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ABSTRACT

We apply a von Zeipel gravity darkening model to corotating binaries to obtain a simple, analytical expression for
the emergent radiative flux from a tidally distorted primary orbiting a point-mass secondary. We adopt a simple
Roche model to determine the envelope structure of the primary, assumed massive and centrally condensed, and
use the results to calculate the flux. As for single rotating stars, gravity darkening reduces the flux along the stellar
equator of the primary, but, unlike for rotating stars, we find that gravity brightening enhances the flux in a region
around the stellar poles. We identify a critical limiting separation beyond which hydrostatic equilibrium no longer
is possible, whereby the flux vanishes at the point on the stellar equator of the primary facing the companion. For
equal-mass binaries, the total luminosity is reduced by about 13% when this limiting separation is reached.
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1. INTRODUCTION

Early studies (von Zeipel 1924a, 1924b, 1924c;
Chandrasekhar 1933) showed that on stellar surfaces the ra-
diative flux is proportional to the effective gravitational force
(see, e.g., Kippenhahn & Weigert 1990; Tassoul 2000, for re-
views). In rotating stars, this means that regions close to the
pole are brighter (and have a higher effective temperature) than
regions close to the equator, an effect that is often referred to as
gravity darkening. In fact, for stars rotating at the break-up
speed, the radiative flux vanishes at the equator (see, e.g., Baum-
garte & Shapiro 1999, hereafter Paper I). Gravity darkening
plays an important role in the classification of stars (e.g., Maeder
& Peytremann 1970), and may even provide a means of estimat-
ing stellar masses independently of binary companions (Zhao
et al. 2009).

While the simplest gravity darkening models make several
assumptions that restrict their applicability to very massive and
supermassive stars (as we will review in Section 2 below), they
continue to be useful in a number of different contexts. Cranmer
& Owocki (1995), for example, adopt similar models to compute
radiative fluxes and driving forces for winds from rapidly
rotating B stars. In Paper I, two of us adopted a simple Roche
model to determine the envelope structure of and emergent
radiation flux from a rotating, supermassive star (SMS) and
employed the results to calculate the evolutionary timescale for
these objects.

An exciting recent development provides a new motivation
for studying gravity darkening. With optical or infrared interfer-
ometric arrays (including the PTI, NPOI, and CHARA arrays),
it has become possible to obtain resolved interferometric images
of individual stars (e.g., van Belle et al. 2001; Peterson et al.
2006; Aufdenberg et al. 2006). Observations of rotating stars,
which indeed show oblate shapes with brighter poles and darker
equators, are analyzed using gravity darkening models. These
models can be used to relate different stellar features to each
other, for example the ratio between the polar and equatorial
fluxes to the star’s angular velocity. While some deviations be-
tween observations and models point to the fact that some of the

assumptions made in the models may be too restrictive (for ex-
ample, the observed stars may have complicated surface layers
or differential rotation; see, e.g., Monnier et al. 2007 as well as
Section 7 of Zhao et al. 2009 for discussions), the basic features
are represented reasonably well. Moreover, the quality of fits
can be improved by introducing additional free parameters into
the models (for other model improvements see, e.g., Espinosa
Lara & Rieutord 2011 and Claret 2012).

In addition to observations of rotating stars, resolved inter-
ferometric images of close binary stars have become available
(Zhao et al. 2008). While these observations do not yet have
sufficient resolution to distinguish detailed models, they do mo-
tivate a study of gravity darkening in binaries.

In this short paper we point out that, under the assumptions
listed in Section 2, the simple gravity darkening models for
rotating stars can be generalized very easily to describe coro-
tating stars in a binary system. As a consequence, we obtain
very simple analytical expressions for the envelope structure,
flux, and the total luminosity for a massive or supermassive
primary orbiting a point-mass secondary as a function of the
binary separation and mass ratio. While the effects of rotation
always decrease the surface flux (compared to a nonrotating star
in isolation), the presence of a binary companion decreases the
flux in some regions of the star, but increases the flux in a region
around the pole. In a binary, we therefore encounter both grav-
ity darkening and gravity brightening. We also identify a critical
limiting separation below which hydrostatic equilibrium cannot
exist and at which the surface flux from the point on the stellar
equator facing the binary companion vanishes. For an equal-
mass binary, the total luminosity is reduced by about 13% once
this separation has been reached.

