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ECOLOGY

Transient phenomena in ecology

Alan Hastings*, Karen C. Abbott, Kim Cuddington, Tessa Francis, Gabriel Gellner,
Ying-Cheng Lai, Andrew Morozov, Sergei Petrovskii,

Katherine Scranton, Mary Lou Zeeman

BACKGROUND: Much of ecological theory
and the understanding of ecological systems
has been based on the idea that the observed
states and dynamics of ecological systems can
be represented by stable asymptotic behavior
of models describing these systems. Beginning
with early work by Lotka and Volterra through
the seminal work of May in the 1970s, this view
has dominated much of ecological thinking,
although concepts such as the idea of tipping
points in ecological systems have played an
increasingly important role. In contrast to the
implied long time scales of asymptotic behavior
in mathematical models, both observations of
ecological systems and questions related to the
management of ecological systems are typically
focused on relatively short time scales.

A number of models and observations demon-
strate possible transient behavior that may
persist over very long time periods, followed
by rapid changes in dynamics. In these ex-
amples, focusing solely on the long-term be-
havior of systems would be misleading. A long
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transient is a persistent dynamical regime—
including near-constant dynamics, cyclic dy-
namics, or even apparently chaotic dynamics—
that persists for more than a few and as many
as tens of generations, but which is not the sta-
ble long-term dynamic that would eventually
occur. These examples have demonstrated the
potential importance of transients but have
often appeared to be a set of idiosyncratic
cases. What is needed is an organized approach
that describes when a transient behavior is
likely to appear, predicts what factors enhance
long transients, and describes the character-
istics of this transient behavior. A theory of long
ecological transients is a counterpart to the
related question of tipping points, where pre-
vious work based on an analysis of simple bi-
furcations has provided broad insights.

ADVANCES: Just as ideas based on the saddle-
node bifurcation provide a basis for under-
standing tipping points, a suite of ideas from
dynamical systems provides a way to organize
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Two ways that long transients arise in ecology, illustrated as a ball rolling downhill. (A) Slow
transition away from a ghost attractor: a state that is not an equilibrium, but would be under
slightly different conditions. (B) Lingering near a saddle: a state that is attracting from

some directions but repelling from others. Additional factors such as stochasticity, multiple time
scales, and high system dimension can extend transients.

Hastings et al., Science 361, 990 (2018)
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a systematic study of transient dynamics in
ecological systems. As illustrated in the figure,
a relatively small number of ideas from dynam-
ical systems are used to categorize the differ-
ent ways that transients can arise. Translating
these abstract results from dynamical systems
into observations about both ecological models

and ecological system dy-
namics, it is possible to un-
Read the full article  derstand when transients
at http://dx.doi. are likely to occur and the
org/10.1126/ various properties of these

science.aat6412 transients, with implica-

tions for ecosystem man-
agement and basic ecological theory. Transients
can provide an explanation for observed re-
gime shifts that does not depend on under-
lying environmental changes. Systems that
continually change rapidly between different
long-lasting dynamics, such as insect outbreaks,
may most usefully be viewed using the frame-
work of long transients.

An initial focus on conceptual systems, such
as two-species systems, establishes the ubig-
uity of transients and an understanding of
what ecological aspects can lead to transients,
including the presence of multiple time scales
and particular nonlinear interactions. The in-
fluences of stochasticity and more realistic
higher-dimensional dynamics are shown to
increase the likelihood, and possibly the tem-
poral extent, of transient dynamics.

OUTLOOK: The development of such a frame-
work for organizing the study of transients in
ecological systems opens up a number of
avenues for future research and application.
The approach we describe also raises impor-
tant questions for further development in dy-
namical systems. We have not, for example,
emphasized nonautonomous systems, which
may be required to understand the implica-
tions of a changing environment for transients.
Systems with explicit time dependence as well
as stochastic nonlinear systems still present
great mathematical challenges.

Implications for management and basic
ecological understanding depend on both the
results we describe and future developments.
A recognition of the difficulty of prediction
caused by long transients, and of the corre-
sponding need to match dynamics to transient
behaviors of models, shows that basing either
management or interpretation of ecological
observations only on long-term dynamics can
be seriously flawed.

The list of author affiliations is available in the full article online.
*Corresponding author. Email: amhastings@ucdavis.edu

Cite this article as A. Hastings et al., Science 361, eaat6412
(2018). DOI: 10.1126/science.aat6412
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Transient phenomena in ecology

Alan Hastings'*, Karen C. Abbott?, Kim Cuddington®, Tessa Francis*, Gabriel Gellner®,
Ying-Cheng Lai®, Andrew Morozov”®, Sergei Petrovskii’,

Katherine Scranton®, Mary Lou Zeeman'®

The importance of transient dynamics in ecological systems and in the models that describe
them has become increasingly recognized. However, previous work has typically treated

each instance of these dynamics separately. We review both empirical examples and model
systems, and outline a classification of transient dynamics based on ideas and concepts

from dynamical systems theory. This classification provides ways to understand the likelihood
of transients for particular systems, and to guide investigations to determine the timing

of sudden switches in dynamics and other characteristics of transients. Implications for both
management and underlying ecological theories emerge.

nderstanding ecological dynamics over

relevant time scales underpins almost all

major questions in ecology, such as ex-

planations for observed distributions and

abundances of species, population changes
through time, and management of ecological
systems. There is a growing recognition that
dynamics on ecological time scales, called tran-
sients, may be different from asymptotic dynamics.
The inherent impermanence of transients means
that an ecological system in a transient state can
change abruptly, even without any underlying
change in environmental conditions (parameters).
Conversely, the possibility of long transients im-
plies that an ecological system may remain far
from its asymptotic behavior for a long time.
Insect outbreaks (7) such as that of the spruce
budworm (2), where dynamics shift markedly
over relatively short time scales, provide an im-
portant class of examples.

