Bowdoin College

Bowdoin Digital Commons

Mathematics Faculty Publications Faculty Scholarship and Creative Work
1-1-2001

Bounding the number of cycles of 0.D.E.S in R"

M. Farkas
University of Victoria

P. Van Den Driessche
University of Victoria

M. L. Zeeman
University of Victoria

Follow this and additional works at: https://digitalcommons.bowdoin.edu/mathematics-faculty-
publications

Recommended Citation

Farkas, M.; Van Den Driessche, P; and Zeeman, M. L., "Bounding the number of cycles of 0.D.E.Sin R™
(2001). Mathematics Faculty Publications. 77.
https://digitalcommons.bowdoin.edu/mathematics-faculty-publications/77

This Article is brought to you for free and open access by the Faculty Scholarship and Creative Work at Bowdoin
Digital Commons. It has been accepted for inclusion in Mathematics Faculty Publications by an authorized
administrator of Bowdoin Digital Commons. For more information, please contact mdoyle@bowdoin.edu,
a.sauer@bowdoin.edu.


https://digitalcommons.bowdoin.edu/
https://digitalcommons.bowdoin.edu/mathematics-faculty-publications
https://digitalcommons.bowdoin.edu/mathematics-faculty
https://digitalcommons.bowdoin.edu/mathematics-faculty-publications?utm_source=digitalcommons.bowdoin.edu%2Fmathematics-faculty-publications%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bowdoin.edu/mathematics-faculty-publications?utm_source=digitalcommons.bowdoin.edu%2Fmathematics-faculty-publications%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bowdoin.edu/mathematics-faculty-publications/77?utm_source=digitalcommons.bowdoin.edu%2Fmathematics-faculty-publications%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mdoyle@bowdoin.edu,%20a.sauer@bowdoin.edu
mailto:mdoyle@bowdoin.edu,%20a.sauer@bowdoin.edu

PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY
Volume 129, Number 2, Pages 443-449

S 0002-9939(00)05735-X

Article electronically published on July 27, 2000

BOUNDING THE NUMBER OF CYCLES OF O.D.E.S IN R"

M. FARKAS, P. VAN DEN DRIESSCHE, AND M. L. ZEEMAN

(Communicated by Hal L. Smith)

ABSTRACT. Criteria are given under which the boundary of an oriented surface
does not consist entirely of trajectories of the C'! differential equation & = f(x)
in R™. The special case of an annulus is further considered, and the criteria
are used to deduce sufficient conditions for the differential equation to have
at most one cycle. A bound on the number of cycles on surfaces of higher
connectivity is given by similar conditions.

1. INTRODUCTION

The classical Bendixson-Dulac criterion (see, e.g., [6, Thm. 3.5.16]) for ruling
out cycles of a planar C* differential equation

(1) i = f(x), zeR?

uses the fact that any simple closed piecewise C' curve in R? bounds a simply
connected region S. Stokes’ Theorem (or Green’s Theorem) in the plane is applied
to the region S to find criteria under which the boundary curve does not consist
entirely of trajectories of equation (1). In particular, this means that the boundary
curve is not a cycle (i.e. periodic orbit, homoclinic cycle or heteroclinic cycle) of
equation (1). Similar criteria can also be used to rule out cycles from the interior
of S, since any cycle in § will bound a simply connected subregion of S, to which
Stokes’ Theorem can again be applied.

Now consider a region in R? that is not simply connected: for example, an annu-
lus A, bounded by two simple closed piecewise C!' curves. Then Stokes’ Theorem
can be applied to A to find criteria under which the boundary curves do not both
consist entirely of trajectories of equation (1). Similar criteria can then be found
under which the annulus A contains at most one cycle of equation (1), since any
pair of cycles in A will bound either an annular subregion of A or at least one
simply connected subregion of A, to which Stokes” Theorem can again be applied.
See Farkas [6, Cor. 3.5.17] for more details, and Lloyd [9] for results relating the
maximum number of cycles to the connectivity of a region.
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In [2] and [3] Busenberg and van den Driessche generalize the classical Bendixson-
Dulac criterion to a simple closed piecewise C'! curve bounding a simply connected
region S of a O oriented surface (two-dimensional manifold) in R?. Given a vector
field f on R3, Stokes’ Theorem in R? is applied to S to find criteria under which
the positively oriented boundary curve does not consist entirely of trajectories of
& = f(z). Once again similar criteria can also be used to rule out positively oriented
cycles from the interior of §. For applications of the three-dimensional result to
models in epidemiology and ecology, see [15] and the references therein; and for
related results, see [3, 4, 5, 7, 10, 11, 13].

