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Abstract

In vertebrates, ovulation is triggered by a surge of LH from the pituitary. The precise mechanism by which rising oestradiol
concentrations initiate the LH surge in the human menstrual cycle remains a fundamental open question of reproductive
biology. It is well known that sampling of serum LH on a time scale of minutes reveals pulsatile release from the pituitary
in response to pulses of gonadotrophin releasing hormone from the hypothalamus. The LH pulse frequency and amplitude
vary considerably over the cycle, with the highest frequency and amplitude at the midcycle surge. Here a new mathematical
model is presented of the pituitary as a damped oscillator (pulse generator) driven by the hypothalamus. The model LH surge
is consistent with LH data on the time scales of both minutes and days. The model is used to explain the surprising pulse
frequency characteristics required to treat human infertility disorders such as Kallmann’s syndrome, and new experimental

predictions are made.
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Introduction

The elusive LH surge

The precise mechanism by which rising oestradiol
concentrations initiate the LH surge in the human menstrual
cycle has ‘defied compelling explanation’ (Ordog et al., 1998),
despite being the subject of intensive research over the last two
decades. The apparent variation in the LH surge mechanism
among species has contributed to the difficulty in modelling.
For example, the surge is initiated by the act of mating in
rabbits (Haighton, 1797), it is entrained to the circadian
rhythm in rats (Everett et al., 1949; McElhinny et al., 1999),
and is accompanied by a hypothalamic surge of GnRH in
sheep (Moenter et al., 1992). While at least some of these
mechanisms play a role in a normal human LH surge
(Edwards, 1985), none of them appear to be necessary. In
particular, LH surges, ovulation and pregnancy can occur in
humans and other primates without an accompanying GnRH
surge, as demonstrated by GnRH replacement therapies of
constant frequency and amplitude (Knobil er al., 1980;
Leyendecker et al., 1980; Pohl et al., 1983).

Model assumptions

The pituitary is viewed here as a damped oscillator (pulse
generator) driven by the hypothalamic oscillator, so that
pituitary responsiveness to pulses of GnRH depends, in part,
on frequency interactions between the two oscillators. It is like
playing with a child on a swing. If you push at the intrinsic
frequency of the swing, the amplitude builds up. If you push at
the wrong frequency, working against the swing, the swing
may be forced to follow your driving frequency, but the
amplitude remains small. A similar underlying structure
of frequency interaction as the hypothalamus drives
the pituitary is proposed. It is assumed that the intrinsic
frequency of each oscillator is modulated by the circulating
ovarian hormones, and it is shown how the LH surge can
thereby arise as transient resonance (amplitude enhancement)
when these frequencies temporarily agree. The proposed
model is based on the following experimental results:
(i) there is a GnRH pulse generator at the hypothalamus
(Rasmussen et al., 1989); (ii) there is an intrinsic LH pulse
generator at the pituitary (Gambacciani et al., 1987a;
Rossmanith er al., 1990); (iii) the hypothalamic oscillator
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Figure 1. Model LH surge. (a) Intrinsic hypothalamic and
pituitary frequency functions, A(f) and p(f) respectively,
representing normally cycling women. (b) Model simulation of
pituitary LH release. (c) Model simulation of serum LH surge.

drives the pituitary oscillator (Moenter ez al., 1992; O’Byrne et
al., 1993) and (iv) the ovarian hormones modulate the
intrinsic frequency of the hypothalamic oscillator (Soules et
al., 1984; Hotchkiss and Knobil, 1994).

In addition, it is proposed that (v) the ovarian hormones
modulate the intrinsic frequency of the pituitary oscillator.

The key to the new approach presented is in the potential role
of an intrinsic pituitary pulse generator of variable frequency.
A description follows of how intrinsic pituitary pulsatility
could generate pituitary responses of varying amplitude to
hypothalamic stimuli of varying frequency (as in a normal
menstrual cycle), and how variable intrinsic pituitary
frequency could lead to responses of varying amplitude to
GnRH stimuli of constant frequency (as in the treatment of
Kallmann’s syndrome).

Mechanisms for pituitary pulsatility

Pulsatile hormone secretion has been observed from human
and monkey pituitaries in vitro (Stewart et al., 1985;
Gambacciani et al., 1987a,b; Rossmanith et al., 1990). It is
also known that the rat pituitary contains a connected network
of excitable folliculo-stellate cells, permitting global
communication, and hence synchrony, within the anterior
pituitary (Fauquier et al., 2001). Moreover, in female rats, the
folliculo-stellate network gap junction connection strength
depends on the circulating concentrations of ovarian hormones
(Kurono, 1996; Soji et al., 1997), thereby offering a
mechanism by which ovarian hormones could modulate
intrinsic pituitary frequency (Tabak er al., 2000). Another
mechanism for transient resonance in frequency interactions
between the hypothalamus and pituitary may be ovarian
hormone modulation of the frequency encoding by receptor
desensitization and resensitization rates proposed by Li and
Goldbeter (Li and Goldbeter, 1989; Goldbeter, 1996).

