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DETERMINING HILBERT MODULAR FORMS BY CENTRAL
VALUES OF RANKIN-SELBERG CONVOLUTIONS:
THE LEVEL ASPECT

ALIA HAMIEH AND NAOMI TANABE

ABSTRACT. In this paper, we prove that a primitive Hilbert cusp form g is
uniquely determined by the central values of the Rankin-Selberg L-functions
Lf®g, %), where f runs through all primitive Hilbert cusp forms of level g
for infinitely many prime ideals q. This result is a generalization of the work
of Luo (1999) to the setting of totally real number fields.

INTRODUCTION

An interesting question is to what extent the special values of automorphic L-
functions determine the underlying automorphic forms. More precisely, several
mathematicians have addressed the problem of identifying an automorphic form by
the special values of the L-function of its twists by a family of automorphic forms
(on GL; or GL2). In particular, Luo and Ramakrishnan proved in an important
paper [12] that two primitive cusp forms g and ¢’ (on GL2(Q)) must be equal if
the special values L(g ® xa, 3) and L(g’ ® x4, 3) are equal (up to a constant) for
all but finitely many quadratic characters yy. This result has been generalized
by Chinta and Diaconu [3] to GLg-forms. It has also been genralized by Li [9] to
self-contragredient automorphic cuspidal representations of GLs over any number
field.

Choosing for the twisting family the set of primitive forms of fixed even weight
and infinitely varying level, Luo [10] proved the following. Let g and ¢’ be primitive
cusp forms (over Q) of even weights and general levels. Let ¢ be a constant and &
be a positive integer. If there exist infinitely many primes p such that

L<f®g,%) =cL (f®g’,%>

for all primitive cusp forms f of weight 2k and level p, then we have g = ¢'.

Ten years later, Ganguly, Hoffstein and Sengupta proved in [4] an analogous
result upon twisting by the family of primitive cusp forms of level 1 and weight 2k
as k tends to infinity. A similar result for determining modular forms of general
level can be found in [18].
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It is our purpose in this paper to extend Luo’s approach in [10] to the setting of
an arbitrary totally real number field F. If the narrow class number of F' is greater
than 1, one immediately confronts a number of difficulties, the most important of
which is the lack of an action of Hecke operators under which the space of classical
Hilbert modular forms (of given weight and level) is stable. In order to overcome
this difficulty, we consider the larger space of adelic Hilbert modular forms which
unlike its classical counterpart, is invariant under the action of Hecke operators (see
Section 1.2).

In this paper, we prove the following theorem (the reader is referred to Sections
1 and 2 for notation and terminology).

Theorem 0.1. Let g € S{*V(n) and g’ € SV (n') be normalized Hilbert eigen-
forms, with the weights 1 and U' being in 2N". Let k € 2N" be fized, and suppose
that there exist infinitely many prime ideals q such that

1 1
L(f —|=L(feg, =
< ® g, 2) ( g, 2)
for all normalized Hilbert eigenforms f € Sp*(q). Then g =g'.

The proof of this theorem can be found in Section 3. The idea is to show that the
Fourier coefficients Cg(p) and Cg/ (p) are equal for all but finitely many prime ideals
p. The result then follows by the strong multiplicity one theorem (cf. [2, Chapter 3]
and [13]). We accomplish this by appealing to the technique used in [4], [10] and
[12]. Roughly speaking, our target is to express the coefficient Cg(p) in terms of
the central values L (f ® g, %) up to an error term E. See Proposition 3.1. Indeed,

we show that c
ZL(f@g, )Cf(p) = g(")M+E,
N(p)

where the sum is taken over all primitive forms of weight k € 2N™ and level q
with N(q) being sufficiently large. This is done in Section 5 upon applying an
approximate functional equation established in Section 4, together with a Petersson-
type trace formula described in Section 1.3. Finally, we prove that M ~ C'log(N(q))
and E = O(1) as N(q) — oco. This computation is shown in Section 6.

