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1. Introduction

It is unknown whether Euler’s constant v is rational or irrational. Equally unknown
is the nature of the number €Y. Thus, it is rather striking that in 2011, M.R. Murty
and V.K. Murty [10] proved the following curious theorem. Let K be an imaginary
quadratic field and xp its associated quadratic character. If L(s,xp) is the Dirichlet

(2525

and 7 are algebraically independent. Thus, if L'(1,xp) = 0, then ¢” and 7 are alge-

series associated with xp, then

braically independent and, in particular, €” is transcendental. It is unknown whether
there are any quadratic characters x p for which L'(1, xp) = 0. Presumably not. In [10],
the authors show that such L-series are very rare, if they exist.

In this paper, we will prove a related result. Instead of considering Dirichlet L-series
attached to quadratic characters, we look at Artin L-series attached to real characters.
While the authors in [10] considered s = 1, we focus on Artin L-series at s = 1/2. More
precisely, we prove the following:

Theorem 1.1. Let L(s, x, E/F) be an Artin L-series associated with a real character x.
Suppose that L(1/2,x,E/F) # 0. Then,

ox (L/(l/?,x,E/F) (d+2r2)X(1)V)

L(1/2,x, E/F) 2
1s transcendental. Here d = r1 + 2ry is the degree of F over Q.

In particular, if there is a real Artin character x for which L'(1/2,x, E/F) = 0 and
L(1/2,x,E/F) # 0, then e is transcendental.

We will prove this theorem as a consequence of a more general investigation regarding
Dirichlet series that satisfy functional equations. See Section 2 for the general setting
and Section 3 for results on Artin L-functions.

While our main focus in this paper is the values of derivatives of Dirichlet L-functions
at the central point of symmetry, the same method applies to evaluate the values at
other rational points. This will be discussed in Section 4.

2. Dirichlet L-series

One of the main results in this paper is to state a non-vanishing property of derivatives
of L-series at the central point of symmetry. More precisely, we have the following:

Theorem 2.1. Let @1(s) = 500, %= and &y = S.°° Y2 be two Dirichlet series such

n=1 ps n=1 A3
that they converge in some half plane, can be meromorphically continued to the entire
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complex plane, and satisfy the functional equation:
A(8)D1(s) = A6 — 5)Pa(d — s) (2.2)
where A(s) = Hi‘:1 T(ajs + B;) with a;j$ + B; € Q\Z<o and aj # 0 for all j. Write

a3+ B =n;+ % with (mj,q;) =1 and 0 <mj; < q; — 1. If #1(0/2) and P2(5/2) are
both monzero, then we have the following:

1(@’1 @é)(é)
—_ _+_ —_
o\d, " @, )\ 2

Jj=1 j:m;=0 t=1
nj—1 1
™
— Z o Z log(2¢;) cot( 7)
J o ( = ttmi/a 4
las/2] 2Tm,;r; ™5
+ Z cos< J ]) logsin<—j>
’l“]‘:1 qJ QJ

where v is the Euler constant.
It is understood that the summations in the above theorem are defined to be zero
where t > n;—1 for each j. The result gives interesting corollaries, stated below, regarding

the transcendental nature of some values.

Corollary 2.3. Let ®1(s) and Po(s) be as given in Theorem 2.1. Then

1/, B\ [6 !
o3+ 2)(3) -2

where
nj—1 1 nj—1 1
A=— o e Q; p ——
j:m;=0 t=1 j:m;#0 t=0 +mj/q]
m;j a
B := Z ajcot< ), and  C:= H (2g;)
Ji my 0 K F A

Furthermore, this value is transcendental.
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Corollary 2.4. Let v be an algebraic number and &, the set of all the pairs of Dirichlet
series ¢1(s) = S oo % and ¢a(s) = Soc 2= such that they can be meromorphically
continued to a whole complex planes and satisfy the functional equation

WEn"s A(s) g1 (s) = WOsm?C=IA( — 5)po(d — 5),

where A(s) is as given in Theorem 2.1, and W is an algebraic number. Further, assume
that ¢1 and ¢o do not vanish at the center of symmetry. Then, there is at most one
algebraic element in the set