Elements of this problem have been known for a long time
(e.g., von Zeipel 1924c; Osaki 1965) and the model we construct
presumably will be superseded by more detailed numerical
treatments. We nevertheless hope that our simple analysis
and analytical expressions may prove useful, for instance, in
providing preliminary interpretations of future resolved images
of close binary stars and calibrating more detailed numerical
models.
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Our paper is organized as follows. In Section 2, we review
our basic assumptions. In Section 3, we review the Roche
approximation and its application to binaries to determine the
envelope structure and locate the surface of corotating stars
in a binary. In Section 4, we compute the radiative flux from
these stars, and find both gravity darkening and brightening. We
integrate this flux to find the total luminosity in Section 5 and
conclude with a brief discussion in Section 6.

2. BASIC ASSUMPTIONS

Our analysis of a binary relies on several explicit assumptions.
Some of these assumptions we already adopted in Paper I, where
we treated uniformly rotating, highly massive stars and SMSs in
isolation. To determine the equilibrium structure of the envelope,
we assume that the primary is

1. governed by Newtonian gravitation,
2. in synchronous orbit about a point-mass secondary,

and that its envelope

3. is described by the Roche model,
4. is characterized by a polytropic equation of state, and
5. interacts with the secondary via a potential that can be

truncated beyond the quadrupolar tidal term.

To determine the emergent radiative flux from the primary,
we further assume that its envelope is

6. dominated by thermal radiation pressure,
7. fully convective, and
8. characterized by a constant Rosseland mean opacity (e.g.,

electron scattering).

We assume that gravitational fields are sufficiently weak
so that we can apply Newtonian gravity. This assumption
clearly holds for normal stars. SMSs of greatest astrophysical
interest have masses and radii that satisfy R/M � 400 so
that this assumption certainly holds. Relativistic corrections are
important for the stability of SMSs, but can be neglected in the
analysis of the equilibrium state.

The assumption that the binary is in corotation follows
from the observation that most short-period binaries containing
massive stars orbit in circular, synchronous orbits (Vanbeveren
et al. 1998). The combination of convection and magnetic fields
is likely to generate an effective turbulent viscosity, which
dampens nonsynchronous motion and brings the binary into
corotation.

The assumption of a point-mass companion is adopted for
simplicity. If the corotating companion is also a massive star,
the point mass can be replaced by a finite star whose envelope
can be treated identically to the envelope of the primary. The
results for the companion’s envelope structure and emergent flux
would depend the same way on its mass and radius as we find
for the primary. We truncate the potential of the secondary after
the quadrupolar tidal term, which captures the leading-order,
dominant effects of the secondary on the primary.

For large masses, the ratio between radiation pressure, Pr,
and gas pressure, Pg, satisfies

βP ≡ Pg

Pr

= 8.49

(
M

M�

)−1/2

(1)

(see, e.g., Equations (17.2.8) and (17.3.5) in Shapiro &
Teukolsky 1983); here the coefficient has been evaluated for
a composition of pure ionized hydrogen. For SMSs with

M � 104 M�, we can therefore neglect the pressure contri-
butions of the plasma in determining the equilibrium profile,
even though the plasma may be important for determining the
stability of the star (Zel’dovich & Novikov 1971; Shapiro &
Teukolsky 1983). A simple proof that very massive stars or
SMSs are convective in this limit has been given by Loeb &
Rasio (1994).4 This result implies that the photon entropy per
baryon,

sr = 4

3

aT 3

nB

, (2)

is constant throughout the star, and so therefore is βP ≈
8(sr/k)−1. Here, a is the radiation density constant, T is the
temperature, nB is the baryon density, and k is Boltzmann’s
constant. As a consequence, the equation of state of a very
massive star or SMS is that of an n = 3 polytrope:

P = Kρ4/3,> K =
[(

k

μm

)4 3

a

(1 + βP )3

β4
P

]1/3

= constant,

(3)
where m is the atomic mass unit and μ is the mean molecular
weight (cf. Clayton 1983, Equations (2)–(289); note that Clayton
adopts a different definition of βP , which is related to ours
by βClayton = βP /(1 + βP )). In the high-temperature, low-
density, strongly ionized plasma of a very massive or SMS,
Thomson scattering off free electrons is the dominant source of
opacity. This opacity is independent of density and justifies our
assumption about the Rosseland mean opacity.