As will be obvious in later sections, the proof entails several complications and
subtleties arising from the technical nature of adelic Hilbert modular forms over a
totally real number field F' and the infinitude of the group of units in F. For exam-
ple, in dealing with the error term F, we encounter a summation of the Kloosterman
sum weighted by a product of the classical J-Bessel functions:

4 £ labe—2]
(0.1) 3 > Ki(v, a; 5 b UN: ij__l 7T\/m

njlel

cee1q\{0}/O5F neO st

The new feature here is the sum over totally positive units, which originates from
the application of a Petersson-type trace formula for Hilbert modular forms due to
Trotabas [17]. In order to estimate (0.1), we employ a trick due to Luo [11] which
amounts to bounding the values of the classical J-Bessel function in such a way
that the sum over units can be factored out as

>, 17

neo Xt ni<1
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which is convergent for all § > 0 (see [11, p.136]). The reader is referred to
Section 6.2 for the details.

Another interesting problem to consider is the weight aspect analogue of the
present work. In a separate paper [7], the authors obtain a result in this direction
by following the line of argument developed in [4] and [18].

1. NOTATION AND PRELIMINARIES

1.1. The base field. Let F be a totally real number field of degree n over Q, and
let OF be its ring of integers. The real embeddings of F' are denoted by o; : x —
xzj:=oj(z) for j =1,...,n. Any element z in F' may therefore be identified with
the n-tuple © = (z1,...,2,) € R". We say x is totally positive and write z > 0 if
x; > 0 for all j, and for any subset X C F', we put X* = {z € X : 2> 0}.

The trace and the norm of an element x in the field extension F'/Q are denoted
by Tr(z) and N(z) respectively. The absolute norm of an integral ideal a is N(a) =
[OF : a]. Notice that for a principal ideal (&) = aOp of O, we have N ((a)) =
IN(«)|]. The absolute norm defined as such can be extended by multiplicativity
to the group I(F) of fractional ideals of F. The different ideal of F' and the
discriminant of F' over Q are denoted by ®r and dp respectively, and we have the
identity N(@F) = |dF|

Recall that the narrow class group of F' is the quotient group

CUH(F) =I(F)/P*(F),

where P*(F) is the group of principal ideals (o) with o € F**. Tt is a finite
group, and we denote its cardinality by hJI,C. We fix once and for all a system of
representatives {a} of CIT(F) in I(F). Given two fractional ideals a and b, we write
a ~ b if there exists £ € F*T such that a = £b in which case we use the notation
[ab~!] to denote the element &. Needless to say, if a ~ b, then [ab~!] € F*¥ is only
unique up to muliplication by totally positive units in Op. Let us now recall the
following lemma ([17, Lemma 2.1]) which we use in Section 6.2.

Lemma 1.1. There exist constants C; and Cs depending only on F such that
VEeF,3ec OFt Vi€ f{l,...,n}: CiNEY™ < [(e€);] < CoN(©)[V™

Frequently in this paper, we make use of the multi-index notation. For example,
given n-tuples y and z and a scalar a, we set

I(z) = H I'(z;), o= az?:lzj7 y* = H y;J
j=1 st

Moreover, for any « € F and u € N, we have J,(x) = H?Zl Ju;(x), where J,; is
the classical J-Bessel function (see Section 1.3).

1.2. Hilbert modular forms. We now fix some notation pertaining to the space
of adelic Hilbert modular forms. To this end, we closely follow the exposition in
[17]. Let Ar be the adeéle ring of F. For a place v of F, we denote by F, the
completion of F' at v and by Opf, the local ring of integers when v < oco. Let
Fo = Hvesm F,, where S, is the set of infinite places of F'. In what follows, we
make the identifications

Foo =R", GL}(Fx)=GLI(R)", SO5(Fs)=SO0s(R)",
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where the superscript “+” means the subgroup consisting of elements with totally
positive determinants. In particular, each r € SO3(F) can be expressed as

cosf; sinf;

in which case we denote the n-tuple (61, --,6,) by 0.
Given an ideal n C Op and a non-archimedean place v in F, we define the
subgroup K, (n) of GLy(F,) as

Ky(n) = {[ “! } eGLg(OFv):cen(’)Fv}.

Then we set
Ko(m) = [] Ko(w).
<0
By an adelic Hilbert cusp form f of weight k € 2N™ and level n, we mean a
complex-valued function on GLa2(Apr) which satisfies the following properties ([17,
Definition 3.1}).