In [12] Pace and Zeeman further generalize the classical result to a simple closed
piecewise C'! curve bounding a simply connected region S of an oriented C! surface
in R™. The method is the same as that of Busenberg and van den Driessche, but
re-written in the language of exterior calculus in order to apply Stokes’ Theorem
to surfaces in R"™.

In this paper we consider a differential equation

(2) i = f(x), wherez € R" and f:R" — R"is C,

and a union of simple closed piecewise C! curves bounding a region S of an oriented
C! surface in R"™, where S is not necessarily simply connected. We apply Stokes’
Theorem to the region S to find criteria under which the (oriented) boundary of S
does not consist entirely of trajectories of equation (2). In Section 2 we prove our
main theorem (Theorem 2.2) and some corollaries. In Section 3 we consider the
special case when S is an annulus in R™, and present a three-dimensional example.

In Section 4 we find a bound on the number of cycles in S, in terms of the
connectivity of S.

2. RULING OUT CYCLES

First some definitions are given. See Boothby [1] or Spivak [14] for background
material on exterior calculus on manifolds. An oriented C' surface in R™ is a
C! orientable two-dimensional manifold with boundary on which a choice of ori-
entation has been made. Throughout the paper, the boundary of a surface means
the boundary in the sense of manifolds. The orientation chosen on & induces an
orientation on the boundary 9§ of S.

Let g = (g1,... ,9n)" be a vector field on R™. Let R™* denote the dual space
to R", and let dzy,... ,dx, be the basis of R™* dual to the standard basis of R".
Then the 1-form dual to g is w = g1dz1 + . .. + gndx,, and the exterior derivative
dw of w is a 2-form on R™.

Remark 2.1. When n = 3,

_ J93 092 dgs3 dg1 092 0g1
dw = <8x2 ax3> dxodrs <8x1 D25 drsdx, + 0z, D2y dxydxo,

which is the 2-form dual to curl g via Hodge duality. So [ g dw = /. gcurlg - h where
h is the unit normal to § induced by the orientation on S.

The statement and proof of Theorem 2.2 and its corollaries follow the same simple
style as those of the classical Bendixson-Dulac theorem (as in [6, Thm. 3.5.16]) and
its generalizations by Busenberg and van den Driessche [2, 3]. See especially Pace
and Zeeman [12].
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Theorem 2.2. Let f : R® — R" be a C' wector field, and let S be a compact
oriented C* surface with piecewise C* boundary 0S in R™. If there exists a C*
vector field g : S — R™, such that

(4) g-f>0 (<0) on S,
(B) / dw <0 (>0), wherew is the dual 1-form to g,
s

(C) either g- f # 0 on an open arc in 0S, or / dw # 0,
s

then OS does not consist entirely of trajectories of & = f(x) traversed in the positive
direction with respect to the orientation on S.

Proof. Suppose, for contradiction, that S does consist of trajectories of & = f(x),
all traversed in the positive direction with respect to the orientation on S. Then 9S
can be parameterised by a union, y(t), of trajectories of & = f(x), so that ' = f.
Thus

0 < / g-f by hypothesis (A)

as

= / g-7 by assumption
v

_ / w
.

= / dw Dby Stokes’ Theorem
s

< 0 by hypothesis (B).

This contradicts hypothesis (C).
The case when inequalities (A) and (B) are both reversed follows similarly. O

The choice of parametrisation may imply that f,y g -7 is a sum of indefinite
integrals. Nevertheless the compactness and smoothness assumptions ensure that
f,y g -~ is defined.

As in [12], we can develop some rough geometric intuition for this result by
thinking of dw as a generalization of curl g when n > 3. Then hypothesis (B) states
that the overall rotation of g is negative with respect to the orientation on S, while
hypothesis (A) states that trajectories of & = f(z) follow the same overall direction
as g around 0S. Therefore at least one trajectory of f on 9S is traversed in the
negative direction with respect to the orientation on S.

Note that Theorem 2.2 does not rule out the possibility that 0S consists of
trajectories of f, some traversed in the positive direction with respect to the ori-
entation on S, but at least one traversed in the negative direction with respect to
the orientation on S. In the following corollaries of Theorem 2.2 we strengthen the
conclusion by considering the special cases when either fs dvo=0,0org-f=0o0n

0S.

