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1. Introduction

The Fourier coefficients of modular forms are interesting objects because of their nice
arithmetic and algebraic properties. It is easy to see that the Fourier coefficients of a cusp
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form for I'h(N) change signs infinitely often if the coefficients are all real numbers. In
fact, the signs of the Fourier coefficients determine a cusp form. The signs of the Fourier
coefficients of cusp forms were first studied by M. Ram Murty in [9]. After that there
has been more extensive study of the Fourier coefficients of other kinds of automorphic
forms. In this article, we first prove a sign change result in the case of Hilbert modular
forms. More precisely, we prove the following.

Theorem 1.1. Let £ be a Hilbert cusp form of weight k = (ki, ..., ky) and level n, and let
C(m) be a Fourier coefficient of £ at each integral ideal m. If {C(m)} are all real, then
there are infinitely many sign changes on {C(m)}.

Here, n is the extension degree of the base field. All the setting is precisely described
in Section 2.

Next question which naturally arises in the case of cusp forms is to determine a bound
for the first sign change to occur in the sequence of Fourier coefficients. Bounds have
been obtained by Kohnen and Sengupta [7], Iwaniec, Kohnen and Sengupta [6], and
Choie and Kohnen [4]. More generally, Qu [11] has obtained a similar kind of bound
for the first sign change of the coefficients for the automorphic L-function attached to
an irreducible unitary cuspidal representation for GL,,(Ag), under the assumption that
all the coefficients are real. Thus it naturally comes to our mind to get a bound of similar
kind in the case of Hilbert modular forms. In our next result which is stated below, we
get an affirmative answer.

Theorem 1.2. Let £ be a primitive Hilbert cusp form of weight k = (ki,...,ky), level n
and with the trivial character. Write {C(m)} for Fourier coefficients of £, and let Q¢ be
the analytic conductor of £. Then there exists an integral ideal m with

N(m) <pe %“
such that C'(m) < 0.

Finally, we consider the behavior of the signs of the coefficients in short intervals
(z,2x) for sufficiently large x. Namely, we prove the following quantitative result for the
number of sign changes in the interval (x, 2x).

Theorem 1.3. Let f be a primitive Hilbert cusp form of weight k = (ki, ..., ky), full level,
and with the trivial character. Assume that the weight satisfies the following congruence

property: ky = - -+ = k, = 0 mod 2. For each integral ideal m of F', let C(m) be a Fourier
coefficient of £ at m. Then, for any r with iZ—H < r <1, at least one sign change for

{C(m)} occurs with N(m) € (z,x + a"].

This follows from a recent work of Meher and Murty [8], together with a result of
Chandrasekharan and Narasimhan [3] and Ramanujan conjecture for Hilbert modular
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forms. It should be also noted that Theorem 1.3 guarantees that, if f satisfies all the
hypotheses in the theorem, its Fourier coefficients {C'(m)} cannot completely vanish in
the interval (x,z 4 2"] for large x. This rather interesting remark is briefly explained in
Section 5.

2. Notations and preliminaries

This section is to recall all the basic definitions and setting on Hilbert modular forms as
well as their associated L-functions. We adopt the setting from Shimura [13]. Throughout
the paper, we let F' be a totally real number field of degree n and h the narrow class
number of F, that is the cardinality of the group of all fractional ideals of F' modulo
all principal ideals of F' generated by totally positive elements. We write {t,}!_, for
a complete set of the representatives of the narrow class group. For each representative ¢,,,
a congruence subgroup of GLy(F) is taken to be

a t;' a€Op, beD!
I,(n):= v Lo(F) : ’ o ,
() {(tl,c d )eG 2F) Dy, de Or, ad—bec OF

where © g is the different ideal of F.
A Hilbert modular form f, of weight k& := (ki,...,k,) with respect to I,(n) has
a Fourier expansion, and we write it as

fu(z) = Z a, (&) exp <2ﬂiZ§jzj>.

0K EEL, OF j=1
§=0

Furthermore, we write f for a collection (f1,..., fr) of Hilbert modular forms f,
(v = 1,...,h) of weight k with respect to I, (n), respectively, and associate it with
a function on GL2(Ar) in a usual way.

Put ko := max{ky,...,k,}. To associate the Fourier coefficients {a, ()} for each f,
with the lifted function f, we define

C(m) = C(m,f) = a, ()&*/*N(m)*/?

for each integral ideal m of F, where m = &t,'Op for a unique v and some totally
positive element £ in F'. This definition is well-defined because the right hand side of the
above expression does not depend on the choice of £ up to the totally positive elements
in OF.