(1) The transformation property f(yzgr(@)u) = f(g) exp(ik@) holds for all
(7, 2,9,7(0),u) € GLo(F) x Af x GLa(Ap) x SO2(Fx) x Ko(n).
(2) Viewed as a smooth function on GLJ (F,), f is an eigenfunction of the

Casimir element A := (Ay,---,A,,) with eigenvalue H?:l %” (1 — %J)
(3) We have fF\AF f([{%]g)dz =0 for all g € GL2(Ap) (cuspidality condi-
tion).

Notice that, in our definition, all the forms are understood to have the trivial
character. We denote by Si(n) the space of adelic Hilbert cusp forms of weight k
and level n. It is also worth noting that this space is trivial if k ¢ 2N™. This is
why we impose the parity condition, k € 2N", on the weight vectors throughout
the paper.

Remark 1.2. It follows from the strong approximation theorem for GLy that an
adelic Hilbert cusp form f can be viewed as an h;-tuple (f1,---, fh;) of classical
Hilbert modular forms on H". More details on this correspondence between the
adelic setting and the classical setting can be found in most references on the topic
of Hilbert modular forms among which are [5, Chapter 1, 2|, [15, Section 4], and
[16, Section 2].

The subspace of oldforms in Sk(n) is denoted by Sgi4(n). Roughly speaking,
this is the subspace of cusp forms “obtained” from cusp forms of lower levels. The
orthogonal complement of S4(n) with respect to the inner product

(€)= [ £(9)hlg) do
GL2(F)AS\GL2(Ap)/Ko(n)
is referred to as the space of newforms and is denoted by Sp*"(n).
For a Hilbert cusp form f, let {C'(v,a,f)} 1+ be the coeflicients given by
the Fourier expansion:

f<g[id(()a) (1)]>: 3 %m@([g Hg), 9€GLS (Fuo).

u€u71©;1
>0

vea~1D
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We mention here that id(a) is the idele of F' associated with the ideal a, and
that W2 is the new vector in the Whittaker model of the discrete series repre-
sentation @), D(k; — 1) of GL2(Fw) (restricted to GLJ (Fy)). In fact, W2 (g) for

g € GLJ (F4) can be calculated as follows. By the Iwasawa decomposition, we
know that g can be uniquely expressed as

L 23 5 e

with z,y € FX1, € Fy and r(0) € SO3(Fx ). Then we have
W (9) = y*/? exp (2im(a + iy)) exp (k) .

Let m C Op be an ideal. The Fourier coefficient of f at m is denoted by Cg(m)
and defined as follows. We write m = va for some narrow ideal class representative
a and some totally positive element v € a~!. Then we set

(1.1) Ce(m) = C(v,a® ', f).

We say f is normalized if C¢(Op) = 1.

Much like the classical setting over Q, one can define an action of Hecke oper-
ators {Twm tmco, on the space Sg(n) (see, for example, [15, Section 4]). A Hilbert
cusp form f is said to be primitive if it is a normalized newform and a common
eigenfunction for all the Hecke operators. It is known that, for such a form f,
the coefficients C¢(m) coincide with the Hecke eigenvalues for T, for all m (see
[16, p. 650]). We denote by IIx(n) the (finite) set of all primitive forms of weight
k and level n. It follows from a standard result of Shimura [16] that the coeffi-
cients C(m) are real for all m if f is a primitive form (because the trivial character
is assumed). It is also worth mentioning that IIx(n) can be viewed as the set of
all cuspidal automorphic representations 7 of conductor n with the trivial central
character such that 7o = @, D(k; — 1).

1.3. Petersson trace formula. Crucial to our work is a Petersson trace formula
for Hilbert modular forms due to Trotabas (see [17, Theorem 5.5, Proposition 6.3]),
which we state below.

