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Abstract

We show that Thompson’s group E does not satisfy Cannon’s almost convexity condition AC(m(

for any positive integer m with respect to the standard generating set with two elements. To
accomplish this, we construct a family of pairs of elements at distance m from the identity and
distance 2 from each other, which are not connected by a path lying inside the m-ball of length
less than j for increasingly large j. Our techniques rely upon Fordham’s method for calculating the
length of a word in E and upon an analysis of the generators’ geometric actions on the tree pair
diagrams representing elements of E .
♦ 2003 Elsevier Inc. All rights reserved.

Keywords: Thompson’s group E ; Almost convexity; Tree pair diagrams

1. Introduction

Cannon [7] introduced the notion of almost convexity for a group F with respect to
a finite generating set T. This finite generating set T determines a word metric cT for
F and its Cayley graph. F is almost convex (j( or AC(j( with respect to T if there is a
number L(j( so that for all positive integers m, given two elements x and y in the ball
>(m( of radius m with cT(x. y(� j, there is a path γ from x to y of length at most L(j(

which lies entirely in >(m(. Cannon showed that if a group F is AC(2( with respect to a
finite generating set then F is AC(j( for j > 2 and thus a group satisfying AC(2( is called
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almost convex with respect to that generating set. If a group is almost convex with respect
to any finite generating set, we say the group is almost convex. Almost convexity allows
algorithmic construction of >(m + 1( from >(m( by making it sufficient to consider only
a finite set of possible ways that an element in >(m + 1( can be obtained from different
elements of >(m(.
A number of families of groups have been shown to be almost convex. Cannon [7]

showed that hyperbolic groups are almost convex and that amalgamated products of almost
convex groups are almost convex. Stein and Shapiro [13] showed that fundamental groups
of closed three manifolds whose geometry is not modeled on Sol are almost convex. Other
families of groups have been shown not to be almost convex. Cannon, Floyd, Grayson
and Thurston [5] showed that fundamental groups of manifolds with Sol geometry are not
almost convex, and Miller and Shapiro [12] showed that the solvable Baumslag–Solitar
groups BS(1. m( are not almost convex. Unfortunately, the property of almost convexity
can depend upon generating set. Thiel [14] showed that generalized Heisenberg groups are
not almost convex with respect to the generating sets in their standard presentations, but
are almost convex with respect to some finite generating sets from alternate presentations.
Although Thompson’s group E has been studied extensively in many branches of

mathematics, the metric properties of E were poorly understood until recently. Burillo
[4] and Burillo, Cleary and Stein [3] developed estimates for measuring distance in E , and
Fordham [8] developed a remarkable method for computing distance in E .
We prove below that E does not satisfy Cannon’s AC(2( property in its standard finite

generating set, and thus is not almost convex with respect to that generating set.
Thompson’s groupE has a number of differentmanifestations. Originally discovered by

Thompson [15], in logic E is understood as the group of automorphisms of a free algebra.
E also has connections with homotopy theory developed by Freyd and Heller [9,10],
groups of homeomorphisms of the interval studied by Brin and Squier [1] and Brown and
Geoghegan [2] and diagram groups defined by Guba and Sapir [11]. Cannon, Floyd and
Parry [6] give an introduction to and summarize many of the remarkable properties of E .
Thompson’s group E has the infinite presentation F given by

F + 〈

wj. j > 0
∣

∣ w�1d wiwd + wi+1 if d , i
〉

)

We can see that the lower index generators conjugate the higher-index generators by
incrementing their indices. Since w0 conjugates w1 to w2 and successively to all higher
index generators, it is clear that E is finitely generated. In fact, all of the infinitely many
relators in F are consequences of a basic set of two relators. Thus, there is the following
standard finite presentation C for E :

C +
〈

w0. w1
∣

∣

�

w0w
�1
1 . w�10 w1w0

]

.
�

w0w
�1
1 . w�20 w1w

2
0
]〉

)

We prove the following theorem:

Theorem 1.1. Thompson’s group E does not satisfy Cannon’s almost convexity condition
AC(2( with respect to the generators in the standard finite presentation C for E .
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We immediately obtain the corollary:

Corollary 1.2. Thompson’s group E does not satisfy Cannon’s almost convexity condition
AC(m( for any positive integer m < 2 with respect to the generators in the standard finite
presentation for E .