Methods

The simplest differential equation modelling one oscillator

driving (or forcing) another, with variable intrinsic
frequencies, is given by:
x” + 42p(H)*x + ux’ = cos(2mH (1)) (1)

See Blanchard er al. (2002) for an excellent introduction to
forced oscillators. Here, positive values of x represent LH
release from the pituitary, and the prime denotes rate of change
(differentiation with respect to time). It is assumed that there is
no LH release when x is negative. The left-hand side of
equation (1) models the pituitary as a damped harmonic
oscillator (i.e. the child’s swing). If the amount of damping, v,
is small, the intrinsic pituitary frequency at time ¢ is
approximately p(7). The right-hand side models sinusoidal
periodic driving by the hypothalamus (i.e. pushing the swing)
with frequency Ah(f) = H'(f). The frequencies p(¢) and h(r) are
modelled as functions of the ovarian hormones, and hence of
time.

The important feature of this model is that it captures, as
simply as possible, the resonance phenomenon of amplitude
enhancement or attenuation as the driving and driven
frequencies interact. This phenomenon is extremely robust,
and will hold for a wide variety of more physiologically based
models. Work on such models is currently under way. Here the
simple qualitative model is used to describe an underlying
biological structure of coupled oscillators with frequency
modulation through which the LH surge could arise as
transient resonance.



Results and discussion
Site of action of oestradiol

In a normally cycling woman, the first half of the menstrual
cycle is dominated by rising concentrations of oestradiol,
triggering the LH surge and ovulation, which in turn lead to
waning concentrations of oestradiol while progesterone and
inhibin concentrations rise (McLachlan et al., 1990; Hotchkiss
and Knobil, 1994; Selgrade, 2001). In his excellent survey
lecture, Knobil (1999) argues that the site of action of
oestradiol is at the pituitary and not at the hypothalamus. The
model presented here proposes that in a normal human cycle
there is a robust mechanistic redundancy, in the sense that both
the hypothalamic and pituitary intrinsic frequency functions,
p(?) and h(f), are modulated by circulating concentrations of
ovarian hormones. This type of mechanistic redundancy is
typical for systems evolving under natural selection. It is
shown below that the redundancy assumption can explain why
the variations seen in GnRH pulse frequency over a normal
human cycle (Filicori and Crowley, 1983; Filicori et al., 1986)
are not necessary for ovulation, but certain GnRH pulse
frequency characteristics are nevertheless required (Knobil ez
al., 1980; Leyendecker et al., 1980; Wildt et al., 1981; Pohl et
al., 1983).

Intrinsic hypothalamic and pituitary
frequencies

The frequency functions presented graphically in Figure 1(a)
are chosen to represent those of a normally cycling woman. In
vivo, serum LH pulses reflect the intrinsic hypothalamic
frequency driving the pituitary. Thus Ah(7) in Figure 1(a) is
interpolated from LH pulse frequency data (Filicori and
Crowley, 1983; Filicori et al., 1986) and from hypothalamic
multiunit electrical activity data (O’Byrne et al., 1991). During
the first half of the cycle h(f) gradually rises with rising
oestradiol. Then A(f) plummets after the LH surge, and stays
low while progesterone concentrations are high. As far as is
known, there are no direct data available for the intrinsic pulse
frequency of the pituitary in vivo. To capture the indirect data
given by the LH pulse amplitude (Filicori and Crowley, 1983;
Filicori et al., 1986), p(f) was chosen to be higher than A(z) for
most of the cycle, dropping at midcycle when oestradiol
concentrations are high, and rising again after the LH surge.
The model then predicts that early in the cycle, while the
pituitary oscillator is being driven at a frequency lower than its
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own intrinsic frequency, there will be low-amplitude LH
pulses at the frequency of the driver. At midcycle, as the
hypothalamic and pituitary frequencies converge under rising
oestradiol concentrations, the oscillators will resonate, leading
to a burst of LH release. Note that the oestradiol
strength—duration characteristics required to initiate an LH
surge (Karsch et al., 1973) suggest that it takes 2 or 3 days of
high oestradiol concentrations for A(f) and p(¢) to converge.
Finally, as the frequencies diverge in response to the surge, LH
pulse frequency and amplitude will drop again.