Proposition 1.3. Let q be an integral ideal in F. Let a and b be fractional ideals
in F. Fora € a™! and B € b~!, we have

T(k—1) S
> = Ce(aa)Ce(8b)
feH(q) (dm)*=tdp|1/2 (£, f>Sk(q)
—2
Kl(ea,a; 8,b;c,¢) 4my/eaBabe?]
= 1oaege + C T ,
a=pb T 22 N(co) k—1 ic]
c“~ab
cectq\{0}
€Ot /Ox?
(—=1)%/2(2m)™ _ .
where C = ST and Hy(q) is an orthogonal basis for the space Sk(q).
F

For convenience, we now recall the definition of the J-Bessel function and the
Kloosterman sum which appear in the proposition above. The J-Bessel function is
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defined via the Mellin-Barnes integral reprsentation as
F u—s T s
o 2

It is known that for u € N and @ > 0, we have J,(r) < min(1,2%) < z?*, if
0 < A <u (see [6, p.952]). In particular, we have the following bound which we
use in Section 6.2:

(1.2) Ju(z) <20 if 0<5< 1.

As for the Kloosterman sum, it is defined as follows. Given two fractional ideals a
and b , let ¢ be an ideal such that ¢2 ~ ab. Fora € a™!, 3 € b~ ! and ¢ € ¢~ 'q, the
Kloosterman sum Kl(«,a; 8, b; ¢, ¢) is given by

—27 —
Kl(a,a;8,b;5¢,¢) = Z )Xexp (27riTr <a3:+ﬂ[cabc ]a:)) .

xE(u@;lcfl/uDEIC

Here 7 is the unique element in (a’1©pc/a*1®Fcc2) * such that 27 = 1 mod cc.
The reader is refered to Section 2.2 and Section 6 in [17] for more details on this
construction. The Kloosterman sum satisfies the following bound (Weil bound):

(1.3) Kl m; 8, m3 ¢, ¢)| < N (((@)n, (8)m, (¢)6))* 7((c)e)N(co)?,

where (a, b, ¢) is the g.c.d. of the ideals a, b, ¢, and 7(m) = [{0 C O : m0d~! C Op}|
for any integral ideal m. Another useful fact is the well-known estimate: for all
€ > 0, we have

(1.4) 7(n) < N(n)*.

2. RANKIN-SELBERG CONVOLUTION

In this section, we recall the construction of Rankin-Selberg convolutions of
two Hilbert modular forms following Shimura [16, Section 4]. It should be noted,
however, that our normalization differs slightly from what Shimura uses. Let
feS5p(q) and g € S7°V(n) be primitive forms, where we assume that q and n
are coprime integral ideals. The L-series for the associated Rankin-Selberg convo-
lution is defined as

(2.1) Lf®g,s) =(r(2s) Z

mCOp

where the coefficients C¢(m) and Cg(m) are as defined in (1. 1) and

Cr(m)Cg(m)
N(m)s

P(2s)=¢r(2s) [ (- Z
[Ing d=1

[: prime

Here ay? denotes the number of ideals in O that are coprime to ng and whose
norm is d. The Ramanujan bound for Hilbert modular forms (proven by Blasius
[1]) asserts that for all € > 0, we have

(2.2) Ce(m) < N(m)¢ and Cg(m) <. N(m)*.



DETERMINING HILBERT MODULAR FORMS: LEVEL ASPECT 8787

In view of this bound, it is easy to see that the series (2.1) is absolutely convergent
for $(s) > 1. Notice that we can write

=, bpra f®
Lf®g,s) Z hHieg)
=1
with
Afeg) =Y [a Y Ce(m)Cg(m)

d2|m N(m)=m/d?
Let
where

o2 L ki —1; ki +1;
Loo(f®g,8) _ H(Q,]T) 2s max{kwlj}l—‘ <S+ | J 5 J|> I <81+ J 5 J> )

j=1
Then A(f ® g, s) admits an analytic continuation to C as an entire function (unless
f = g) and satisfies the functional equation (see [14])

3. PROOF OF THE MAIN RESULT

Let g € Sp°¥(n) be a primitive form, and let p be either O or a prime ideal. Let
q be a prime ideal that is relatively prime to n and p. The main object of interest
in this paper is the twisted first moment

(3.1) > (f@g, )cf(mwf,

fellk(q)

where I (q) is the set of all primitive forms of weight k and level q, and wy is
defined as
I'(k—1)
3.2 wp = .
(32 P IV R IVENTR S S

The following proposition, which we prove in Section 4 through Section 6, gives
an asymptotic formula for this moment in the level aspect (N(g) — o0).