In applications to SMSs our analysis neglects electron–
positron pairs and Klein–Nishina corrections to the electron-
scattering opacity, which is valid for M � 105 M� (see, e.g.,
Fuller et al. 1986).

3. THE ROCHE MODEL FOR A BINARY

We begin with the equation of hydrostatic equilibrium satis-
fied by the primary,

∇P

ρ
= −∇(Φp + Φc + Φr ). (4)

Here the right-hand side describes an effective gravitational
force, which is derived from the (interior) gravitational potential
Φp of the primary, the (exterior) gravitational potential of the
companion Φc, and a centrifugal potential Φr arising from the
(synchronous) rotation of the primary.

Stars with soft equations of state are centrally condensed,
i.e., most of the mass is concentrated in a high-density core
that is surrounded by an extended low-density envelope. For
an n = 3 polytrope, for example, the ratio between central
and mean density is ρc/ρ̄ = 54.2. The gravitational force in
the envelope is therefore dominated by the massive core, and
it is thus legitimate to neglect the self-gravity of the envelope.
In the envelope, we may therefore approximate the Newtonian
potential of the primary star Φp as

Φp = −Mp

r
, (5)

where Mp is the mass of the primary and r is the distance
from the primary’s center (here we adopt gravitational units by
setting G ≡ 1).

4 In fully convective stars energy transport in the stellar interior is dominated
by convection. However, there is still an outgoing flux of radiation from the
stellar surface. The latter is what we compute in Section 4 below.
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Figure 1. Sketch of the coordinate system used in our calculation. The primary
of mass Mp is represented by the shaded configuration on the right, while the
companion of mass Mc is represented by the dot on the left.

(A color version of this figure is available in the online journal.)

In accord with the Roche model, the companion may be
treated as a point mass Mc, located at a distance s from the
center of the primary (see Figure 1). The potential at a point r
in the primary is then given by

Φc = −Mc

d
, (6)

where d is the distance from Mc. We now expand d about s � r ,

1

d
= 1

s

∞∑
�=0

( r

s

)�

P�(cos θ ′), (7)

where P�(cos θ ′) is the Legendre polynomial of order �, and
where θ ′ is the angle between r and the line connecting the
center of the primary to the point-mass companion. The first
term � = 0 is a constant that can be ignored. We will see that the
� = 1 term will cancel out later when we consider the rotational
contribution Φr , but we retain it for now. The first relevant term
is the quadrupolar tidal term � = 2. Truncating the expansion (7)
after this term we approximate

Φc = −Mcr

s2
cos θ ′ − Mcr

2

2s3
(3 cos2 θ ′ − 1). (8)

We now introduce a coordinate system as shown in Figure 1,
so that the orbital plane is in the x–y plane, with the center of
the primary at the origin and the companion at x = −s and
y = z = 0. In terms of spherical polar coordinates we now
express cos θ ′ = −x/r = − cos φ sin θ , and hence

Φc = Mcx

s2
− Mc

2

r2

s3
(3 cos2 φ sin2 θ − 1). (9)

Finally, the rotational potential Φr in Equation (4) arises from
the rotation of the primary about the system’s center of mass.
Assuming corotation, so that the star appears static in the rotating
frame of the binary, we may write this term as

Φr = −1

2
Ω2

(
(x − xCM)2 + y2

)
, (10)

where

xCM = − Mc

Mp + Mc

s (11)

is the location of the center of mass. Using Equation (11) as
well as Kepler’s law

Ω2 = Mp + Mc

s3
, (12)

we can write Equation (10) as

Φr = −1

2
Ωx2

CM − Mcx

s2
− 1

2

Mp + Mc

s3
r2 sin2 θ. (13)

The first term on the right-hand side is a constant term that can
be ignored. The second term will exactly cancel the first term in
Equation (9) when the two potentials are added in Equation (4);
we may therefore discard the linear terms in both Equations (9)
and (13). Our potentials Φc and Φr then reduce to

Φc + Φr = −Mc

2

r2

s3
(3 cos2 φ sin2 θ − 1)

− 1

2

Mp + Mc

s3
r2 sin2 θ. (14)

Integrating Equation (4) yields the Euler integral

h + Φp + Φc + Φr = H, (15)

where H is a constant of integration and where

h =
∫

dP

ρ
= (n + 1)

P

ρ
(16)

is the enthalpy per unit mass. Evaluating Equation (15) for
infinite binary separation s → ∞ (where Φc = Φr = 0) at the
stellar surface (where h = 0) we find

H = −Mp

R0
, (17)

where R0 is the stellar radius for the nonrotating (spherical) star
in isolation.

