. By

contrast, Figure 2(b) shows that the nullclines do not have to be disjoint for

inequalities (2) to be satisfied.

The proof of Theorem 2.1 involves a close inspection of how particular

nullclines can intersect. The combination of that analysis and these three-

dimensional examples builds intuition for the potential complexity of the null-

cline intersections of high-dimensional systems satisfying inequalities (2).

We return to these examples, and discuss related questions, after the proof

of Theorem 2.1.

7. Proof of Theorem 2.1

To prove Theorem 2.1, we interpret inequalities (2) as geometric properties

of the nullclines of the system. We then use the geometric analysis developed in

[9] to determine the dynamical behaviour at the axial fixed points 5, (Lemma

7.1), and to show that the system has no other fixed points (Lemmas 7.2 and

7.3). The result then follows from successive applications of Theorem 4.1, and

the appropriate Liapunov functions (Theorem 5.1).

We shall need the following notation: for k e {2, ... , n}, let Ü,,.¿k de-

note the k-dimensional coordinate subspace of R" corresponding to the coor-

dinates Xtlt... , Xik. To simplify notation and fix our ideas, let Hk =■Hi.k •

That is, Hk denotes the k-dimensional subspace on which xk+\, •■• , xn all
o

vanish. As usual, Hk and Ü+ denote respectively the closed and open positive

cones in Hk.

Lemma 7.1. If system (1) satisfies inequalities (2), then each axial fixed point

Rj is a hyperbolic fixed point with a stable manifold of dimension n - j +

1 contained in the coordinate subspace i/,,... >w, and an unstable manifold of

dimension j - 1.

Proof. The ;ty-axis is an eigenspace of DFrj , along which Rj attracts, since R¡

is at the carrying capacity of species x¡ . The invariance of the two-dimensional

coordinate planes guarantees that the other n - 1 eigenvectors of DFr¡ lie one

in each of the coordinate planes containing the x;-axis. Using the geomet-

ric analysis described in [9], we can deduce the dynamical behaviour in each

eigendirection as follows.
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The z'thnullcline of the system is the coordinate hyperplane x¡ = 0 together

with the hyperplane N¡ with equation Y,"=\auxj = h- Note that .¡V,meets

the Xj-axis at the value Xj = I4-, and that Nj meets the jt7-axis at Rj. Thus

inequalities (2) tell us the position of each axial fixed point Rj amongst all

the other intercepts of the nullclines N¡ with the x;-axis. For each i < j,

öL < i^ • Thus Rj lies in the bounded component of R" \ N¡, and hence Rj

repels along the eigendirection in the (i, j) coordinate plane. Similarly, for

each i > j, -¡f-> &- ; so Rj lies in the unbounded component of R" \ N¡, and

hence attracts along the eigendirection in the (i, j) coordinate plane. Q.E.D.

Lemma 7.2. Let k e {2, ...,«}. If system (1) satisfies inequalities (2), then
o

there is no fixed point in Hk .

Proof. Any fixed point of the system lies at an intersection of all n nullclines.

Generically there are 2" of these fixed points, one in each coordinate subspace

of R" (with the lower-dimensional coordinate subspaces removed). In particu-
o

lar, since xk+x,... , xn vanish on Hk , the set of fixed points in Hk is given by
o

Nxn •••n Nkn Hk . We shall show that this set is empty, meaning that any fixed

point in Hk either lies outside R" , or lies in a lower-dimensional subspace of

Hk.

Fix j e {1,... , k} . As mentioned in the proof of Lemma 7.1, inequalities

(2) tell us the position of the axial fixed point Rj amongst all the other intercepts

of the nullclines N¡ with the Xj-axis. In particular, in the special cases of i = 1

(so i < j) and i = k (so i > j), we have

ÉL>ÈL>ÉL
ßlj' ~ aij ~ akj

where at most one equality holds (the first when j = 1, the second when j = k),

and hence

b\ bk—- > —.

aXj akj

So on the X;-axis, the Nx intercept is positive and strictly greater than the Nk

intercept. This holds for every coordinate axis in Hk , so the hyperplanes Nx
o

and Nk do not meet in Hk . Thus Nxn •••n NkC\Hk= 0 . Q.E.D.