{exp<;<ji + ji) (g) - i%‘V) (01, 02) € 6u}~

Jj=1

We conjecture that there is no pair (¢1, ¢2) satisfying all the hypothesis in the theorem
and that has a property ¢}(5/2) = ¢45(6/2) = 0. Indeed, the first author, with Gun and
Rath, proved that no L-series attached to a cusp form of even weight can hold such a
property. The second author showed a similar result for the L-function attached to an
even weight Hilbert cusp form. See [3] and [13] for details. If there is any such pair in
general, then there is an immediate consequence that we obtain a specific expression of
€Y involving known transcendental numbers. This suggests that, even if there are some
pairs (41, ¢2) whose derivatives vanish at s = §/2, the number of such pairs must be
limited as otherwise we obtain various expressions for ¢” and some of which would easily
contradict with each other. We give some examples of this phenomenon in Section 4.

2.1. Proof of Theorem 2.1

By taking the logarithmic derivative of (2.2) with respect to s and substituting s =
0/2, we see that

AAYOE ! ‘ 0
CRIOR SO

where 1(s) is the logarithmic derivative of the gamma function. To proceed further, let
us recall some properties of the digamma function from [11]:

Proposition 2.6. Let ¢(s) be the digamma function, that is the logarithmic derivative
of the gamma function. Then 1 has the following properties, with v being the FEuler
constant.

(1) P(s+1) =(s) +
(2) ¥(1) ==

w =
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(3) Let (m,q) =1 and 1 <m < q. Then,
m s ™ /2] 2mmr mr
1/)() = —y —log(2¢q) — = cot() + Z cos() log sin()
q 2 q o q q

It can be deduced from the above proposition that, at any rational point n + m/q
with (m,q) =1 and 0 < m < ¢, we have

qp(n+m> — w(%)+2?;olm ifm;éO’
1 Y+ if m = 0.

We note that the summations Z;:ll 1/t and Z;:Ol 1/(t+ (m/q)) in the above equation

are taken to be zero in case n = 0 and n = 1, respectively.
The desired result is obtained by applying this to each term in (2.5). O

2.2. Proof of Corollary 2.3

The first part is an immediate consequence of Theorem 2.1. To see that the expres-
sion gives a transcendental number, we need Baker’s theorem. (See, for example, [1,
Theorem 2.3].)

Lemma 2.7 (Baker). If ai,...,m, Bo, B1,...,Bm are algebraic, and «; (for all i) and
Bo are nonzero, then

eﬁo alﬁl . Oéfrl"
is transcendental.

Note that A, B, C, sin(nr;/q;), and cos(2mm;r;/q;) are all algebraic for all j and r;.
In particular, A, C, and sin(7r;/q;) are nonzero. Rewriting e™B/2 a5

|ty

B .
2Z

SRR

eﬂ'

we can apply Baker’s theorem to the right-hand side of the expression given in Corol-
lary 2.3 to complete the proof. O

2.8. Proof of Corollary 2.4

Setting 1, = A\, = n(Wr¥)~! in Theorem 2.1 and Corollary 2.3, we obtain that
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l
o(3(3+ ) () rom vavime= o)

j=1

27Tm

JTJ)

o\ Y cos( rF
= Cete™ H sin —Z ,
4qj

JT_]

or equivalently

T™m

(3% £)(5) - S o)
T

\ —ay cos(
= OW 2 Wehers H <sin Fq—rj) N . (2.8)
J

Js7j

If there are two algebraic numbers of this form, their quotient must be also algebraic. This
gives a contradiction. Indeed, for two such algebraic numbers, if the values corresponding
to A in the above equation are different, their quotient is of the form efBOOzf1 —eal up
to algebraic constants, which is transcendental by Baker’s theorem (Lemma 2.7). In case
the values corresponding to A are the same for both pairs of Dirichlet series, i.e., the
quotient of those values is of the form " - - - a up to algebraic constants, we may apply

a different version of Baker’s theorem shown below. (See [1, Theorem 2.4] for details).

Lemma 2.9 (Baker). Suppose that a1, ..., are algebraic numbers not equal to 0 or 1
and that By, ..., B are algebraic such that 1, B4, ..., B, are linearly independent over Q.
Then, the product

is transcendental.