In all of the following, we will consider the convexity properties of E only with respect
to the standard generating set of two generators w0 and w1.

2. Background on �

Analytically, we define E as the group of orientation-preserving piecewise-linear
homeomorphisms from =0.1[ to itself where each homeomorphism has only finitely many
singularities of slope, all such singularities lie in the dyadic rationals Z= 12 [, and, away from
the singularities, the slopes are powers of 2.
Combinatorially, E has the infinite and finite presentations given above. There is a

convenient set of normal forms for elements of E in the infinite presentation F given
by wq1d1 w

q2
d2

· · ·wqjdj w
�rk
ik

· · ·w�r2i2
w
�r1
i1

with qd . rd < 0, d1 , d2 , · · ·, dj and i1 , i2 , · · ·, ik .
This normal form is unique if we further require that when both wd and w�1d occur, so does
wd+1 or w�1d+1, as discussed by Brown and Geoghegan [2]. In what follows, when we refer
to a word in normal form, we always mean the unique normal form.
The geometric description of E is in terms of tree pair diagrams. A tree pair diagram

is a pair of rooted binary trees with the same number of leaves, as described in [6]. We
number the leaves of each tree from left to right, beginning with 0. We refer to an interior
node together with the two downward-directed edges from the node as a caret. We define
the right (respectively left) child of a caret B to be the caret BN (respectively BI) which is
attached to the right (left) downward edge of caret B.
Each tree in a tree pair can be regarded as a set of instructions for successive subdivision

of the unit interval: the root caret subdivides the interval in half, a right child of the root
subdivides = 12 .1[ in half, and so on. This gives a correspondence between elements of E in
the geometric description and the analytic description as follows. Let (R�. R+( be a pair of
trees each with m leaves. Each tree determines a subdivision of =0.1[ into m subintervals.
The tree pair (R�. R+( corresponds to the piecewise linear homomorphismwhich maps the
subintervals of the R� subdivision to the subintervals of the R+ subdivision, in order. This
equivalence and the group operation are described in [6]. We refer to R� as the negative
tree and R+ as the positive tree of the pair (R�. R+(.
A tree pair diagram is unreduced if each of R� and R+ contain a caret with leaves

numbered l and l + 1, and it is reduced otherwise. Note that there are many tree pair
diagrams representing the same element of E but there is a unique reduced tree pair
diagram for each element of E . When we write (R�. R+( to represent an element of E ,
we are assuming that the tree pair is reduced.
If w + (R�. R+( is a reduced pair of trees representing w , the normal form for w can

be constructed by the following process, described in [6]. Beginning with the tree pair
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Fig. 1. Tree pair diagram for w20w1w2w4w5w7w8w
�1
9 w�17 w�13 w�12 w�20 with carets and leaves numbered.

(R�. R+(, we number the leaves of R� and R+ from left to right, beginning with 0. The
exponent of the leaf labelled m, written D(m(, is defined as the length of the maximal path
consisting entirely of left edges from m which does not reach the right side of the tree. Note
that D(m( + 0 for a leaf labelled m which is a right child of a caret, as there is no path
consisting entirely of left edges originating from m.
We compute D(m( for all leaves in R�, numbered 0 throughl. The negative part of the

normal form for w is then w�D(l(
l w

�D(l�1(
l�1 · · ·w�D(1(

1 w
�D(0(
0 . We compute the exponents

for the leaves of the positive tree and thus obtain the positive part of the normal form as
w
D(0(
0 w

D(1(
1 · · ·wD(l(

l . Many of the exponents may be 0, and after deleting these, we can
index the remaining terms to correspond to the normal form given above, as detailed in [6].
In the tree pair diagram in Fig. 1, the exponent D(0( of the leaf labelled 0 of R�

is 2 since there is a path of two left edges from leaf 0 which does not reach the right
hand side of the tree. The third left edge emanating from leaf 0 touches the right-
hand side of the tree and thus does not contribute to the exponent. The exponents of
all the leaves of R� are, in order, 2.0.1.1.0.0.0.1.0.1.0.0, and the exponents of
the leaves of R+ are, in order, 2.1.1.0.1.1.0.1.1.0.0.0. Using these exponents, and
omitting any which are 0, we see that the tree pair diagram of Fig. 1 represents the word
w20w1w2w4w5w7w8w

�1
9 w�17 w�13 w�12 w�20 , in normal form.