It is consistent with the Roche approximation to assume
that the core remains unaffected by the presence of the binary
companion. Given that Φc and Φr vanish at the center of the star,
and given that we may assume h and Φp to remain unperturbed
there, we may also assume that H is independent of the binary
separation, so that we can always express it in terms of R0 as in
Equation (17). Similar arguments have been made for isolated
rotating stars (e.g., Zel’dovich & Novikov 1971; Shapiro &
Teukolsky 1983), where they have been confirmed by numerical
simulations (e.g., Papaloizou & Whelan 1973).

The surface of the star satisfies h = 0 and can be determined
from Equation (15) in the form

Φp + Φc + Φr − H = 0. (18)

Introducing dimensionless parameters for the mass ratio

q ≡ Mc

Mp

, (19)

the binary separation

σ ≡ s

R0
, (20)

and the distance from the stellar center to the surface

z ≡ r

R0
, (21)
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we can bring Equation (18) into the form of a cubic equation
for z,

C3z
3 − z + 1 = 0, (22)

where we have abbreviated

C3 = 1

2σ 3

(
q(3 cos2 φ sin2 θ − 1) + (1 + q) sin2 θ

)
. (23)

Given binary parameters q and σ , this cubic equation can be
solved analytically to find z as a function of the coordinates θ
and φ (see the Appendix).

Note that the cubic (22) takes exactly the same form as that
for a single rotating star (see Equation (23) in Paper I), except
that the coefficient C3 is now different.5 Instead of depending
on θ only, as for axisymmetric, rotating stars, it now depends on
both θ and φ. Moreover, for rotating stars the corresponding
coefficient is nonnegative, resulting in values for z that are
always greater than or equal to unity. Here, however, C3 can
be positive or negative. At the poles, where sin θ = 0, for
example, we have C3 < 0 (for finite σ ), resulting in z < 1. This
is consistent with the fact that the tidal field of the companion
leads to the squeezing of the primary along its poles and an
elongation along its equator.

Hydrostatic equilibrium is only possible if, at the surface
of the star, where the density vanishes, the pressure increases
toward the interior of the star. Our sequences of hydrostatic
equilibria therefore terminate when, at the point facing the
companion, i.e., at θ = π/2 and φ = π , the right-hand side
of Equation (4) vanishes.6 Evaluating the right-hand side of
Equation (4) at that point, and setting it to zero, yields

(1 + 3q)
z3

σ 3
= 1. (24)

For θ = π/2 and φ = π we also have

C3 = 1 + 3q

2σ 3
. (25)

Inserting Equation (24) together with Equation (25) into the
cubic (22) we find that the limiting value of z, at θ = π/2 and
φ = π , is

zlim = 3

2
. (26)

Interestingly, this is the same value obtained for the equator of
single stars rotating at the break-up limit (see, e.g., Equation (10)
in Paper I). Inserting Equation (26) back into Equation (24) we
now obtain the limiting binary separation σlim for which, under
our assumptions, sequences of hydrostatic equilibria end,

σlim = 3

2
(1 + 3q)1/3. (27)

For a mass ratio of q = 1, for example, we have σlim ≈ 2.38.
Given that σ � 2.4 for all equilibrium models, our truncation
of the interaction potential beyond the tidal term is justified
in a first approximation. The corresponding Roche limit for
a homogeneous, incompressible (n = 0) star, allowing for
departure of the angular velocity from the Keplerian value due
to the ellipsoidal shape of the primary, yields σlim = 2.713 (Lai
et al. 1993).

5 Our coefficient C3 reduces to the corresponding coefficient for rotating stars
when q = 0.
6 Having truncated the expansion (7) after the tidal term, this point is
equivalent to the point pointing away from the binary companion, θ = π/2
and φ = 0.