Thus, understanding the implications of tran-
sients for ecology depends on understanding
potential rapid transitions between two kinds
of dynamics, the behavior of systems far from
their final dynamics, and the underlying time
scales for these transitions. However, with the
current lack of a systematic framework to fa-

cilitate understanding of transient dynamics,
each example appears novel and idiosyncratic.
Concepts from dynamical systems (Table 1) can
provide tools for a more systematic approach
to the incorporation of transient dynamics in
ecological models and theories, as well as guide
applications to natural and managed systems.
Tools will emerge for understanding which eco-
logical factors produce long transients, and for
identifying appropriate responses to the possi-
bility of sudden system changes in management
and in experimental and observational studies.

A major ecological question is how to relate
observations of changes in dynamics to under-
lying causes. With transients there may be no
underlying proximal cause of a sudden change in
dynamics. There may have been no underlying
environmental change, or the change may have
occurred quite far in the past. In contrast, iden-
tification of the proximal factors responsible for
regime shifts has been a major focus of attention
over the past two decades (3, 4). Regime shifts
may occur as a result of slow, directional change
in ecological parameters, especially when such
a change leads to a “bifurcation” of the ecosys-
tem properties (e.g., a disappearance of a stable
steady state) (3, 4), also known as a “tipping

point.” In turn, the directional change in pa-
rameter values is often assumed to result from an
exogenous process such as, for instance, global
climate change. Intense study of one kind of
exogenously triggered regime shift (those caused
by saddle-node bifurcations) has provided im-
portant insights (3, 5, 6) across a range of eco-
logical systems. There is, however, a growing
body of evidence that we review here, from both
empirical and modeling studies, suggesting alter-
native underlying mechanisms for some regime
shifts.

The approach for understanding regime shifts
can be extended to a much broader range of
phenomena and systems by focusing on transients
in ecological systems, where once again ideas from
dynamical systems can organize what may at first
appear to be a disparate set of observations and
explanations. In the cases we focus on here, the
ecological dynamics are essentially transient
(7-12) and shifts occur in the absence of any
clear trend in the environmental properties.
Ecological transients can arise for a number of
reasons, including responses to environmental
fluctuation as well as a variety of human inter-
ventions. Some transients are short; others can
last for a very long time. An ecosystem exhibit-
ing long transient behavior would typically show
an apparently stable dynamic (e.g., periodic os-
cillations, as in Fig. 1, A, D, and E) over time that
may span dozens or even hundreds of genera-
tions before experiencing a sudden transition to
another state (e.g., extinction) or another regime
(e.g., oscillations with a very different mean
value). Therefore, long transients may provide

Department of Environmental Science and Policy, University
of California, Davis, CA 95616, USA. *Department of Biology,
Case Western Reserve University, Cleveland, OH 44106, USA.
3Department of Biology, University of Waterloo, Waterloo,
Ontario N2L 3G1, Canada. “Puget Sound Institute, University
of Washington, Tacoma, WA 98421, USA. ®Department of
Biology, Colorado State University, Fort Collins, CO 80523,
USA. ®School of Electrical, Computer and Energy
Engineering, Arizona State University, Tempe, AZ 85287,
USA. "Department of Mathematics, University of Leicester,
Leicester LE1 7RH, UK. SShirshov Institute of Oceanology,
Moscow 117851, Russia. Department of Ecology and
Evolutionary Biology, University of California, Los Angeles, CA
90095, USA. °Department of Mathematics, Bowdoin
College, Brunswick, ME 04011, USA.

*Corresponding author. Email: amhastings@ucdavis.edu
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Table 1. Key concepts used in this paper. See (70, 71) for further elaboration of ideas from dynamical systems.

Term

Definition

Asymptotic dynamics The behavior that a system will eventually exhibit and then retain indefinitely if unperturbed (i.e., dynamics that are not
transient). Examples would include equilibria or limit cycles of predator-prey systems.

Bifurcation A qualitative change in a system’s asymptotic dynamics as a parameter is varied, caused by gain, loss, or change in
stability of an invariant set. Examples are crises, Hopf bifurcations, and saddle-node bifurcations.

Regime shift A qualitative change in a system’s dynamics after a long period of apparent stasis. Can occur at tipping points where a bifurcation
is crossed, or at a transition from transient dynamics to asymptotic dynamics (or from one transient to another).

Tipping point The conditions (or value of a changing parameter) at which a bifurcation occurs, producing qualitatively different asymptotic
behavior.

Transient Nonasymptotic dynamics.

Long transient

Hastings et al., Science 361, eaat6412 (2018)
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Nonasymptotic dynamics that persist over ecologically relevant time scales of roughly dozens of generations (or longer).
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an alternative explanation of ecological regime
shifts.

Transients are not an isolated phenomenon
but are related to other aspects of the dynam-
ics of ecological systems that provide challenges
for long-term prediction. With transient dynam-
ics, the difficulty of predicting the timing of the
shift between dynamic behaviors is compounded
by the difficulty of determining asymptotic be-
havior from observations of short-term behavior
(or the converse). Chaotic dynamics limit the
time over which accurate predictions are possible
(13-15). The permanent influence of external and
internal noise on population dynamics also subs-
tantially reduces ecological predictability in a
number of ways (16, 17). Ecological predictions
are further complicated by regime shifts (5, 6)
that occur as underlying environmental condi-
tions slowly change. As a result, any conclusions
or estimates made on the basis of observations
preceding the regime shift simply become irrel-
evant after the shift. Regime shifts can often
result in catastrophic changes in the ecosystem
structure and function, in particular leading to
species extinction and biodiversity loss.