If N is a caret on the right side of the tree with a single left leaf labeled j, then D(j(+ 0
by definition. We use this fact to show that without loss of generality, R� and R+ may be
assumed to have the same number of carets.
Suppose that R� has j fewer carets than R+, and let the rightmost leaf of R� be

numbered l. Attach a single caret to leaf l in R�, obtaining a new tree R ±�. It is easily
computed that in R ±�, the final two exponents, D(l( and D(l+ 1(, are both 0. Thus the
element of E represented by the tree pair (R ±�. R+( is identical to the element represented



S. Cleary, J. Taback / Journal of Algebra 270 (2003) 133–149 137

by the tree pair (R�. R+(, and R ±� has one more caret than R�. Repeat this process j � 1
additional times, with each repetition adding a caret to the rightmost leaf of the negative
tree. This has no effect on the normal form of the resulting element, and increases the
number of carets in the negative tree of the pair. Thus without loss of generality we may
assume that R� and R+ have the same number of carets.
Similarly, given an element w in normal form with respect to the infinite generating set,

it is possible to construct a tree pair diagram (R�. R+) so that each leaf has the correct
exponent. In particular, the number of left edges of R� emanating from the root caret is
one more than the exponent of w�10 in the normal form and the number of left edges of
R+ emanating from the root caret is one more than the exponent of w0 in the normal form
for w .
The processes described above relate the normal form of words in E in the infinite

presentation F to the tree pair representation. For many questions involving the geometry
of E , we must consider the length of words in E with respect to a metric arising from a
finite generating set. Burillo [4] presented a way of estimating the word length }w}C in the
finite generating set C from the normal form, which was refined by Burillo, Cleary, and
Stein in [3].

Theorem 2.1 (Burillo [4, Proposition 2]; Burillo, Cleary, and Stein [3, Theorem 1]). Let
s ∈ E have normal form s + w

q1
d1

· · ·wqmdm w
�rl
il

· · ·w�r1i1
, and letC(s(+ q1+ q2+· · ·+ qm+

r1 + r2 + · · · + rl + dm + il. Then

C(s(

3
� }s}C � 3C(s()

Burillo, Cleary, and Stein [3] also estimated of the length }s}C of a word s given by a
tree pair diagram in terms of the number of carets L(s( in either tree.

2.1. Fordham’s method of calculating word length

Fordham [8] presents a method of calculating the exact word length in E given a reduced
pair of trees representing an element w ∈ E . We make some preliminary definitions before
explaining Fordham’s technique.
Let R be a finite rooted binary tree. The left side of R is the maximal path of left edges

beginning at the root of R . Similarly, we have the right side of R . A caret in R is a left
caret if its left edge is on the left side of the tree, a right caret if it is not the root and its
right edge is on the right side of the tree, and an interior caret otherwise. The carets in R
are numbered according to the infix ordering of nodes. We begin numbering with leaf 0 as
the leftmost leaf and caret 0 the left caret whose left child is leaf 0. We number the left
children of a caret before the caret itself, and number the right children after numbering
the caret. The trees in Fig. 1 have their carets numbered according to this method.
Fordham classifies carets into seven disjoint types:

(1) I0: The first caret on the left side of the tree, with caret number 0. Every tree has
exactly one caret of type I0.
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(2) II: Any left caret other than the one numbered 0.
(3) G0: An interior caret which has no right child.
(4) GN : An interior caret which has a right child.
(5) NG : Any right caret numbered j with the property that caret j + 1 is an interior caret.
(6) NNI : A right caret which is not an NG but for which there is a higher numbered interior

caret.
(7) N0: A right caret with no higher-numbered interior carets.