We note that, if the §;’s are not all linearly independent over Q in our setting, the
lemma above still applies by writing such §; as a linear combination of the others and
rearranging the form. This completes the proof of Corollary 2.4. O

Remark 2.10. Unlike Corollary 2.3, an existence of a pair (¢1,¢2), in Corollary 2.4,
with vanishing derivative at the central point does not imply the transcendence of e?

immediately. Instead, applying the same idea as in the proof of Corollary 2.3 to Eq. (2.8),

—2v/a

we deduce that e”m is transcendental, where v =} ;.
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3. Artin L-functions

We now direct our attention to Artin L-functions. First let us briefly recall the con-
struction of an Artin L-function L(s,p, F/F) attached to p. The details can be found
in, for example, Cogdell, Kim and Murty [2] or Murty [9].

Let E/F be a Galois extension of number fields, and G := Gal(E/F) its Galois group.
Let (p, V) be a finite dimensional representation of G, and say dim V' = n.

Let p be any prime ideal of F' and B for a prime ideal of F lying above p.

We write oy for the Frobenius automorphism for B so that

o (x) = 28®) mod P

for all z in Og. Then, the Artin L-function L(s, p, E/F') attached to p is defined as

L(s,p, B/F) = [ det(I —N(»)~*plog)|yr) "

p<oo

where Iy is the inertia group for 3, i.e.,
Iy={r€G: 7(z) =2 mod P Vz € O},

and p runs through all the prime ideals of F'. Note that the right-hand side of the equation
defining L(s, p, E/F') does not depend on the choice of 9 because all og’s are conjugate
in G as long as ‘P lies above p. Therefore, we may replace p with any class function
of G, or in particular, with a character x = x, associated with p. We also denote this
L-function as L(s, x, E/F).

We now define the local factors at Archimedean places, and complete the L-function
L(s,x,E/F). The decomposition group Dy at an Archimedean place B is given as

b [ if By = Fy,
U {L,wp} if By =Cand F, =R,

For B such that F, = R, put n; = dim V>(%») and n, = n—n;. (Recall that n = dim V")
Then, the local L-factor at each Archimedean place p is defined to be

a5 (25" if F, =C,
Lp(S,Xp) = —s/21( S n+2 7(511)/2 st1l\\n, ! — (31)
(m=*/0(5))"™ (7w L) it Fy =R,
and the completed Artin L-function is
Als,x) = A L(s, x, B/F) T ] Ly (s, x5) (3:2)

ploo

with the constant A(x) given by
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A(x) = |Dr|"N(f(x))-

Here, Dp is the discriminant of F and f(x) is the Artin conductor. The completed
L-function satisfies the following functional equation:

A(s, x) = WA = 5, x) (3.3)

where W () is the Artin root number, which is a complex number with absolute value 1.
Let us put deg F/Q = d = 71 + 2ry, where r; and 2ry are the numbers of real and
complex embeddings of F', respectively. Then Eq. (3.2) can be written as

a b
s ].
Ao) = AL B/F et (D) T () G
where a = 2nrg + 3 ang and b = 2nry + 35 11y - An Artin L-function of this
form is said to be of Hodge type (a,b). Now we restate Theorem 1.1:

Theorem 3.5. Let E/F be a Galois extension of number fields, and (p,V) a finite di-
mensional representation of the Galois group G := Gal(E/F). If the Artin L-function
L(s,x, E/F) associated with the character x = x, is of the Hodge type (a,b) and if both
L(1/2,x,E/F) and L(1/2,x,E/F) are nonzero, then we have the following property:

<L’(%,X7E/F) L'(5.x E/F)
exp

L(%,X,E/F) L(%af(,E/F) - (G+b)7) = A(X)*l(871-)tz+beg((14,)7

where v is the Euler constant. In particular, this value is transcendental.
Furthermore, if L'(1/2,x, E/F) and L'(1/2,%x,E/F) both vanish for some charac-
ter x, then €7 is transcendental.

We note that a +b = n(d + 2r3), and thus the statement of Theorem 3.5 is consistent
with that of Theorem 1.1. This theorem has interesting corollaries:

Corollary 3.6. Let (p, V) be a finite dimensional representation of G := Gal(E/F), and
L(s,xp, E/F) its associated Artin L-function. For any L(s, x, E/F) satisfying the prop-
erties

L(1/2,xpi E/F) #0 and L'(1/2,x,: E/F) =0, (3.7)

with Xp1 = Xp and Xp2 = Xp, the value A(x)Y (@8 coincide where (a,b) is the Hodge
type of the L-function.