Although long transients are often observed in
ecological data (Table 2) and have been seen in
many different models in ecology (7, 18, 19) as
well as in neuroscience (20, 21) and other nat-
ural sciences (22), a systematic consideration
of this highly relevant phenomenon has been
missing so far. Additionally, there has been some
confusion about the relationship between regime
shifts and long transients. We begin with an

overview of ideas from dynamical systems that
show why transients are a universal feature of
ecological systems. We propose a simple clas-
sification scheme that shows that the mecha-
nisms producing transients can be put into a
small number of classes. This classification thus
provides a new unified framework for incor-
porating transients into interpretations of eco-
logical dynamics as well as into management
responses. We emphasize that we can view a
system as moving between transients, especially
if we change the time scale we are focusing on.
Additionally, we provide a road map for future
investigations based on open challenges in the
study of transient dynamics.

Classification and mechanisms

The unifying principle underlying past studies of
long transients is a focus on multiple time scales
(23). One example is regime shifts where slow
parameter changes eventually lead to relatively
rapid shifts in the state of an ecosystem. We
extend this view in two critically important ways:
‘We ask about the dynamics on both of these time
scales, and we include other ways in which tran-
sients arise. Beyond this emphasis on multiple
scales, we emphasize that the ecologically rel-
evant time scales are typically not the asymptotic
time scales that have been the focus of many eco-
logical modeling studies and that form the basis
of theory on which many empirical studies rest.
Nor are very short time scales the appropriate focus.

The tools of dynamical systems provide the
means for a systematic approach to long tran-
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Fig. 1. Examples of transient dynamics. (A to C) Empirical examples
of regime shifts occurring after long transient dynamics. (A) Population
abundance of voles in northern Sweden, showing a transition from
large-amplitude periodic oscillations to nearly steady-state dynamics
[redrawn from (67)]. (B) Biomass of forage fishes in the eastern
Scotian Shelf ecosystem; a low-density steady state changes to a
dynamical regime with a much higher average density [blue line is the
estimated carrying capacity; error bars are SEM; redrawn from (27)].
(C) Spruce budworm [dots; data from (68)] has a much faster

Hastings et al., Science 361, eaat6412 (2018)
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sients. Thus, we first review concepts from
dynamical systems (23) that underlie the more
traditional view of ecological systems represent-
ing and being represented by the asymptotic
behavior of mathematical models. The simplest
long-term, or asymptotic, behavior would be a
stable equilibrium; a slightly more complex pos-
sibility would be a stable limit cycle. A cycle or an
equilibrium are both examples of invariant sets:
If the system is at an equilibrium or on a cycle,
it will remain there forever in the absence of
any perturbation or change in parameter values.
There are also more complex invariant sets, in-
cluding chaotic ones. Under the traditional view
of ecological systems, on time scales that are
relevant for understanding these systems, the
focus should not only be on invariant sets; it
should also be limited to stable invariant sets
that are approached through time. A major lim-
itation of this view is that the relevant time
scale for important ecological questions may be
short enough that the asymptotic behavior is
not an appropriate description. We can, however,
still use ideas from dynamical systems to un-
derstand and classify the behavior of ecological
systems on these shorter (but not very short)
time scales.

There is a broad range of transient patterns in
real ecological systems, likely caused by a range
of mechanisms (Table 2). We can classify these
mechanisms into two general categories: those
that occur in the vicinity of an invariant set, and
those that do not. Within this broad classifica-
tion we also can identify properties that make

C
> 80
% 8,60 N’
ok
£ L 40
6 Y]
€
582
5 ~—
o 0 S
1945 1950 1955 1960 1965 1970 1975
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2000 3000 4000
Time

generation time than its host tree, resulting in extended periods of low
budworm density interrupted by outbreaks. A model (blue line) with fast
budworm dynamics and slow foliage dynamics shows qualitative agree-
ment with the data (2). (D and E) Examples of long transients on
population dynamics models: (D) apparently sustainable chaotic oscilla-
tion suddenly results in species extinction (18); (E) large-amplitude
periodic oscillations that persist over hundreds of generations suddenly
transition to oscillations with a much smaller amplitude and a very
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Table 2. Empirical evidence for long ecological transients.

Duration

Population(s) Observed pattern

Generations Years

Laboratory population Switch from a regime with an almost constant density 15 =15
of beetles to large-amplitude oscillations (70 weeks)
(Tribolium spp.) (25)

Growth of macrophytes in Switch from a macrophyte-dominated state to a turbid 1to5 lto5
shallow eutrophic lakes water state
in the Netherlands (46)

Population of Switch from a forage fish (and macroinvertebrate)-dominated 5t0 8 20
large-bodied state to a benthic fish—dominated state
benthic fishes
on the Scotian Shelf
of Canada’'s
east coast (27)

Coral and microalgae in Shifts from coral to macroalgal dominance on coral reefs 20 to 25 (corals); 10
the Caribbean (47, 48) 50 to 100 (macroalgae)

Voles, grouse in Switch between cyclic and noncyclic regimes, or between 60 (voles); 20 to 30 ~30
Europe (59) cyclic regimes with different periodicity (lemmings); 5 (grouse)

Dungeness crab Large-amplitude transient oscillations with further 10 to 15 45
(Cancer magister) (53) relaxation to equilibrium

Zooplankton-algal Variation of amplitude and period of predator-prey 80 to 100 (algae); 1
interactions in oscillations across the season 5 to 8 (zooplankton)
temperate lakes in
Germany (26)

Planktonic species in Long-term variation of species densities, with extinction 40 to 100 ~0.05 to 0.15
chemostat and of some species (3 to 8 weeks)
temperate
lakes (72)