Proposition 3.1. Let g € SPV(n) be a primitive form, and let p be either Op or
a prime ideal. For all prime ideals q with N(q) sufficiently large, we have

S 1(res ;) Crtoher = S8 (1) s o(N@) + O(),
felle (q)

where y-1(F) = 2 Resy— (r(2u+ 1) and An =[]0 prime(1 — N()~1).

In what follows, we prove Theorem 0.1 assuming Proposition 3.1. Let g €
Spe¥(n) and g € S}V (n') be primitive forms. Let k € 2N" be fixed and suppose
that there exist infinitely many prime ideals q such that L(f®g,1/2) = L(fog’,1/2)
for all £ € TIx(q). Applying Proposition 3.1 with p = O, we see that A, = A,.
We then apply the proposition with p being any prime ideal not dividing nn’ to get
Cg(p) = Cg/(p). Hence, the Hecke eigenvalues of g and g’ for T}, are equal (see the
last paragraph of Section 1.2), and it follows by the strong multiplicity one theorem
that g = g'.



8788 ALIA HAMIEH AND NAOMI TANABE

4. APPROXIMATE FUNCTIONAL EQUATION

In this section, we establish the approximate functional equation which allows
us to write the central value L (f R, %) in terms of a rapidly decaying series built
from the Fourier coefficients of f and g.

For X > 0, we put

1 du

I(s,X) = X“A(f@g,s—i—u)G(u)Z,

21 (3/2)
where G(u) is a holomorphic function on an open set containing the strip |R(u)| <

3/2. We require that it is bounded and satisfies G(u) = G(—u) and G(0) =
By the residue theorem, we have

1 du
A(E — XUA(f Gu)™2
(fogs) 2m./(w) (Fo g s+ 00w ™
1 d
S XUAf @ g, s+ u)G(u) .
211 (—3/2) u

In the last integral, we apply the change of variable u — —u followed by the
functional equation (2.3) to get

Afog,s)=1(s,X)+1(1—sX1).

On the other hand, I(s, X) can be written as

na(
I(s,X) = 1 Zb f®g

) /<3/2> (M) Lo(f @ g, 5+ u)Glu) 2

m u

= S N@ha) La(Fegs) Y o E)

" /(3/2) (M)“ 2 (5, u)Glu) 2,

4nqlnm

where

(4.1) V(s u) = H
For y > 0, we define
(4.2) Valy) == 5=

Then we can write

OO b;;fj f ® g 4" 2vm,
1(5,X) = N(D}na) L 218,5) v (sxira )
F

m=1
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‘We also observe that

_ L M(feg) 4nr2rm X
I1-5X 1 =N =S Lo (F 1— miv s|l—=—=——1-
(1-5X"") = N(D%nq) fogl-s mz:; - (N(’DQan)

Thus,

1 1 1
AlF “)=I(Z.X (=, x!
2 1

i M(fg) v 4nginm Y 4nginim X
— vm P\ XN®%ng)) 2 \N®Eng) ) )
Finally, taking X = 1 leads us to the following proposition.

Proposition 4.1. Let G(u) be a holomorphic function on an open set containing
the strip |R(u)| < 3/2 and bounded therein, satisfying G(u) = G(—u) and G(0) =

Then we have
bnq f ® g A" 2Ny,
feg, > =2 < ) ,
< Z: 12\ X(@2ng)

where Vi 5(y) is defined as in (4.2).
Moreover, the derivatives of Vi 2(y) satisfy

—A
(4'3) yavl(/az)( ) <1+ H y k2>

Jj=1"%

and

(44) Y Vi (y) = a+o<QLi@>>

for some 0 < a < 1, where 69 = 1, 6, = 0 if a > 0, and the implied constants
depend on a, A and o

Proof. The estimates follow from [8, Proposition 5.4]. O

5. APPLICATION OF A PETERSSON TRACE FORMULA

The point of departure in this work is a twisted first moment of the central
critical values L(f ® g,1/2) where g is fixed in II;(n) and f varies over Ig(q).
More precisely, for an ideal p which is either Op or a prime ideal different from q,
we study the weighted harmonic average introduced in (3.1). Upon applying the
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approximate functional equation in Proposition 4.1, we obtain

> (f®g, >Cf(p)

fellx(q)

m f® 47L7T2nm
- & 25 BURE (o) o

fellx(q) m=1

<1 4npnm ng

=23 =V N(OTng) > weCe(p) Y a) > Ce(m)Cg(m)
m=1 F felly(q) d?|m N(m)=m/d?
- 1 4nm2nm n

:2Zﬁ ;( Notag) S Y O 3 wCrmcity
m=1 F d2|m N(m)=m/d? fellk(q)

© ah (47N (m)d?