Our goal is to analyze the sign change of such {C(m)}, with an assumption of C(m)
being real for all m, or equivalently the sign change of {a,(£)} where v and £ vary.
We note that C'(m, f) is known to be real for all m if f is a normalized common Hecke
eigenfunction and with trivial character. This follows from Shimura [13, Proposition 2.5,
and p. 650].
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Before concluding the section, we also recall the definition and some properties of
L-function attached to a Hilbert modular form f. The L-function L(s,f) is defined to be

L(s,f) := Z C(m).

wes, Nm)®

It is known that L(s,f) converges on some half plane. Furthermore, if f is a cuspform,
it can be analytically continued to the whole complex plane C. Let us now define

A(s, f) = N(nD%) (2m) " Hr(s — @)L(s,f). (2.1)

If f is a primitive form (with the trivial character), it satisfies a functional equation:
A(s,£) = i%i %5 A(kg — s, 1). (2.2)

A word “primitive” is used in a usual way, that is, f is a new form, normalized as
C(Op,f) =1, and a common eigenfunction of Hecke operators.

3. Proof for Theorem 1.1

We start this section by recalling Landau’s theorem, which is a key tool to prove the
first theorem.

Theorem 3.1 (Landau). Let ¢(s) = Y| %2 be a series that converges on some right

half plane and that a,, > 0 for all but finitely many n. Then, ¢(s) is either convergent
everywhere or has a singularity at the abscissa of convergence of ¢(s).

For a complete proof of Landau’s theorem, the reader can refer to, for instance, Murty
[10, pp. 266-267].

To prove our first theorem, we suppose that there are only finitely many sign changes.
Without loss of generality, we may assume that there are only finitely many ideals m
such that C(m) < 0. With this assumption, Landau’s theorem guarantees that L(s,f)
converges absolutely at all s since it is known that L(s, f) can be analytically continued
to the whole plane and cannot have a singularity when f is a cuspform. Furthermore,

we claim that L(s;;, f) vanishes at s;; = -k

— [ for any nonnegative integer [. This
follows immediately from observing a completed L-function A(s, f) defined in (2.1), which
is known to be entire when f is a cuspform. Since I'(s) has poles at negative integers,
at least one of the gamma factors on the right hand side of (2.1) must have poles at s;
for some (j,1). Henceforth, L(s,f) = 0 at these points.

Let my, ..., m; be the complete set of ideals such that C(m;) < 0 with N(m;) < --- <
N(m;). It is obvious that we must have at least one such m; for the L-series L(s,f) to
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converge everywhere. Indeed, if C'(m) > 0 for all m, then L(s;;,f) > 0. We now rewrite
the series as

Z Cm = C(mi) _..._M, (3.2)
oz N(m)s N(my )%t N(m; )5

Multiplying both sides of (3.2) by N(m;)® and letting I be arbitrarily large, we observe
that the right hand side of Eq. (3.2) approaches C(m;), while the left hand side tends
to the infinity unless C(m) = 0 for all m whose norm is larger than N(m;). But if it is
so, then f has only finitely many nonzero Fourier coefficients which cannot happen. This

completes the proof for Theorem 1.1.
4. Proof for Theorem 1.2

In [11], Qu proved a similar statement for an irreducible unitary cuspidal represen-
tation for GL,,(Ag). (See Theorem 1.3.) Our goal is essentially to expand her result to
GLy(AF), i.e., the base field to be any totally real number field F while m is fixed to
be 2.

To prove our case, let « be a real number such that C(m) > 0 for all ideals m with
N(m) < z, and set

where

A C(m)

Clearly, our normalization C'(m) does not affect the results on sign changes. We prove
that z < Q%J“ by finding an upper bound and a lower bound of S(z).

4.1. Upper bound for S(z)

Applying the Perron formula, S(z) can be written as

24100
1 ko —1 z*
2—i00

Since L(s,f) can be analytically continued to the whole complex plane, the integrand in
the above integral is analytic for any o = R(s) > 0. Thus, the line of integration can be
moved to o = ¢, and therefore we obtain that
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e+100

1 -1 s
S(z) = — / L(s—i—]%T,f) T ds.

T o §2n+l

€—100

We now recall a result of Harcos [5]. (See also Qu [11].)

Lemma 4.2. Let € > 0 be arbitrary and (ko — 1)/2 < 0 < (ko + 1)/2, where s = o + it.
Then we have that

Lo +it,f) <. Qg(t) =" *°,
where Q¢ (t) is the analytic conductor of £ at t.