Laboratory microbial Slow switch between alternative stable states 20 to 40 0.11to 0.21
communities (56) (6 to 12 weeks)

Grass community Long-term existence of a large number of alternative 10 9
in abandoned transient states
agricultural fields
in the Netherlands (57)

Extinction debt Long-term extinction of populations, occurring 20 to 100 (or more) 1to 100
phenomena as either steadily or via oscillations
a consequence
of habitat loss
[plants, birds, fish,
lichens, and others (60)]

Fish and invertebrates Influence of past habitat structure on present 10 to 20 (fish); 40
in watersheds in western biodiversity patterns after restoration 40 (invertebrates)

North Carolina,
USA (49)
Modeled spruce budworm Budworm outbreaks driven by slow 5 (refoliation); 50

outbreaks in balsam
fir forests (2)

a system particularly prone to long transients,
such as the presence of multiple time scales,
high dimensionality, and stochasticity.

We call a dynamical regime (e.g., a nearly con-
stant state or persistent cycles) a long transient if
it exhibits the following two properties:

1) The dynamical regime persists for a sufficiently
long time and is quasi-stable (approached over
shorter time scales), rather than actually stable. Thus,
if the dynamics are observed for a sufficiently long
time (in appropriate time units, e.g., generations of a

Hastings et al., Science 361, eaat6412 (2018)

changes in condition of fir foliage

relevant species), a clearly seen transition eventually
occurs to another equilibrium or dynamic regime.

2) The transition between the regimes occurs
on a time scale much shorter than the time of
existence of the quasi-stable regime. In other
words, the dynamics both before and after the
transition last much longer than the time of
transition.

Below, we consider a few simple models that
exhibit long transients with somewhat different
properties. We use these to formalize our clas-

7 September 2018

50+ (budworm)

sification and describe the mechanisms under-
lying the long transients.

Ghosts and crawl-bys

One class of long transients arises when a system
is near a bifurcation. If we imagine a system’s
dynamics represented as a ball rolling on an un-
even surface, wells correspond to stable equilibria
and peaks to unstable ones. If placed into a well,
the ball will roll to a stable equilibrium (Fig. 2A).
Consider now the situation where the surface is
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being gradually deformed in such a way that one
of the wells becomes more and more shallow.
Eventually the system passes the tipping point
at which the stable equilibrium at the bottom of
this well and the adjacent unstable equilibrium
both disappear, and the ball starts rolling down
the slope (Fig. 2B). However, how fast it starts
moving away—or, in other words, how much
time it remains in the vicinity of the location
where the stable equilibrium was before the
bifurcation—depends on the flatness of the slope.
The flatter the surface is, the longer the ball stays
close to its original location before moving away:
The long transient emerges. Although beyond
the tipping point the system does not possess an
equilibrium at this long-lasting state, for a con-
siderable time its dynamics mimic the dynamics
of the system with an attractor here (Fig. 2, C and
D). We call this situation a ghost attractor (24) or
simply a ghost.

The origin of a ghost attractor and an example
of the long transients it can cause are shown in
Fig. 2, A to D. To understand the importance of
this effect, imagine, for instance, that competitor 1
in Fig. 2, B and D, is a native species competing
with an invader. At the early stages of invasion, we
expect the native species to be abundant and the
invader rare. From these initial conditions, the
system can spend considerable time in this
state, even if the ultimate asymptotic result is
that the invader excludes the native species (as in
Fig. 2B). This occurs because the invaded system
has conditions that are close to, but distinct from,
those that would have allowed the invader and
the native species to coexist (Fig. 2, A and C).
Correspondingly, if the system is only monitored
on an intermediate time scale, this long transient
dynamic may give an impression that both species
will coexist indefinitely—a conclusion that would
obviously be erroneous on a longer time scale
(Fig. 2D).

The long transient dynamics in Fig. 2 occur
because of a bifurcation that results in the dis-
appearance of a stable equilibrium. Beyond the
bifurcation, there is no longer an equilibrium
in the vicinity of what is now a ghost, but the
system may still spend a long time in this vicinity.
In other words, the long transient occurs without
an invariant set. In contrast, the second class of
transients we define requires the existence of
an unstable equilibrium (more specifically, the
existence of a saddle). The system approaches
the saddle along a stable direction and spends
along time near the saddle. We call this transient
a crawl-by.

We find examples of this type of long tran-
sient in predator-prey systems (Fig. 3). Note that
dynamics with similar properties are observed
in more realistic and more complicated models
(25, 26) and are corroborated by some field
and laboratory data (25-27) (see also Fig. 1B),
which points at the generality of the suggested
mechanism.

Note that crawl-bys and ghosts appear to be
similar: Having spent some considerable time
in the vicinity of its original position, the system
(e.g., the ball) eventually moves away. However,

Hastings et al., Science 361, eaat6412 (2018)
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Fig. 2. Ghost attractors. lllustration of ghost attractors in a two-species competition model (A to D) and a
resource-consumer-predator model (E to H). In the left column [(A), (C), (E), and (G)], there are two stable
invariant sets and no ghost attractors. In the right column [(B), (D), (F), and (H)], there is a single stable
invariant set, plus a ghost attractor that causes long transients. A bifurcation (tipping point) occurs for
parameter values intermediate to these two cases; at this bifurcation, one stable state is lost and a ghost
attractor takes its place. [(A) and (B)] Dynamics of one of the competitors depicted as a ball on a quasi-
potential surface. In (A), a ball to the right of the hump at 0.07 will tend to roll toward the stable equilibrium
(well) at 0.58, as in time series (C). In (B), the surface is relatively flat, rather than containing a well, to the
right of ~0.1; a ball to the right will eventually roll to the stable equilibrium at O but will roll very slowly on the flat
part of the surface, generating a long transient. There is a ghost attractor at a density around 0.3, which is
visible in time series (D). [(E) to (H)] The same phenomenon with more complex invariant sets: [(E) and (G)]
The system shows bistability where a chaotic three-species attractor (dark blue) coexists with a stable
consumer-resource limit cycle with no predators (light blue); dark and light trajectories differ only in their initial
conditions. [(F) and (H)] For parameter values on the other side of a bifurcation that turns the chaotic
attractor into a chaotic saddle, any trajectory will eventually converge to the stable limit cycle, which is now
the global attractor. However, convergence can be slow, as seen in (H), because the chaotic set is