Figure 2. Dimensionless stellar radius z as a function of cos θ for an equal-mass
binary (q = 1) at different values of the binary separation σ . For each binary
separation the top line represents results for φ = π (i.e., in the direction toward
the binary companion) while the bottom line represents results for φ = π/2.
The two lines connect at the pole (cos θ = 1). Note that for σ = σlim, we have
z = 3/2 for the point facing the binary companion (see Equation (26)).

(A color version of this figure is available in the online journal.)

In Figure 2 we show results for z for an equal-mass binary
for different values of the binary separation. In particular, these
results confirm the limiting value (26) for the end point of the
sequence at σlim.

4. GRAVITY DARKENING AND BRIGHTENING

In the diffusion approximation, the radiation flux is given by

F = − 1

3κρ
∇U, (28)

where U is the energy density of the radiation,

U = aT 4 = 3P, (29)

and where κ is the opacity (which we assume to be dominated
by electron scattering, κ = κes). We have also assumed that the
pressure is dominated by radiation pressure

P ≈ Pr = 1

3
aT 4. (30)

Inserting Equations (28) and (29) into the equation of hydro-
static equilibrium (4) yields

κF = ∇(Φp + Φc + Φr ). (31)

In polar coordinates in an orthonormal basis, the magnitude of
the flux is

F = (
F 2

r̂ + F 2
θ̂

+ F 2
φ̂

)1/2
. (32)

Evaluating the gradients of the potentials Φp, Φc, and Φr we
find

F

FEdd
=

{(
1 − q

σ 3
z3(3 cos2 φ sin2 θ − 1) − 1 + q

σ 3
z3 sin2 θ

)2

+
( q

σ 3
z3(3 cos2 φ cos θ sin θ ) +

1 + q

σ 3
z3 sin θ cos θ

)2

+
( q

σ 3
z3(3 cos φ sin φ sin θ )

)2}1/2
, (33)

4
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Figure 3. Flux F/FEdd as a function of cos θ for an equal-mass binary (q = 1)
at different values of the binary separation σ . For each binary separation the
bottom line represents results for φ = π (i.e., in the direction toward the binary
companion) while the top line represents results for φ = π/2. The two lines
connect at the pole (cos θ = 1). Note that in a region around the pole the flux
exceeds the corresponding Eddington flux, and that the flux vanishes at the point
facing the binary companion when σ = σlim.

(A color version of this figure is available in the online journal.)

where

FEdd = Mp

κr2
(34)

is the Eddington flux from a spherical star of radius r.
We graph the flux F for an equal-mass binary for different

values of the binary separation σ = s/R0 in Figure 3. In a
region around the poles the flux is greater than the Eddington
flux. The reason for this “gravity brightening” effect is that, at
the poles, the tidal forces caused by the companion lead to an
increase of the effective gravitational force, which in turn leads
to an increase in the flux. The opposite is true at the points on
the stellar equator either pointing directly toward the companion
or directly away from the companion. At these points, the tidal
forces lead to a reduction in the effective gravitational force.
On the equator, stellar rotation also leads to a reduction of the
effective gravitational force. At the two points facing toward
or away from the companion (i.e., for φ = π or φ = 0), the
two effects act together to result in the greatest reduction in
the brightness, i.e., the strongest gravity darkening effect. For
the limiting binary separation σ = σlim, the flux completely
vanishes at those points. At the two points on the equator with
φ = π/2 and φ = 3π/2, on the other hand, the two effects
counteract, leading to a smaller reduction in the flux.

In Figure 4 we also show surface images of the primary in
an equal-mass binary at three different binary separations. The
shape of the primary is given by Equation (22) and reflects the
tidal deformation, while the color coding indicates the local
radiative surface flux (33). Yellow indicates the largest flux, red
a smaller flux, and black a vanishing flux.

5. LUMINOSITY

We find the total luminosity of the star by integrating the
flux (33) over the stellar surface,

L =
∮

F · dA =
∮

FdA. (35)

Figure 4. Surface images of the primary in an equal-mass binary at three
different binary separations σ = 5 (top panel), σ = 3 (middle panel), and
σ = σlim (bottom panel). The shape of the primary is given by Equation (22),
while the color coding represents the flux (33). Yellow indicates the largest flux,
red a smaller flux, and black a vanishing flux. The dot represents the point mass
that models the companion.

(A color version of this figure is available in the online journal.)