Applying the above lemma, we see that

. t1/2+6x76dt.
Sto) < | Q0

Furthermore, since Q¢(t) <, (1 + [t])*"T1Q¢, where Qs is the conductor of f, we obtain
that

1/24€ e (|t| + 1)n+1/2+6 1/24€ ¢
S(I) <<n75 £ T / Wdt <<n7e £ x . (43)

4.2. Lower bound for S(x)

To find a lower bound, it is easier to use the correspondence between a Hilbert modular
form and an automorphic representation of GL2(A ). Indeed, any primitive Hilbert cusp
form f can be assigned to an irreducible cuspidal automorphic representation I = Il¢ of
GL3(Ap). The existence and uniqueness of such a representation I7T is well-known. The
details of such a correspondence can be found in Section 4 of [12]. Write IT = ), II,
where II,, is a local representation at any place p. It is known that, for each prime ideal
p that does not divide the level n or the different ideal ® r of the base field F', the local
representation I1, is a spherical representation induced from some unramified characters
X1,p and X2, and we denote it as [T, = 7(x1,p, X2,p). Furthermore, the following is true
for such places p.

Lemma 4.4. Let II be an automorphic representation given as above. Then, for any
unramified place p, i.e., pfn and pt Dp, we have

Xl,p(wp) + Xz,p(wp) = C~'(p)

where w, is a uniformizer of Fy and C(p) is as in (4.1).
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A proof of the above lemma is omitted here as a detailed proof can be found, for
example, in Raghuram and Tanabe [12, pp. 305-306]. This relation between (x1,p, X2,p)
and C(p) gives us the following proposition.

Proposition 4.5. Let f € Sp(n,1) be a primitive form and C(m) = C(m, f)N(m)~(ko—1)/2
as in (4.1). Then, for any prime ideal p not dividing either the level n or the different D p,
we have

[C(?)] +[Cp)] =

DN | =

To prove the proposition, we will need three more lemmas:

Lemma 4.6. Let f € S;(n,1) be a Hecke eigenform. Then {C(m)} is multiplicative, and
furthermore the following equality is satisfied for any unramified prime p and any integer
m greater than 1:

Cp™) =CEC(E™ ) — g 'C(p™?),
with g, being the cardinality of the residue field O, /pO,.

This follows from Shimura [13, (2.23)] and in particular by taking a = p™~! and
b=p.

Lemma 4.7. (See Qu [11, Lemma 5.2].) For a set of complex numbers {;}]*,, define the
coefficients c; as

(oo} m
ZO&Z‘XZ = H(l — BlX)_l,
i=0 =1

and also put

bj =B+ + B

for any 57 > 1. Then, for any t > 1, we have

t
tOétZ E bjOtt_j.
j=1

Lemma 4.8. (See Brumley [2. Lemma 1].) For a set of complex numbers {B;}~,, define
the coefficients c; as

Y aixt=J[@-ppX)""
i=0 i,j=1

IfITTE, Bl =1, then oy, > 1.
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Proof of Proposition 4.5. If p is an unramified place, it can be easily verified by
Lemma 4.4 and Lemma 4.6 that

(1= o))" (= xap(m)y ) = 3

m=0

It should be noted that x1 X2,y gives the central character for 1T, = II(f), which coin-
cides with the p-component of the character for f. Since we only consider a Hilbert
modular form with trivial character, we have that xi1px2, = 1 as well. Applying
Lemma 4.7, we see that 2C(p?) = B1C(p) + Ba, with B; = x1.p(wp)? + x2.p(w@p)’.
In particular, B; = C(p) by Lemma 4.4, and so we have that

20 (p?) = C(p)* + Bo. (4.9)
Now, define the coefficients «; as
[ee] 2 .
Z Qm (qp_s) = H (1- Xi,p(“p)ij(“p)Qp_s) ;
m=0 i,j=1

and put

Aj = X1,pX10 (@p)” + X2.pX1p (@) + X1,pX2p (@) + X2,p X2, ()
= (le,p + X%,p) (le,p + X%,p)(w]ﬁ)
; ; 2
= (X, +x3,) (@)

Then, Lemma 4.7 gives that 2as = Ay + As, or more precisely

200 = |(x1p + X2) (@p)| " + | (G + X2 (@) (4.10)

This is because i = Ay = |(x1,p + X2,p)(@p)|* by Lemma 4.7.
We now claim that either

|(xip + x2p)(@p)| =1 or |(X1,+X3,)(@p)] > 1. (4.11)

Suppose, on the contrary, that both values are less than 1. Then, (4.10) gives us that
2a9 < 1+ 1 = 2, or ag < 1, which cannot be true. Indeed, Lemma 4.8 is applicable
here because x1,,Xx2,, = 1 as mentioned earlier, and thus we must have as > 1. This
completes the proof of the claim (4.11).