now a ghost. Models are as follows: [(A) to (D)] Competitor 1 is v and competes with species u: du/dt =
u(l—u) —apu"v, dv/dt =y[v(l - v) —anu"v] witha;, = 0.9, a1 = 1.1, y =10, and n = 3 [(A) and (C)] or
n =155 [(B) and (D)]; [(E) to (H)] from (28, 29), where the resource is R, consumer C, and predator P:
dR/dt = R[1 - (R/K)] = xey<CR/(R + Ro), dC/dt = x.C{[y.R/(R + Ro)] = 1} = xpy,PC/(C + Co), dP/dt =
XpP{[ysC/(C + Co)] — 1} with xc = 0.4, y. = 2.009, x, = 0.08, y, = 2.876, Ro = 0.16129, Co = 0.5, and

K =0.99 [(E) and (G)] or K =1 [(F) and (H)]. Quasi-potentials in (A) and (B) were computed using (69).
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a distinction appears when the history of the
system is taken into account. For a system to be
influenced by a ghost, its initial state must be
near the ghost (as in Fig. 2B) or more extreme,
such that it passes by the ghost en route to another
state (as in Fig. 2D). One reason a system’s history
might place it near a ghost is if that system re-
cently underwent a change in conditions that
caused the ghost attractor to appear. Individual
crawl-bys can also occur if the history of the sys-
tem places it on track to closely approach a
saddle, but crawl-bys may also repeat in perpe-
tuity, as in Fig. 2, C and D. This occurs because
the saddles that give rise to crawl-bys are always
attracting from some directions, whereas ghosts
may or may not have attracting directions.

The mechanisms described above that cause
long transients are not restricted to simple dy-
namics such as steady states or limit cycles.
Similar effects can be seen in cases of chaotic
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dynamics. An illuminating example is given by
a resource-consumer-predator system (28, 29).
In a certain parameter range, this system exhibits
chaotic dynamics [see the chaotic attractor (dark
blue) in Fig. 2, E and G]. However, a change in
parameter values (e.g., an increase in the re-
source species’ carrying capacity) can bring the
system to a bifurcation at which the strange at-
tractor disappears (29). Beyond this tipping point,
the chaotic dynamic is not sustainable any more;
it becomes transient and eventually converges
to a periodic oscillation with a stable limit cycle
(Fig. 2, F and H). However, this convergence is
slow, so that the dynamics remain essentially
chaotic over a long time. Similar dynamics are
observed in time-discrete systems (20). This
behavior is apparently similar to the crawl-by
near a saddle point, and indeed the term “chaotic
saddle” is used in the physics literature to refer
to a nonattracting dynamical invariant set respon-
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Fig. 3. Predator-prey dynamics with and without transients. Predator-prey dynamics without long
transients (A and B), with long transients due to crawl-bys (C and D), and with long transients due

to slow-fast dynamics (E and F). In (A), (C), and (E), the intersection of the predator’'s and prey’s isoclines
(blue lines) produces a coexistence equilibrium. When the prey’s predator-free carrying capacity K is
beyond a threshold (Hopf bifurcation), the system exhibits limit cycles around this equilibrium. [(A) and
(B)] For K just beyond this threshold, relatively small limit cycles occur and there are no long transients.
[(C) and (D)] With an increase in K, the cycle grows in size and closely approaches the two saddle
points at (0,0) and (K,0). In (D), crawl-bys are visible at O and K. (E) When predator (slow) and prey (fast)
dynamics occur on very different time scales, the shape of the cycle changes, and more horizontal

parts of the cycle (thin arrows) proceed much more quickly than more vertical parts (thick arrows).

(F) The corresponding time series for the prey shows long transients at O and higher prey density. The
difference between (F) and (B) is entirely due to the slower predator dynamics in (F). In all panels,

for prey species N and predator P, dN/dt = aN[1 - (N/K)] = yNP/(N + H), dP/dt = e{[vyNP/(N + h)] — mP}
withy=25h=1v=05 m=04.1In(A), (B), (E),and (F),a =15 K=22;in(C),a =15, K =10; in (D),
a=0.8,K=15;in (A) to (D), e =1;in (E) and (F), e = 0.01.
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sible for transient chaos (30, 3I) (in dynamical
systems theory, it is also called a chaotic super-
transient). More generally, a common dynamical
mechanism for transient chaos is crisis (30), a
type of global bifurcation that changes the na-
ture of the underlying chaotic invariant set.
An important point is that one property com-
mon to long transients caused by ghost attractors
and chaotic crawl-bys is that the system is just
beyond the tipping point. Thus, if a parameter
controlling a system has pushed the system just
past a tipping point, there may not be a sudden
change; instead, a long transient may result.