Corollary 2.3. Let f : R® — R™ be a C! vector field, and let S be a compact
oriented C* surface with piecewise C* boundary 0S in R™. If there exists a C*
vector field g : S — R™, such that

(A) g-f>0 (£0)ondS, and g- f #0 on an open arc in OS,
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(B) / dw =0, where w is the dual 1-form to g,
5

then OS does not consist of trajectories of & = f(x) that are either all traversed in
the positive direction with respect to the orientation on S, or all traversed in the
negative direction with respect to the orientation on S.

Proof. The proof of Corollary 2.3 is similar to that of Theorem 2.2. In this case,
we assume that S consists of trajectories of & = f(x), all traversed in the same
direction with respect to the orientation on §. Then S can be parameterised by
v, where either v/ = f on v, or v/ = —f on v, and Stokes’” Theorem leads to a
contradiction, as in the proof of Theorem 2.2. O

Corollary 2.4. Let f : R® — R™ be a C! vector field, and let S be a compact
oriented C* surface with piecewise C* boundary 0S in R™. If there exists a C*
vector field g : S — R™, such that

(A) g-f=0o0ndS,
(B) / dw # 0, where w is the dual 1-form to g,
S

then S does not consist entirely of trajectories of & = f(x).

Proof. Assume that 0S counsists of trajectories of & = f(x), without restricting the
direction in which each trajectory is traversed. Then 0S can be parameterised by
~(t), where v'(t) = £f(y(t)) for each t. So g-+' = +xg- f =0 on . Thus Stokes’
Theorem again leads to a contradiction. O

3. THE CASE OF AN ANNULUS

We call A € R® an annulus if it is homeomorphic to an annulus in R2. We
now consider the special case of the above results when S is a compact C'! oriented
annulus A in R”, and 0.A consists of two simple closed piecewise C! curves. If we
assume that 0.A consists of two periodic orbits of equation (2), then Figure 1 shows
the four possible orientations of the flow around this pair of periodic orbits, relative
to the orientation p on A.

If there exists a vector field g : R™ — R" satisfying the hypotheses of Theorem
2.2, then the boundary circles of A are not both periodic orbits of equation (2)
traversed in the positive direction with respect to the orientation on A, and Figure
1(a) is ruled out. Note that Theorem 2.2 does not rule out Figures 1(b)—(d), since
at least one of the boundary periodic orbits is traversed in the negative direction
with respect to the orientation on A.

If g satisfies the hypotheses of Corollary 2.3, then Figures 1(a) and 1(b) are both
ruled out, but Figures 1(c) and 1(d) are still possible. If g satisfies the hypotheses
of Corollary 2.4, then 95 does not consist entirely of trajectories of equation (2), so
Figures 1(a)-1(d) are all ruled out. Clearly, similar figures are ruled out by Theorem
2.2-Corollary 2.4 when 0.A consists of oriented cycles rather than periodic orbits.

In the following result, the hypotheses are stronger that those of Corollary 2.4, so
that Corollary 2.4 can be applied to any subregion of A with piecewise C' boundary.
We can then control the number of cycles in the interior of A, as well as on A, so
that there is at most one cycle of equation (2) in the annulus A.

Corollary 3.1. Let f : R® — R"™ be a C' vector field, and let A be a compact
oriented C' annulus with simple closed piecewise C' boundary curves O.A in R™.
If there exists a C! vector field g : A — R™, such that
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FI1GURE 1. OA consists of periodic orbits, along which the flow is
oriented (as shown by the arrows) (a) positively, (b) negatively,
(¢),(d) in opposite directions relative to the orientation p on .A.
The orientation p is represented by a counterclockwise rotation on
A, and corresponds to a positive unit normal vector pointing out
of the page, towards the reader.

(A) g-f=0on A,
(B) for any open region Q on A, / dw # 0, where w is the dual 1-form to g,
Q

then & = f(x) has at most one cycle on A. Moreover, if there does exist a cycle,
then it does not bound a simply connected region of A.

Proof. Suppose that & = f(x) has two disjoint cycles in .A. Then either these cycles
bound an annular subregion of A, or at least one of the cycles bounds a simply
connected subregion of A. In either case, call this subregion 2. Then hypothesis
(A) gives g+ f =0 on 99Q. Now apply Corollary 2.4 to . In the case when 2 is an
annulus, Corollary 2.4 implies that the boundary does not consist entirely of cycles,
leading to a contradiction. In the case when (2 is simply connected, Corollary 2.4
implies that 92 is not a cycle. Thus, in either case, there is at most one cycle in A
and the result follows. O

As an example, we consider a variation of Example 4.5 of [8].