If the first inequality in (4.11) holds, then the assertion of Proposition 4.5 follows
immediately from Lemma 4.4. If [C(p)| < 1, i.e., the first inequality in (4.11) fails, then
we must have |Ba| = |(x7 , +X3,,)(@p)| > 1 by (4.11). Together with (4.9), we see that
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2C(p?)] > |Ba| - |C(p)?|
>1-|C(p)-
It follows that
2(/C(*)] + |CK)) =1
which complete the proof of Proposition 4.5. O

We now obtain a lower bound for S(z) as follows by applying Proposition 4.5:

S@ > Y Cm (logN(xm)>2n

N(m)<z/2

> (log2)? > (C(p?) +C(n)

N(p)<(z/2)'/2
p‘fﬁ,@F
(log 2)2n $1/2
> Y 1> : (4.12)
2 N(p)<(z/2)'/2 log
p‘f",QF

4.8. Completing the proof for Theorem 1.2

We now complete the proof of Theorem 1.2 by comparing the upper and lower bounds
we found in Sections 4.1 and 4.2. It is now clear that it gives a contradiction if z > Q1+6.
More precisely, Eqs. (4.3) and (4.12) give

1/2
zt/ 1/2+5 e

S n,e
1ogx<< (z) <

5. Proof for Theorem 1.3

The theorem follows from a result of the first author and Murty in [8]:

Theorem 5.1 (Meher and Murty). (See [8, Theorem 1.1].) Let {a,} be a real sequence
such that, for some real numbers «, 3, v, and c, it satisfies that:

= O(n®) for alln,
<z On = O(wﬁ)
<o a2 = cx + O(z7).

If a+ 5 and v are both less than one, then for any r with max{a+ 8,7} <r < 1, there
is at least one sign change for {a,} with n € (x,x + x"].
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To apply the above theorem to our case, we will prove the proposition below.

Proposition 5.2. Let £ be a Hilbert cusp form satisfying all the hypotheses given in The-
orem 1.3. Let

5oy . C(m)
C(m) = N(m)(eo—T72"

Then, for all m and for any € > 0, the following conditions are satisfied.

(1) ZN(m)zn C(m) = O(nf) for all n,
(2) XoN(my<e C(m) = O(z2ni1te),
(3) Xnm)<a C(m)* = cx + O(miﬁ—ﬂﬂ) with some c.

The proof of Theorem 1.3 is completed by applying Proposition 5.2 to Theorem 5.1.
We remarked a non-vanishing property of the Fourier coefficients at the end of Section 1.
Indeed, if all the coefficients C'(m) are zero where the norms N(m) of m are in the interval
(z,z+2z"], then the third condition in the above proposition must fail. It can be observed
in the proof of Proposition 5.1. See [8] for details.

The rest of this section is devoted to proving the proposition.

Proof of Proposition 5.2. The first statement is nothing but Ramanujan conjecture for
Hilbert modular forms, which is known to be satisfied. See Blasius [1]. To prove the
second and third statements, we now recall a theorem due to Chandrasekharan and
Narasimhan:

Theorem 5.3 (Chandrasekharan and Narasimhan). (See [3, Theorem 4.1].) Let

65 =3 ana i) = 3 M

nS
n>1 n>1

be two Dirichlet series. Suppose that the functional equation

is satisfied with some § > 0 where

l

A(s) = [[ I'(eus + Ba).

i=1

Furthermore, suppose that the only singularities of ¢ are poles. Put o := Zi:l Qa;,
Az) =3, <, a(n), and
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L [d(s)
r)=— | —=zds,
@) 2714 / S
c
where C' encloses all the singularities of the integrand. Then we have

A(z) — Q(x) = O(a:gfﬁ”“"“) + O(J;qfi*"(logx)rfl) + O( Z |a(n)}),

z<n<x’/

for any n > 0, where ' = x + O(x*~1/22=1), ¢ is the maxzimum of the real parts of the
singularities for ¢, r the maximum order of a pole with real part ¢, and u = y—95/2—1/4a
with v being the smallest real number such that >~ |b(n)|n~7 is finite. If in addition
a(n) >0 for all n, then we have

Az) — Qz) = O(xg_i—ﬂa”u) + O(wq_%_"(log x)r_l).