The precise shape of the hypothalamic and pituitary intrinsic
frequency functions may vary considerably among
individuals. The essential features are simply that /() and p(r)
gradually converge under high oestradiol concentrations,
thereby causing the LH surge, and consequently diverge again.
In particular, A(f) and p(f) may approach without touching, as
shown; they may touch, or they may cross over and back
again. Thus no degeneracy is assumed. Individual differences
in the rates at which A(7) and p(#) converge may contribute to
the wide range of cycle lengths typical among women (Harlow
et al., 2000). Modulation of the rates of convergence could
provide a mechanism for the phenomenon of ovulatory
synchrony observed among closely interacting women
(McClintock, 1971).

Model LH surge

In Figure 1(b) the positive part of a solution x(#) to equation
(1) with frequency functions as in Figure 1(a) is shown. The
transient resonance is clearly visible at midcycle. The serum
LH profile corresponding to this pattern of pituitary LH release
is computed by convolving with exponential decay,
representing LH accumulation combined with clearance. The
result is a well defined surge in serum LH concentrations, as
shown in Figure 1(c). In Figures 2 and 3, model serum LH
concentrations are sampled on the daily and 10 min time scales
respectively, for comparison with data (Filicori and Crowley,
1983; McLachlan et al., 1990; Selgrade, 2001). At both time
scales, the model captures qualitative features of the data. In
particular, LH pulses have low amplitude and high frequency
early in the cycle, extra high amplitude and frequency during
the surge, and medium high amplitude and low frequency late
in the cycle.

(b) Daily sampling, model
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Figure 2. Serum LH, sampled daily. (a) Data (McLachlan et al., 1990; Selgrade, 2001). (b) Model simulation.
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GnRH replacement therapy: frequency
requirements

Now consider the case when the pituitary frequency p varies in
time, but the hypothalamic frequency # is held constant. This
corresponds to women with no endogenous GnRH (as in
Kallmann’s syndrome) undergoing pulsatile GnRH
replacement therapy (Leyendecker et al., 1980). If the constant
frequency £ is chosen within the physiological range of values
that can be achieved by p, as shown by £1/(t) in Figure 4, then
the frequency functions can still converge, producing transient
resonance and a LH surge. If the hypothalamic frequency 4 is
chosen above the range of p (h2(tz) in Figure 4), then the
frequency functions cannot converge, and the model has no
LH surge. Instead, low-amplitude LH pulses are released at the
consistently high frequency of the driver, as observed in
patients with polycystic ovarian syndrome (Yen, 1999).
Similarly, if 4 is held below the range of p (h3(z) in Figure 4),
the model has no surge and LH pulses are released at
consistently low frequency, as observed in some patients with
secondary amenorrhoea (Perkins et al., 1999).

The model can therefore explain why GnRH replacement
therapy must be pulsatile (Belchetz et al., 1978) with
frequency approximately one pulse every 60-90 min (Knobil
et al., 1980; Leyendecker er al., 1980). Note that replacement
GnRH pulse frequencies above one pulse per 30 min or below
one pulse per 90 min do not produce a LH surge in other

the cycle; middle: day of LH surge;
bottom: late in the cycle. The
horizontal axis measures time in
hours. Time in days is given at the
right of each panel, with the LH
surge on day 0.

T T
12 18 24
Time, hours

primates (Wildt et al., 1981; Pohl et al., 1983), indicating a
normal physiological range of p between these values. The
model also suggests that some infertility conditions may result
from the hypothalamic frequency / remaining outside of the
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Figure 4. Holding A(#) constant to simulate the treatment of
Kallmann’s syndrome. The physiological range of intrinsic
frequencies the pituitary can achieve is indicated by the shaded
region. Constant frequency GnRH replacement therapy 21(%) is
within the physiological pituitary range, but h2(¢) is too high
and h3(7) is too low.



range of p, either through dysfunction of the pituitary or the
hypothalamus, or as a result of the hormone environment
created by the ovaries. Measurement of the effect of hormone
treatment on LH pulse frequency may aid diagnosis in these
cases.

Predictions

As an experimental test, the model predicts that if a subject
with Kallmann’s syndrome is given a single bolus of GnRH,
then 10 min sampling for several hours may reveal damped
oscillations of serum LH. Moreover, if the experiment is
repeated after a pretreatment with oestradiol or progesterone at
physiological concentrations, then the frequency and
amplitude of the observed oscillations in serum LH will
depend on the pretreatment. By contrast, if the pituitary
frequency p is held constant, the model further predicts that
varying the frequency / of exogenous GnRH treatment so that
h crosses p will produce a LH surge.
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