Lemma 7.3. Let k e {2, ... , n}, and choose distinct ix, ... , ik e {1, ... , n).
o

If system (1) satisfies inequalities (2), then there is nofixed point in (i/i,,... ,,J+ .

Proof. This is simply a generalisation of Lemma 7.2, and is proved the same

way. Without loss of generality, we may assume that /■ < ••■ < ik . Fix

j E {ii,... , ik} ; then in the special cases of z = ix (so z < j) and i = ik (so

i > j), inequalities (2) ensure that

ÉL>ÉL.
ahj aikj'
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Thus iV,-,and Nik do not meet in (///,.¡k)+ and

Nxn---nNkn(Hli,...,ik)+ = 0. Q.E.D.

Combining Lemmas 7.1 and 7.3 we have:

Corollary 7.4. If system (1) satisfies inequalities (2), then everyfixed point of the

system lies on an axis, and Rx is the only attracting fixed point.

Proof of Theorem 2.1. Let system (1) satisfy inequalities (2). By Lemma 7.2
o

(with k = n), there is no fixed point in R" , and hence by Theorems 4.1 and
o

5.1 every trajectory in R" is asymptotic to one in 9X, which is contained in

the coordinate subspaces of R" .

Now we can inductively apply the same argument to each of the k-dimen-

sional coordinate subspaces of R" , letting k decrease from n - 1 to 2. We

thus conclude that every trajectory in R" is asymptotic to a trajectory contained

in the coordinate axes. That is, every trajectory in R" \ {0} converges to one

of the axial fixed points Rj. By Lemma 7.1 and Corollary 7.4, Rx is therefore
o

globallyattracting on W+. Q.E.D.

8. Examples and further questions

The examples of systems (4)(a) and (4)(b) both satisfy inequalities (2), so
o

that Rx is globally attracting on R\ in both cases. For a more complete un-

derstanding of the global dynamics of these systems, recall from Theorem 4.1

that every trajectory in R3 \ {0} is asymptotic to one in the carrying simplex

X, so the dynamics on X dictate the global dynamics on R3. Moreover, the

dynamics on X can be viewed as dynamics on the unit simplex (also by The-

orem 4.1), which we remove from the ambient R3, and picture in Figure 3

as an equilateral triangle. The location and dynamical type of each fixed point

follows from Lemmas 7.1-7.3. The fixed point notation used is described in

the figure caption.

In [9] the author made a partial classification of three-dimensional compet-

itive Lotka-Volterra systems, using techniques of nullcline analysis similar to

those used in this paper. The examples described here illustrate that in the case

of three-dimensions, inequalities (2) characterise nullcline class 1 of the classi-

fication in [9]. That classification also shows that the result in this paper is not

sharp: nullcline classes 2, 3, 7, and 8 also consist of systems for which one of
o

the R¡ is a global attractor on R3 . See Figure 4. On the other hand, nullcline

classes 4, 5, 6, and 9-12 all consist of systems for which there is a globally

attracting fixed point in the strictly positive cone of one of the two-dimensional

coordinate planes of R3, thus corresponding to the survival of precisely two of

the species, and extinction of the other. See Figure 4.

These facts naturally suggest the following problems:

1. Generalise inequalities (2) to include nullcline classes 2, 3, 7, and 8.

2. Find analogous algebraic criteria that characterise the survival of precisely

two species; or others that characterise the extinction of precisely one species.
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Figure 3. The dynamics on the carrying simplex X of systems

(4)(a) and 4)(b). A fixedpoint is represented by a closeddot • if

it attracts, by an open dot o if it repels, and by the intersection

of its hyperbolic manifolds if it is a saddle.

■ • «

Figure 4. The dynamics on X of the nullcline classes for which
o

a fixed point on 9X is globally attracting on R^ . Fixed point

notation as in Figure 3.

3. In [4], Hallam et al. use similar geometricmethods to give criteria, in

terms of pairwise interactions, for the persistence or extinction of species in

autonomous three-dimensional competitive Lotka-Volterra systems. Generalise

these ideas to arbitrary finite dimension.

4. Following the work of Ahmad [1] and [2], generalise Theorem 2.1 to

nonautonomous Lotka-Volterra systems.
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