Slow-fast systems

Much of the literature on tipping points con-
siders multiple time scales: fast intrinsic dynamics
affected by a slow-changing external factor. How-
ever, some systems have multiple time scales
within their intrinsic dynamics. This can also
lead to transients, as in a prey-predator system
written in its general form:

dN (t)

Tzf(N,P,S)
ar(t)
7—€E(N=P:5) 1)

where £ << 1 is a non-negative dimensionless
parameter that quantifies the difference between
orders of magnitude for the time scales of prey
(N) and predator (P) (32), and f and g are the
growth rate of the prey population on the natural
time scale for the prey and the growth rate of the
predator population on the natural time scale for
the predator, respectively. Such a difference is
common in resource-consumer interactions. For
example, univoltine insect herbivores that feed
on trees have much faster population dynamics
than their hosts. Reproduction and mortality
rates of zooplankton are typically lower by one to
two orders of magnitude than the corresponding
rates of phytoplankton on which the zooplankton
feed. Similar differences exist for birds and in-
sects, foxes and voles, etc. (33).

Viewed on the slow time scale, the prey popula-
tion evolves quickly and is always at its equi-
librium, with the predator population acting
essentially as a slowly changing parameter with
dynamics determined by the predator equation.
The net result is alternation between long pe-
riods of relative stasis and periods of rapid
change. An almost steady-state dynamic of prey
at a very low density accompanied by a gradual
decrease in the predator density (as shown by
the left side of the cycle in Fig. 3E and each
trough in Fig. 3F) can go on for hundreds of
generations of prey before suddenly changing to
an outbreak in the prey population. The next
phase is a slow, gradual decrease in the prey
population along with a slow increase in the
predator population (the right side of the cycle,
and peaks in the prey time series) before ac-
celerating to a fast drop in the prey density.
The difference between this dynamic and the
transients described above, in which there is only
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one intrinsic time scale, is whether the slowly
changing variable is viewed as internal or ex-
ternal to the system. This is important because
slowly changing variables are often considered
the result of human actions or a changing en-
vironment; they could alternatively be viewed
as part of the system itself. These systems with
inherent multiple time scales lead to the view
that whether we think of a system as having
transients may depend on the time scale of
ecological interest relative to the time scales
embodied in the system.

Transients in high-dimensional systems

Most systems outside a laboratory or experimental
environment are very high-dimensional because
of the presence of space or time delays that greatly
increase the potential for transients, including
very long transients. In the examples considered
so far, all the processes or forces shaping the
dynamics are instantaneous and local in space.
In real-world systems, it is not always so.
Time delays are a common property in eco-
logical dynamics resulting from processes and
mechanisms such as nutrient recycling (34, 35),
maternal effects (36, 37), or development in stage-
structured populations. Time delays were shown
to lead to the emergence of long transients in
a few modeling studies (19, 38), and there is
a certain similarity between delay-caused long
transients and those caused by ghost attractors.
Systems with time delay are different from in-
stantaneous systems not only because of dif-
ferent processes taken into account, but also from
the viewpoint of dynamical systems theory as
the phase-space argument and the correspond-
ing analysis become irrelevant. In a general case,
even a low-dimensional (e.g., two-species) system
with delay is equivalent to an infinite-dimensional
instantaneous system (39, 40). These findings
suggest that time delay is a separate mechanism
that can result in long transient dynamics.
Spatiotemporal dynamical systems are nec-
essarily high-dimensional, and the transient time
can greatly increase with the system size. An early
study (7) reported extremely long transients in
such systems (Fig. 4A). In systems described by
a coupled map lattice, the transient time can
increase exponentially with the system size or
faster (41), leading to supertransients (42).

Effect of noise

Until now, we have considered long transient
dynamics in deterministic settings, absent noise
or stochasticity. In natural systems, noise and
random disturbances are inevitable and may
create or extend transients. In other cases, sto-
chasticity may essentially eliminate transient
dynamics; as we have emphasized, the practical
impact of stochasticity once again will depend on
the time scale of ecological interest relative to the
time scales of the system dynamics.

Noise may affect a system with existing long
transient dynamics caused, for example, by a
ghost or crawl-by. In transient dynamics caused
by a crawl-by, such as the limit cycles of a
predator-prey system (Fig. 3, C and D), small
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Fig. 4. Examples of additional mechanisms leading to long transients. (A) Spatial structure

in a simple population model leads to very long transients when the local population growth rate is
high [from (7); local dynamics are governed by N, = Ny exp[r(1 = Ny)] with r = 3.5; the total
population density summed across all localities is plotted here]. (B) For these parameter values
(=15 K=15y=25h=1v=05 m=04, e=1), the deterministic predator-prey model from
Fig. 3 exhibits short transient cycles, then converges to a stable equilibrium point (blue curve).
However, when stochasticity is added, the same model will exhibit sustained cycles with
approximately the same period (red line; here, stochasticity was incorporated by representing the
prey’s intrinsic growth rate, a, as a random variable with mean 1.5).

populations very close to the saddle at (0,0) are
vulnerable to stochastic extinctions, where ran-
dom events may move the system to one of the
saddle points, causing either the prey or predator
population (or both) to go extinct. Stochasticity
in the system near the saddle also has the po-
tential to alter the length of the transient period,
widening the distribution of resulting durations
of the transient period or times to convergence
(43). Stochasticity in the system near a ghost
attractor also widens the distribution of tran-
sient periods, depending on the steepness of the
surface around the ghost. Noise that is skewed
“uphill” will lengthen the transient, dooming the
ball to repeatedly roll nearer the ghost (Fig. 2B).
Noise can also induce sustained transients or os-
cillations in a system that would exhibit damped
oscillations to an equilibrium in the absence of
noise (44, 45) (Fig. 4B). Noise can also provide
a mechanism for transient dynamics of a system
to become long-lived (Fig. 4B). For systems with
transient chaos, the interaction with stochasticity
can be even more complex (42).