—9 L Vi | ——— 77 .
> L (R ), T cHmci
mCOp d: fellk(q)

For an ideal m of Op, we write m = va for some narrow ideal class representative
aandv € (a=1)* mod (9;+. In particular, we write p as p = &b for some fixed ideal
band £ € (b71)T mod O;+. At this point we invoke the formula in Proposition
1.3 to get

> r(rews)cie

fell,(q)

B Cg( = al? 4" N(va)d?
=Y T Ss s ()

{a} ve(a—1)t/05"

Kl(ev,a;€,b;¢,¢)
X ﬂgb:ya +C Z N(CC)
c2~ab
cec ' q\{0}
ecOit /082

dmy [€;v5€; [abe2];

— (old forms) » ,

n
X H Ji;-1
j=1

|e;]
where
I'(k—1) —
old forms) = Ce(va)Cs (&b
( ) Z (47T)k_1|dF|1/2<f’f>Sk(q) £(va)Ce(£b)

feHP (q)

and Hp'4(q) is an orthogonal basis for the space of oldforms Sg'4(q). Hence, we can
write

Gy Y <f®g7 )cfoo) — ME(k,q) + EB(k,q) — EE(k,q,0ld),
fell,(q)
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where

e ald 4n7T2nN(p)d2
5.2 ME k,q) = 2 vy <—> ,
oy e 2 S (e
(5.3)

) B O 0 4”7'(2"N(1/Cl)d2
s =20y Y Galy ey, (YIS

fa} ve(a-H*r/ox"

47 ejngj [Clbc_2]j

% Z KZ(EVQSbCCHk71

oyt e
cec™'q\{0}
ecOit /082
and
oo "q 4n7T2nN(m)d2
4 k Id) =2 i _—
(G4) Eylka.0 Z Z v (o)
=1
I'k—1)
x Z (47T)k_1\dF|1/2<f,f>sk(q)0f(m)cf(p)'

feH (q)

In the following section, we prove that, as N(q) — oo, we have

Mf(k,qw%v_m TT (- N()log(N(a)),

[In
[:prime

whereas Ef(k,q) and Ej(k,q,0ld) are O(1), which completes the proof of Propo-
sition 3.1.

6. ASYMPTOTIC FORMULA FOR HARMONIC AVERAGE

6.1. Main term MF(k,q). In this section we establish an asymptotic estimate (as
N(q) — oo) for the main term given by (5.2). We have

i ag’ v 4772 N(p)d?
— d 12 N(@an)
= 42 N(p)d2\ " (1 du
2 N@Zng) ) T\2Y) W
g 3/2) N(D%nq) u

1 4”772"N(p)> o (1 ) du
= Gu) [ ———L Yl zu) B 2u+1) —,
271 (3/2) ( ) ( N(C‘D%nq) 2 F ( ) u
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where (1/2,u) is as defined in (4.1). Setting G(u) = 1 and shifting the contour of
integration to R(u) = —1/4 give

(6.1)
i a’_(rilqv 4”7‘(’2”N(p)d2
d '\ N(®Zng)
B 472 N(p)\ " (1 M(2u+1)
5—65<<N<9%nq>) (30)
1 472 N(p)\ " (1 ng du
— -\ — 2 1) —
T o (—1/4) ( N(QQF“CI)> 7<2’u> (et l) u

It can be easily verified that the integral over the vertical line ®(u) = —1/4 on the
right hand side of (6.1) is O (N(q)*i). As for the residue at © = 0, we use the
following standard Taylor series expansions:

I'(a+w) _ (a) '
I'(a) T(a) ’
4n,n_2nN(p) —u B 4m 2nN o
< N(D%nq) ) a < N(D%nq) ) T
CPr(2u+1) = %P%—’YO(F)-F-“’

along with the identity

Wu+1) = (r(2u+1)(1 — N(q) 2" H (1 — N()=2« 1),

[In
[:prime

to conclude that

(5 ()2 22)

=2 T 0N st + 2y 0 ().