In particular, we find some remarkable relations between the non-vanishing of the
derivative and the root discriminants if we restrict the representation p to be trivial, and
take a totally real number field F' as the base field:
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Corollary 3.8. Suppose F is a totally real number field such that its associated Dedekind
zeta function (p(s) has the properties that (r(1/2) # 0 and (w(1/2) = 0. The root
discriminants rdg for any such field F' coincide.

This follows immediately from Corollary 3.6, as a + b simply represents the extension
degree of F and A(x) = |Dr|. A further observation can be made as follows:

Corollary 3.9. There are at most finitely many Dedekind zeta functions Cp satisfying
Cr(1/2) #0 and (r(1/2) = 0 if the base field F is totally real and an abelian extension
over Q.

Corollary 3.10. There are at most finitely many zeta functions (g such that (r(1/2) #0
and (= (1/2) = 0 if F/Q is totally real and solvable with a fized length.

The rest of this section is devoted to proving all the statements claimed above.
3.1. Proof of Theorem 3.5
Egs. (3.3) and (3.4) give a functional equation;

L(S,x,E/F)F<§>aF<3_|2_1)b

_a+b

a b
= WA e L s mer () T2

Taking the logarithmic derivatives of this equation with respect to s and evaluating it
at s = 1/2, we see that

L'(1/2,x,E/F)  L'(1/2,X,E/F)
L(1/2,x,E/F) ' L(1/2,x,E/F)

= logA(x)Jr(aer)logﬁaw(i) bw(%) (3.11)

It follows from the third statement in Proposition 2.6 that

1 3
w(1>:—7—3log2—g7 and ¢<Z):—7—310g2+g,

and thus Eq. (3.11) can be written as

L'(1/2,x, E/F) L'(1/2,x,E/F)
L(1/2,x, E/F) ' L(1/2,x, E/F)

= —log A(x) + (a + b) log(87) + (a + b)y + g(a —b). (3.12)
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The desired result is obtained by exponentiating Eq. (3.12). Furthermore, the value
A (Bm) e e

is transcendental because m and e™ are algebraically independent over Q. That is due to
a result of Nesterenko [12]. O

3.2. Proof of Corollary 3.6

Suppose L(s, x1, F1/F1) and L(s, x2, F2/F3) both satisfy the properties (3.7) and we
write their Hodge types as (a;,b;) for i = 1, 2, respectively. Then Theorem 3.5 says that,
for each g,

e(aieri)’Y _ A(Xi)(87T)7(ai+bi)67%(aifbi)’

and so the value

) ) _ ™ a; — bi
Alxa) (@D (8m) " exp (-5 P b.)

coincides, and the value equals e”. Equivalently, we have that

“ “1/(a m(a —b as —b
A g ) (335 =)

The left-hand side being an algebraic value, it forces the exponent on the right-hand side
to be zero, which gives that

A(xn) V(@40 = ()1 (a2+b2)
as claimed. 0O
3.3. Proof of Corollaries 3.9 and 3.10
For an abelian extension F'/Q, the lower bound of the root discriminant rdr tends to
infinity as the extension degree increases. More precisely, we quote the following lemma

from Murty [8]:

Lemma 3.13. (See [8, Corollary 2].) For any abelian extension F/Q of degree d and
discriminant D,

1 1
y log |Dp| > 3 log d.
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Hence there is an upper bound for the extension degree where fields share the same
root discriminant. Together with the Hermite Theorem stated below, the proof of Corol-
lary 3.9 is completed.

Lemma 3.14 (Hermite). Let S be a finite set of primes. The set of algebraic number fields
of degree n that are unramified outside S (that is, any prime dividing the discriminant
dp is in S) is finite.