Transients in the real world

The systematic classification of long transient types
and mechanisms conducted here provides a frame-
work for recognizing and understanding these dy-
namics in observed natural systems (Tables 1 to 3).
Note that our classification does not include non-
autonomous systems, not because long transients
do not occur in nonautonomous systems, but be-
cause their classification and discussion warrants
treatment beyond the scope of the present review.
In this section we describe how empirically ob-
served behavior may be the result of long transients
in a wide variety of situations; through examples,
we emphasize implications for management.
An empirical example of long transients due
to a ghost attractor (similar to that presented
in Fig. 2) is the well-documented switch from a
macrophyte-dominated state to a turbid water
state in freshwater lakes in the Netherlands
(46). The study tracked about 70 shallow lakes
after a water drawdown that stimulated macro-
phyte growth, temporarily creating a macrophyte-
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dominated, clear water attracting state. When
water levels subsequently rose, some of the lakes
returned immediately to a turbid state, while
others lingered for more than 4 years in the clear
water state that was no longer stable. In other
words, the physical modification to the system
caused by the changes in water level resulted in
the formation of a clear water ghost attractor
that slowed movement toward the turbid water
attractor, sometimes quite substantially. A similar
mechanism of long transients due to ghost at-
tractors may underlie the transition from coral
to macroalgal dominance reported for Caribbean
coral reefs (47, 48), the shift from a forage fish state
to a state dominated by large-bodied benthic
fish species in the Scotian Shelf of Canada’s east
coast (27), and the shifts between populations of
fish and invertebrates in watersheds in western
North Carolina after habitat restoration (49).

Long transients due to crawling past a saddle
are often observed in planktonic ecosystems—in
particular, in the interactions between phyto-
plankton and zooplankton—creating oscillations
in which periods of high population density al-
ternate with long periods of low density (26).
Other examples of crawl-bys are given by pat-
terns of cyclic succession reported in a number
of ecosystems, including competition in com-
munities of side-blotched lizards (50), coral reef
invertebrates (51), and heather-moss-bearberry
succession (52). In each of these systems, a long
dominance of one species is observed before
its displacement by the next competitor in the
cycle.

Empirical examples of long transients related
to slow-fast systems include a number of obser-
vations of univoltine insect herbivores that feed
on trees (2) (Fig. 1C). At short time scales of a few
insect generations, the tree density is approximately
constant. However, on longer time scales, the impact
of the growing insect population may become high
enough to cause a sudden collapse in the quantity
or quality of foliage, resulting in a regime shift.

Real ecosystems are often disturbed by noise
that can trigger patterns of long transients. A
notable example includes the population dynamics
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1
Table 3. Overview of long transient (LT) classification and mechanisms.

Type of LT Relationship to Relationship to Dynamics mimicked Possibility of Biological
invariant set bifurcation by LT recurrent LTs? example
Ghost (Fig. 2) No invariant set Occurs past a Equilibrium, cycles, No Forage fish (27)
bifurcation chaos (Fig. 3B)
where stable
equilibrium
is lost
Crawl-by Caused by None necessary Equilibrium, cycles, Yes Phytoplankton-grazer
(Fig. 3,C saddle-type chaos models (26)
and D) invariant set
Slow-fast systems  None necessary Multiple time scales Periodic or Yes, if invariant Univoltine insects (2)

(Fig. 3, Eand F)

aperiodic cycles

set(s) present (Fig. 3C)

High dimension
(e.g., time delays,
space) (Fig. 4A)

None necessary

None necessary Equilibrium, cycles,

chaos

Yes Chemostat microbial
communities (57)

Stochasticity If invariant set present:

None necessary Aperiodic cycles, chaos

(Fig. 4B) If invariant set absent:

of Dungeness crab, Cancer magister, in eight West
Coast ports of the United States (53). By combining
data analysis with modeling fitted to data, large-
amplitude transient oscillations followed by
relaxation to an equilibrium were shown to occur
as a result of stochastic perturbations of a deter-
ministic system with a stable state. Another ex-
ample is given by an empirical study on 7ribolium
(54) in which random perturbations of cyclic
population dynamics result in chaotic-like behavior.
Seasonal dynamics create a particular structure of
environmental stochasticity. For example, in plankton
communities in temperate lakes, each cold season
“resets” the initial conditions for the warm, growing
season. This prevents the system from reaching
equilibrium and thereby allows for high bio-
diversity transients to be the norm (26, 55).

High-dimensional systems may be likely to
possess long transients. For example, slow suc-
cession of patterns of biodiversity is found in
experimental microbial communities in a che-
mostat (56). The precise mechanism of these ob-
served long transients is still unclear because
of the high complexity of systems containing
dozens of interacting species and the existence
of several time scales. Similarly, long-term ex-
istence of a large number of alternative transient
states is seen in the restoration of agricultural
fields (57), which is also characterized by a high
degree of complexity.

Implications for management

The existence, identification, and forecasting
of long transient dynamics in ecosystems have
substantial implications for the management
of ecosystems. Broadly speaking, management
is aimed at maintaining or creating a desirable
state of the ecosystem. The challenge is in pre-
dicting system behavior given dynamical regime
uncertainty. If a system transition is detected,
the important questions are what has caused it

Hastings et al., Science 361, eaat6412 (2018)

Past a bifurcation
where cycles/chaos
are lost

Quasi-periodic cycles

and how long it can be expected to last. What a
study of long transients reveals is that a system
may shift in ways that are not simply tracking
underlying conditions, so a focus on asymptotic
behavior without considering transients may
give misleading answers.