[In
[: prime

We mention here that Dg is a constant independent of q and could be explicitly
computed if need be. Therefore,

ME (k,q) = C;(f:)v_m I (N0 ™) log(N@) +0(1),  as N(g) > .

l[n
[: prime
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6.2. Error term E§(k, q). In order to give an asymptotic estimate for the error
term Eg(k,q) given in (5.3), it suffices to consider the expression

Cq( ay 472N (va)d?
6.2 BB, (k,q) = o'y, <7)
62 Bk a) = a%/ox+ mz 2\ "N @pma)

" Z ZKlz/afbcn,)

cEc— 1c|\{0}/(91>§Jr nGOXJr

n dm, Jv;€; labe=2]
X Hka—l
j=1

njle;l

for any ideal class representative a, while fixing an ideal class respresentative ¢ such
that ¢ ~ ab and ignoring the (finite) sum over e. By Lemma 1.1, we may assume
that the representatives v € (a=1)* /05T and ¢ € ¢71q\{0}/O;™ in (6.2) satisfy
(6.3)

NW)V" <y < N@)V" and  IN(e)|'" < Jej] < IN()[V", V€ {L,---,n}.

We obtain an upper bound for E§ ,(k, q) as N(q) — oo by applying the estimates
for the J-Bessel function and the Kloosterman sum given in (1.2) and (1.3). In
particular, the values of the J-Bessel function in (6.2) are bounded as follows. We
take ; = 0 if n; > 1, and otherwise §; = 0 for some fixed (sufficiently small) § > 0.
With thls choice of 6 (6), we have

1-5;
n 4, [vi€; [abe=2], n v;&; labe2];
j=1

<
njle;l 11 njle;l

j=1
vé [abe?]

n|c]

This allows us to control the internal sum in (6.2) over all n € O3 since (thanks
again to the work of Luo [11, p. 136])

(6.5) Z H 77? < 00.

neo it ;<1

Upon applying the bounds (1.3) and (6.4), we get

Ca(ra)| —1-5 = ay”
Efa(k,q) < > NI
ve(a—1)+/OXF vV N(va) il

X Z n° Z |c|6—1N((Va;§b,CC))%T(cc).

neoxt cec—1q\{0}/O;T N(ee)

v 4" 72N (va)d?
Y2\ N(®Zng)
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Using the estimates (1.4), (6.3) and (6.5), we see that

> anq 4n7T2nN va d2
Efalka) < D [Cglva)l Y~ |Vipo <N(©7%(nq))>‘
d=1

ve(a—1)+/OxT

1

((va, &b, ¢))2
DIE —__5 -
cCq
On the other hand, we have (see [17, p. 228])

N ((va,£,¢)® _ N((va,£b,q))? 5
;I NoET < Ngis M),

Hence,

(o) nq
_3 a
Efa(k,a) <N@)7=% 3y [Cglva)| Y~

ue(u*1)+/0;+ d=1

v 472" N(va)d?
Y2\ N(D%na)

—A
<N@ Y G+ Y Il |

ve(a~Ht/Oxt ve(a™Ht/oxT
N(ra)<N(q) N(va)>N(q)

where the last inequality is obtained by using the estimates (4.3) and (4.4). Given
€ > 0, it follows from the Ramanujan bound (2.2) that both sums are O (N(q)'*¢).
Therefore,

BEo(k.q) = O (N(@)#+7+), asN(q) - oo.

6.3. Contribution of old forms E}(k, q,0ld). Let us first describe an orthogonal
basis for the space of oldforms in Sk(q) following the treatment in [17, Section 11].
For f € IIx(OF) and g € GLQ(AF) we set

= (30 e[ 45 1)),

Oe=q
_ ce( \? _ -1 :
where pe(@) = [yq (1= NO) (25885)7). 9(0) = TTga (14 N(O™), 1) is the gen-
eralized Mobius function for number fields and id(e) is the idele of F' associated with
the ideal . The set {f,f;}¢er, (0,) is an orthogonal basis for Spid(q) with

(fy, £ >Sk(q) (f, f>Sk(q) = (N(q)+1) <fvf>sk(oF) .