Example 3.2. Consider the C! system & = f(z), where z € R and f : R® — R?,
given by:

¥ = zow(zrs)+ (a® — a:% — x%)xl,
Ty = —xw(zs)+ (6 — 2?2 — 23) 1y,
X3 = u(xr,xz2) —v(xs3),

where a > 0, w(z3) # 0 and v'(x3) > 0. In addition, we assume that k <
u(r1,22) < m and that 3 p,q with p < ¢ such that v(zs) < k for 23 < p, and
v(xzz) > m for z3 > q.
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Note that for this system the xs-axis is invariant. From the first two equations
(2 +23) = 2(a1@1 + 220) = 2(a” — af — 23) (T +23),

so the cylinder C given by 27 + 23 = a? attracts on R?\ {z3-axis}. We can therefore
restrict our attention to C. Since 23 > 0 on C for x3 < p, and 23 < 0 on C for
x3 > q, the region A on C given by p < z3 < ¢ is a compact attracting annulus,
and thus contains a fixed point or a periodic orbit. But since w(xs) # 0, there is
no fixed point on C. Hence A contains at least one periodic orbit.

We now apply Corollary 3.1 to show that A contains a unique periodic orbit
that encircles the xz-axis. The orientation of A is chosen to have unit normal
h = L (x1,22,0)T. Define g on R3\ {x3-axis} by

~ lal

. e (u(an, 73) — 0(2))
gl =2 | = I%§$% (u(z1,T2) — v(z3))
3 w(xs3)

Then g - f = 0 on R3\ {z3-axis}, and curlg - h = r}!lv’(xg) > 0 on C. Thus, by
Remark 2.1, conditions (A) and (B) of Corollary 3.1 are satisfied, and so the system
has a unique periodic orbit on A. Moreover, that periodic orbit does not bound
a simply connected region of A, and hence it encircles the x3-axis. Note that ¢ is
singular on the x3-axis; this singularity is necessary in using Corollary 3.1 to show
that the system has at most one cycle on A without ruling out all cycles.

We remark that the hypotheses on u(x1,z2) and w(zsg) can be weakened. We
require only that u(z1,z2) is bounded on the circle 27 + 2% = a?, and that if
w(r) =0 for p < r < g, then u(z1,22) # v(r) on the circle. This last condition
ensures that there is no fixed point on A.

In the special case when a = 1,u(z1,22) = B(z1 + 22) and v(x3) = yxs, with
8,7 > 0, this example reduces to a special case of Example 4.5 of [§8] with o = 1.
These choices of u(z1,x2) and v(x3) satisfy our assumptions with the region A on
C given by |z3] < \/5% In [8] the existence of a unique limit cycle in an invariant
toroidal region is shown by using the second additive compound.

4. BOUNDING THE NUMBER OF CYCLES

In this section we generalize Corollary 3.1 to find conditions that bound the
number of cycles of equation (2) on surfaces of higher connectivity in R™. Let §
be a compact connected oriented C'* surface with N boundary components. Define
the number of holes K of S to be the maximum number of disjoint simple closed
curves, v;, that can lie on S such that no subset of {+;} bounds an open region of
S\ 0S.

In the case when N = 0, S is homeomorphic to a sphere with handles [1,
Theorem 4.1], and K is the genus of S. When S € R?, K = N — 1, and Corollary
4.1 is similar to Theorem 1 of [9]. In the general case with N > 0, we derive a
connected oriented two-manifold S from S by identifying each component of A8
with a point. Then S has K holes, where K = G+ N — 1 and G is the genus of S.

Corollary 4.1. Let f : R® — R™ be a C! vector field, and let S be a compact
connected oriented C' surface in R™ with K holes. If there exists a C' vector field
g:S — R", such that

(A) g-f=0o0nS,
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(B) for any open region Q on S, / dw # 0, where w is the dual 1-form to g,
Q

then & = f(x) has at most K disjoint cycles on S.

Proof. Suppose that & = f(z) has K + 1 disjoint cycles on S. Let T denote the
union of these cycles. Since S has K holes, there exists an open region 2 of S\ 9S
such that 9 C I". Now apply Corollary 2.4 to 2 U OS2 to show that 02 does not
consist entirely of trajectories of f, and hence reach a contradiction. O
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