The surface element can be written as

dA =
{

1 +
1

z2

(
dz

dθ

)2

+
1

z2 sin2 θ

(
dz

dφ

)2
}1/2

r2dΩ, (36)

where dΩ = sin θdθdφ. We then insert the flux (33) and eval-
uate the integration numerically to find the star’s luminosity L.
It is convenient to divide the result by the Eddington luminosity

LEdd = 4πM

κ
(37)

and express the results in terms of the dimensionless ratio
L/LEdd. In Figure 5 we show results for the luminosity as a
function of the binary separation σ for different values of the
mass ratio q. All sequences shown start at σ = 10 and end at
the limiting binary separation σlim given by Equation (27). For

5
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Figure 5. Luminosity L/LEdd as a function of binary separation σ for different
values of the mass ratio q. For each value of q, the sequences start at σ = 10
and end at σlim given by Equation (27).

(A color version of this figure is available in the online journal.)

an equal-mass binary, for example, the luminosity is reduced by
about 12.7% when the binary reaches σlim. We also verified that
in the limit q → 0, the luminosity for σ = σlim is reduced by
about 36%, which is the value found for single stars rotating at
the break-up limit (see, e.g., Paper I).

6. DISCUSSION

We apply gravity darkening models to corotating binary stars
and obtain simple and analytical expressions for the surface
flux of tidally distorted stars. The tidal interaction leads to both
gravity darkening (along the equator) and gravity brightening
(in regions around the poles). We identify a critical separation
at which, within the Roche model, sequences of hydrostatic
equilibrium end, and at which the radiative flux at the point on
the equator that faces the binary companion vanishes. At this
critical separation, the total luminosity in an equal-mass binary
is about 13% less than for the corresponding nonrotating star in
isolation.

Simple and analytical models for the flux and luminosity
from binary stars, even if they are approximate, are useful in
many ways. In particular, we hope that they will provide useful
models for comparison with future resolved interferometric
images of close binary stars. For single rotating stars, von
Zeipel gravity darkening models capture the basic features of
interferometric images reasonably well, but they also show some
deviations. Presumably, these deviations are caused by the fact
that some of the assumptions do not apply to the observed
stars. In particular, many main-sequence stars have complicated
surface layers or rotate differentially rather than uniformly.
As discussed by Monnier et al. (2007) (see also Zhao et al.
2009), the agreement between model and observations can be
improved by introducing new free parameters. Monnier et al.
(2007) and others have used “β-free” models, in which the
effective temperature is taken to be Teff ∝ g

β

eff , where geff
is the effective gravitational force on the right-hand side of
Equation (4). In the “standard” model, β = 1/4, but allowing
β to be a free parameter allows for improved fits to the
observations. Other improvements to the simple von Zeipel
models have been proposed by Espinosa Lara & Rieutord (2011)
and Claret (2012). We expect that similar generalizations may

improve future fits between binary gravity darkening models
and observations as well.

It is a pleasure to thank Andrew Currier for producing
Figures 1 and 4 for us. H.E.W. gratefully acknowledges support
through a Clare Boothe Luce undergraduate fellowship. This
work was supported in part by NSF Grant PHY-1063240 to
Bowdoin College and by NSF grant PHY-0963136 as well
as NASA grant NNX10AI73G at the University of Illinois at
Urbana-Champaign.

APPENDIX

SOLUTION FOR THE STELLAR SURFACE

In this brief appendix we present the solution to the cubic
equation (22), yielding the stellar surface z. The general solution
to a cubic equation can be found, for example, in Press et al.
(2007). Applying their prescription to our Equation (22), we see
that the form of the solution z depends on the coefficient C3.

By combining Equations (23) and (27) we first observe that
we always have C3 � 4/27. The form of the solution then
depends only on the sign of C3. If C3 is positive, then the cubic
has three real roots and we pick the one that yields z = 1 when
C3 = 0, given by

z = − 2√
3C3

cos

(
arccos(

√
27C3/4) − 2π

3

)
, C3 � 0. (A1)

For a single, rotating star, we always have 0 � C3 � 4/27 (see,
e.g., Paper I), so that the solution can always be written in this
form. For a binary, however, C3 can also be negative. In this
case, the cubic has one real and two imaginary roots. Defining

A =
(

1

2|C3|

{(
1 +

4

27|C3|
)1/2

+ 1

})1/3

, (A2)

we can write the real root as

z = A − 1

3|C3|A, C3 < 0. (A3)
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