Moreover, the Fourier coefficients of f; are given by
(6.6) Cg, (m) = (N(q)(1 —N(q)7*)(1 + N(a) ") Lq(sym*f, 1))

Ct(q)Ct(m) -1
<—W + C¢(mq )]lqm) )

where Lq(symzf , 1) is the Euler factor at q of the symmetric square L-function of f.
The rest of this section is devoted to show that the contribution of the oldforms
given by E§(k,q,0ld) in (5.4) satisfies

(6.7) E&(k,q,0ld) < N(q)72+¢,  as N(q) = oo.

N|=
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In view of the above discussion, we can write Ej(k,q,old) as

oM (k—1)
g _
EP (ka ClaOId) - (47T)k_1|dp‘1/2 (El + EQ);
where
Cy(m) <= al? (4”7r2”N(m)d2> Ct(m)Ce(p)
El — E g E d Vi j :
N(DFna) fEIL (OF) <f’f>5k(q)

and

Ce(m) <= al? 477N (m)d? Ct, (m)Ck. (p)
Ey = E g E d v, <72 E Zta\ T 7ha \F)
N(Dfna) €I, (OF) <fq’fq>3k(Q)

Notice that

Ce(m)Ce(p) 1 |Ce(m)Ck (p)] e
(6.8) feH%:OF) £ < @) fenkz((’)p) b0 < N(q)"'N(m)“.

Using (6.8) and the estimates (4.3) and (4.4), we obtain

. oo nq 4”7r2"N(m)d2
B < N(a)-L N(m)e—3 § % A Sl Al
1 < N(q) ; |C(m)N(m) ; d V1/2< N(Dnq) )‘
m F -
. 1 N(m -4
< N(q)-! > [Cem)Nm) 2+ Y ICg(m)IN(m)“i(—N( ))
mCOp mCOr I
N(m)<N(q) N(m)>N(a)

< N(q)~2*,
where the last inequality follows from (2.2).

Finally, we consider the contribution of the forms f; for f € IIx(Or). We apply
the identity (6.6) along with the bound Lg(sym?f,1) < 1 (as N(g) — 00) to get

§ CLMOLE) g ClaCmCrl)
fell,(OF) {fa, fq>5k(Q) fEll, (OF) (N(a) +1)2 <f’f>5k((9F)

> |Ce(mg~")Ce(q)Ce(p)|
(N(q) + 1) (£, £) 5, (0p)

+ ]lq\m
fell,(OF)

Hence, we have

|Cg(m)] o ay
6.9 E
(09 P 2 N

v 4”7r2”N(m)d2
Y2\ N(©Fna)

v <4”7r2"N(m)d2 > ‘
1/2 N(D%nq)

5 [Celma ) Crla)Celp)]
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After writing the second term in (6.9) as

> |Cg(mq)| f: ag’ (4"7T2”N(m)d2) > |Ce(m)Cr(a)Cr (p)|
2 /Nmg) & N )& W@+ D B0,
we get
N = ag? 4"7T2"N(m)d2)’
E, << |Cg(m \% <4
N(q) +1)2 Z mg(;p Y2\ T N(®2Zng)
= ad 472" N(m)d?
NOES! Z WE;F |Cg(mq)|N(mq)e™ V1/2 (7N(n) .

Once again we use the estimates (4.3) and (4.4) to get

Zad Z |Cg(m —1 V1/2 (W)‘

2
mCOp N(D%nq)

oo nq
a _1
<MY (CemN(m)
d=1

mCOp
N(m)<d™2N(q)

o —A
Y Calm) Ny (N‘m)d)

mCOp
N(m)>>d~*N(q)

< N(a)2™,
and
& anq . 4n7r2nN m d2
S UL ST (Cplma)N(ma) |V (—N(n() ) )]
d=1 mCOF
i a"q 1
<D= X [Ce(me)N(me)=
d=1 mCOpr
N(m)<<d72
+ > |Ce(ma)|N(mag)*~2 (N(m)d?)~4
mCOp
N(m)>d ™2
< N(q)2

Therefore, we have Ey < N(q)" 2, as N(q) — oo, which concludes the proof of
(6.7).
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