In some cases, mechanistic mathematical
models that are constructed from first principles,
fitted to empirical data, and explored within
realistic parameter ranges can help to identify
whether an ecosystem is currently experiencing
transient dynamics. For example, this was done
to predict the long transients in the extinction
debt of butterflies in the United Kingdom (58). In
other cases, when it is difficult to distinguish
whether observed dynamics are transient or at
equilibrium, models of both possibilities can
be developed to test the sensitivity of proposed
management strategies to the model assumptions.

Incorporating considerations of transient sys-
tem behavior into management also requires shift-
ing perspectives about the relevant time scale. A
fundamental issue is a mismatch between relevant
ecological (transient) time scales and management
time scales. Implementation of management plans
where long transients are at play will require ad-
justments to accommodate the transient changes
in dynamical regime.

Acknowledging transient system behavior af-
fects management assumptions, practices, and
interventions. In addition, detecting long tran-
sients, and incorporating risk analysis for long
transients, requires the development and applica-
tion of new tools to reflect this change in thinking.
A full treatment of the management consequences
and opportunities presented by long transients re-
quires further attention beyond the present review.

Implications and future directions

Sudden changes in ecological dynamics through
time represent both great challenges and op-
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Yes Cancer crabs (53)

portunities for unraveling the forces that regu-
late ecosystem functioning. Much recent work in
this vein has focused on the concept of regime
shifts as a rapid response of dynamics to slow
changes in environmental conditions (such as
climate change, habitat destruction, resource ex-
ploitation, etc.). However, there are many ex-
amples of situations and systems that do not fit
into this classical framework; in particular, a
shift can suddenly occur in a seemingly constant
environment. The existence of long transients
explains how this may happen: As we have shown
here, the ecosystem dynamics past a tipping point
can be very slow, sometimes indistinguishable
from the steady state for hundreds of generations
(“ghosts”). Long transient dynamics can also
be responsible for regime shifts in the absence
of any associated tipping point, thus significantly
broadening the regime shift paradigm. Finally, the
dynamics of some systems with multiple time scales
may best be viewed as a succession of transients.

The traditional approaches in ecological sci-
ences are usually based on asymptotic dynamics.
Here we have shown that this focus is often
insufficient and sometimes irrelevant, and needs
to be reconsidered in a systematic way. Long tran-
sients provide a new dimension in our under-
standing of observed changes in ecological
dynamics. Although the existence of long tran-
sients has been previously acknowledged both in
theoretical and empirical studies, any systematic
approach to this phenomenon has been lacking.
We bridge this gap by developing a simple clas-
sification of different types of long transient dy-
namics and linking empirical observations to
simple prototypical models. As one important
result of our investigation, we have arrived at the
conclusion that both identifying long transients
and understanding their implications (e.g., for
ecosystem management) requires coupling across
several ecologically relevant time scales.
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Identifying from observations whether a nat-
ural ecosystem is close to an equilibrium or is
experiencing long transient behavior constitutes
a major challenge. Perhaps the easiest case is a
situation where the population density shows a
clear disappearance of periodic cycles of voles,
lemmings, and grouse in Europe (59) (Fig. 1A), or
the slow steady population decline in extinction
debt phenomena (60). Less evident is the situa-
tion where the dynamics do not show a pro-
nounced trend. In this case, one can compare
characteristics of the observed community with
those thought to represent equilibrium systems,
such as a relatively undisturbed community of a
similar type or the same community in the past.
These ideas have been implemented to reveal an
extinction debt caused by habitat fragmentation,
by comparing the current species-area relation
to historical records (60) and by verifying wheth-
er the species-area relation holds (61). As an
alternative approach, recently developed tech-
niques make it possible to build an ecological
model directly from a time series by reconstruct-
ing model equations from data. A particularly
promising new approach is based on compressive
sensing using a powerful sparse optimization
framework (62-65). Once a model is available,
its properties can be analyzed, in particular to
reveal long transients. However, we argue that
any essential progress in this area is only likely
to be achieved by combining various methods
borrowed from data mining, stochastic model-
ing, and bifurcation theory. Another important
aspect will be the exchange of ideas with other
areas of biology such as neuroscience, where
transients are considered important and have
been studied with both data and models (20, 21).
Existing methods to identify transients in em-
pirical data are not always reliable and can
result in either overlooking the approaching
regime shift or in false alarms, which can be
very costly. This poses substantial new chal-
lenges for ecologists, mathematicians, and data
analysts.

Acknowledging long-term transient behavior
drastically affects our perception of ecological
dynamics. First, sudden shifts in dynamics may
occur in the absence of underlying parameter
changes (i.e., in the absence of the tipping point).
Second, analysis of ecological processes must
be done across a few relevant time scales rather
than focusing only on asymptotic behavior. In
particular, one should take into account both
fast and slow variables and feedbacks. Third,
stochasticity may play a key role in generating
long transients, in particular by bringing an
ecosystem to the vicinity of an unstable equilib-
rium (causing a crawl-by) or a ghost. Finally,
in the context of ecosystem management prac-
tices, it is well known that sometimes long
transients may offer a window of response
time that would not be available for systems
with rapid switches between stable states (66).
On the other hand, transients can add more un-
certainty to the anticipation of regime shifts,
because such a shift can occur without a notice-
able change of parameters.

Hastings et al., Science 361, eaat6412 (2018)
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Making sense of transient dynamics

Ecological systems can switch between alternative dynamic states. For example, the species composition of the
community can change or nutrient dynamics can shift, even if there is little or no change in underlying environmental
conditions. Such switches can be abrupt or more gradual, and a growing number of studies examine the transient
dynamics between one state and another—particularly in the context of anthropogenic global change. Hastings et al.
review current knowledge of transient dynamics, showing that hitherto idiosyncratic and individual patterns can be
classified into a coherent framework, with important general lessons and directions for future study.
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