We set ¢(s) = ¥(s) = L(s,f) in Theorem 5.3 in order to estimate > )<, C(m).
It follows from the functional equation given in (2.2) that we have § = ko with ko =
max;{k;}, a =n, and

Az)= > C(m).

N(m)<z

Ramanujan conjecture shows that > C'(m)N(m)~* converges absolutely for R(s) > 1+e
for any positive €, and thus > C'(m)N(m)~* converges absolutely where the real part of
sisat least 1+€e+4(kg—1)/2 = (kg+1)/2+ €. This value is taken to be v in Theorem 5.3.
Furthermore, since there is no singularity for L(s,f), we have Q(z) = 0, and it follows
that ¢ and r are 0 as well. Thus, we now see that

Z C(m) = O(m%l_ﬁ'””"(%_ﬁ“)) + O(x_%n_"(logm)_l)

N(m)<z
¥ o(
z<m<ax’/

where 2/ = 2 4+ O(z'~2777). We see that in this case the middle term of the estimate

does not contribute anything since the exponent is negative. Hence

> C(m)zo(xké’mn<né+2ne>)+o< Y C(m)D. (5.4)
N(m)=m

N(m)<z r<m<x’

> o))

N(m)=m

We also observe that the second term on the right hand side of Eq. (5.4) satisfies:

)

r<m<az’

1

“+e€

Z C(m)‘<< Z m e« gy

N(m)=m rz<m<ax’
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by Ramanujan conjecture. Equating the exponents to optimize the value of 7, i.e., setting

1 ko —1 ko 1 1
1—— — = — - — —=+2
o 1T T TS 4n+"(" 2+"6)’
we obtain that
2n — 1+ 4ne

T on@n 1+ 4ne)

Using this n-value, the exponent in (5.4) is approximately equal to (2n —1)/(2n + 1) +
(ko — 1)/2 + €. Therefore,

2n— 1+J);1+6)

A(z) = Oz +

We now estimate 3y <, C(m). Tt follows that, by partial summation,

L
)/Am

> Cm 5 A(z) — (

N(m)<z

and so it can be evaluated as

C(m) = O(z2ne17).
N(m)<z

Let us next direct our attention to C'(m)2. To further discuss about properties of
C(m)?, we define

ZN$ p(29),

m

and write the Dedekind zeta function (g as follows:

Cr(s) =) a(m)

ms
m>1

with a(m) being the number of ideals whose norm is m. Then it is easy to see that
x f

L(s,f x f) can be written as a series 3., bT(n”Z) where

MW=ZG@MZ Cm?). 5.5

d?|m m)=m/d?

Now, we would like to apply Theorem 5.3 to this series. To further proceed, let us set
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A(s, £ x £) == L(s, £ x £) [[ I'(s) (s + k; — 1).
j=1

Then, it is proven by Shimura, [13, Proposition 4.13], that A(s,f x f) can be meromor-
phically continued to the complex plane with simple poles at s = 0 and 1, and it satisfies
a functional equation of expected kind. Henceforth, we may put, in Theorem 5.3, as

6=1, o =2n, qg=1, r=1, and y=1+e¢,
which gives us that

B(z) = Z b(m) = Q(z) —|—O(x%*i+4m7u) n O(gjlfﬁﬂ?)

m<zx

with u = % — # + e. We also note that Q(x) must be of the form ¢j2 + ¢5 for some ¢y

and cy. Thus,
B(x) = c1x + O(x%_ﬁﬁ’”’(%_ﬁ“)) + O(xl—ﬁ—ﬂ),

As we did for A(z) = > x(m)<, C(m), we equate the exponents of z in the above equation
and obtain an optimized 7, which shows that

B(z) = 01I+O(1'ﬂ711+6). (5.6)

Now, applying the Mébius inversion formula to (5.5), we see that

> cmp =3 utan( ).

N(m)=m d2|m
and thus
~ m
Cw? =30 3 uap( )
N(m)<z m<ax d2|m
IR0
d?2<z e<z/d?
Using (5.6), it can be written as
471.71_,’_6
- 9 . €T €T 4n+1
Y Cm)P=) u(d){clﬁ—i—O((d—) )}

N(m)<z d2<zx

It is well-known that
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d? T2

d2<zx

and henceforth applying this to the above expression, we obtain that

> O = %o+ 0(eh) + Ot S ua]a 5 ).

N(m)<z d2<z
Since
Z|u - 4n+1 7€<Zd72(44nn7+11) < 00
d2<zx
4dn—
and - +1 > 2, we finally get

> Cm)? = 6ﬂx+o(x4n+1+f)
N(m)<z

This completes the proof of the proposition. 0O
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