We note that reader can refer to [5, pp. 273-278] for a complete proof of the Hermite
Theorem.
Corollary 3.10 follows immediately from the following lemma by taking K = Q:

Lemma 3.15. (See [6, Theorem 1].) Fix a number field K. For any positive integer k and
positive real number N, the following set Yy n i is finite:

Yi vk :={L: L/Q is finite, L/K is solvable with length k, rd;, < N}. O

We note that it is known that there are infinitely many number fields with bounded
root discriminants if the extension F/Q is either unramified or tamely ramified. See
Martinet [7] for the case of unramified extensions and Hajir and Maire [4] for tamely
ramified extensions. 0O

4. Concluding remarks

It was suggested in Section 2 that not too many pairs (¢1, ¢2) have their derivatives
vanishing at the central point of symmetry, under the condition that ¢; and ¢o them-
selves do not vanish at the point. For example, we compare Artin L-series studied in
Section 3 with L-functions attached to a Hilbert cusp form. The second author proved a
non-vanishing result for the derivatives of L-functions attached a primitive Hilbert cusp
form. More precisely, she proved:

Theorem 4.1. (See [13, Theorem 1.1].) Let 2k = (2kq,...,2ky,) be an n-tuple of even
integers with k; > 2, and put ko = max;{k;}. For a primitive Hilbert cusp form f of
weight 2k with trivial character, if L(ko,f) # 0, then L'(ko,f) # 0.

We are doubtful that the above theorem fails when k; = 1 is allowed, but it is not yet
proven. If L'(ko,f) = 0 for some f under this condition, then it can be seen from [13,
Eq. (3.1)] that

V=W, -7t (4.2)

with an algebraic number W; and A = Z?zl Zfé;ll 1/m. On the other hand, if
L'(1/2,x,E/F)=L'"(1/2,x,E/F) = 0 for some x, then Theorem 3.5 suggests that
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=Wy - leB (4.3)

jus

2
and A = B = 0. In particular, it claims that, if they both vanish simultaneously, then eV

where W, is algebraic and B = '2_4_-2' They cannot hold simultaneously unless W; = W,
is algebraic. The nature of the number e7 is still mostly unknown, but its algebraicity
is unlikely.

Also, it is worthwhile to mention that, if there exists an even weight primitive Hilbert
cusp form f such that L(ko,f) # 0 and L'(ko, f) = 0, then €7 is transcendental under the
assumption that the Schanuel’s conjecture is true. (The conjecture need not be assumed
in case k; =1 for all j.) We now recall the conjecture.

Conjecture 4.4 (Schanuel). For any set of complex numbers, z1,. .., zy,, that are linearly
independent over Q, the transcendental degree of the field Q(z1, ..., z,,€*, ... e*™) over
Q is at least n.

Indeed, if Schanuel’s conjecture is true, then e and 7 are algebraically independent
because

tr.degg(e, 7) = tr.deg@(lﬂri, e, e”i) > 2.

Thus, the transcendence of e? follows from (4.2) (modulo Schanuel’s conjecture).

At the end, we remark that the same method is applicable to evaluate the logarithmic
derivative of L-functions not only at a central point of symmetry but also at any rational
points a/q except where a;a/q + f; and a;(6 — a/q) + B; are non-positive integers. Let
us see this in the case of Artin L-functions. Using the functional equation of the Artin
L-function given in Egs. (3.3) and (3.4), its logarithmic derivative can be written as
follows:

L/(S7X7E/F) L,(1_87>27E/F)
L(s,x,E/F) L(1-s,x,E/F)

= —log A(x) + (a +b) log m — %<¢(§> “"(1;5))

() (5)

For any rational point in the interval (0, 1), the right-hand side of the above equation is

easily evaluated by applying the properties of digamma functions described in Proposi-
tion 2.6. If a point is taken outside of the interval (0, 1) which ought to be non-integer,
then we apply a functional equation of the digamma function:

Y(1 —z) — ¢Y(x) = 7cot(mx)

accordingly. For instance, let us put s = m/q and suppose m/q > 0. Then, Proposition 2.6
applies to ¥(s/2) and ¥ ((s + 1)/2) directly. The other terms are written as:
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(5)-o(3) ()
(5ol () B o)

Therefore, inserting these in to Eq. (4.5), we obtain that

and

L'(m/q,x, E/F)  L'(1-m/q,x,E/F)
L(m/q,x,E/F) = L(1-m/q,x,E/F)

—log A(x) + (a +b)log T — GTH)@’(%) +¢<%+%>>
e () ().

Applying Proposition 2.6 to the terms of ¢ in the above, it will be of interest to
investigate the possible transcendence of special values of these L-functions.
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