The root caret is always considered to be a left caret of type II unless it has no left
children, in which case it is the I0 caret.
Working from caret 0 to caret 10, in infix order, in the tree R� from Fig. 1, we see that

the carets are of types

I0. II. GN. G0. II. NNI. NG . G0. NG . G0. and N0)

The carets in the tree R+ of Fig. 1, in infix order, are of types

I0. GN. G0. II. GN. G0. II. GN. G0. N0. and N0)

The main result of Fordham [8] is that the word length }w}E of w + (R�. R+( can be
computed from knowing the caret types of the carets in the two trees, as long as they form
a reduced pair, via the following process. We number the j + 1 carets according to the
infix method described above, and for each d with 0� d � j we form the pair of caret types
consisting of the type of caret number d in R� and the type of caret number d in R+. The
single caret of type I0 in R� will be paired with the single caret of type I0 in R+, and
for that pairing we assign a weight of 0. For all other caret pairings, we assign weights
according to the following symmetric table:

N0 NNI NG II G0 GN
N0 0 2 2 1 1 3
NNI 2 2 2 1 1 3
NG 2 2 2 1 3 3
II 1 1 1 2 2 2
G0 1 1 3 2 2 4
GN 3 3 3 2 4 4

Fordham’s remarkable result is that the sum of these weights is exactly the length of the
word in the word metric arising from the finite generating set.

Theorem 2.2 (Fordham [8, Theorem 2.5.1]).Given a words ∈ E described by the reduced
tree pair diagram (R�. R+(, the length }s}C of the word with respect to the generating set
C is the sum of the weights of the caret pairings in (R�. R+(.

Considering the word s in Fig. 1, we see that the carets numbered zero have type
pairing (I0.I0(, which has weight 0. The carets numbered 1 have types (II. GN( which
contributes 2 to the weight of the word. The total weight of the word is easily computed
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to be 0+ 2+ 4+ 2+ 2+ 1+ 1+ 4+ 3+ 1+ 0+ 20. Thus, the length of s in the word
metric }s}C is 20.
The proofs in Section 4 rely heavily on this technique of Fordham. Namely, we use the

fact that we can apply a generator to a given word, whose length we know, and the change
in caret types, which is easily seen, exactly determines the change in word length.

2.2. Action of the generators on an element of E

We begin with a lemma from Fordham [8] which states under fairly broad conditions,
that when applying a generator to a tree pair (R�. R+( exactly one pair of caret types will
change. In Section 3, we construct a special family of elements which will provide the
counterexamples to almost convexity for the standard two-generator generating set for E .
These elements are constructed to satisfy the conditions of the lemma below.

Lemma 2.3 (Fordham [8, Lemma 2.3.1]). Let (R�. R+( be a reduced pair of trees, each
having l+ 1 carets, representing an element w ∈ C , and � any generator of C .

(1) If � + w0, we require that the left subtree of the root of R� is nonempty.
(2) If � + w�10 , we require that the right subtree of the root of R� is nonempty.
(3) If � + w1,we require that the left subtree of the right child of the root of R� is nonempty.
(4) If � + w�11 , we require that the right subtree of the right child of the root of R� is

nonempty.

If the reduced tree pair diagram for w� also has l+ 1 carets, then there is exactly one d
with 0� d �l so that the pair of caret types of caret d changes when � is applied to w .

We now begin to understand geometrically the action of a generator of C on a reduced
tree pair (R�. R+(, and the corresponding change in normal form.We will generally assume
that the conditions of Lemma 2.3 are met by the generic elements with which we begin.
Let BN denote the caret which is the right child of the root caret N of R�, and BNN and

BNI the right and left carets, respectively, of BN . Similarly, let BI denote the left child of
the root caret of R�, and BII and BIN its left and right children. Figures 2.3 and 4 will
be useful in understanding the geometric interpretation of the action of the generators on
an element of E . In all of these figures, the letters X. a and b represent (possibly empty)
subtrees of the given tree.
We first understand the action of the generator w�10 on a tree pair (R�. R+( representing

an element s ∈ E . Consider s written in normal form as s + w
q1
d1

· · ·wqmdm w
�rl
il

· · ·w�r1i1
.

Then the element sw�10 is still in normal form (unless we are in the degenerate case where
w + wl0 ). Recall from Section 2 that the exponent of w

�1
0 in the normal form is one less

than the number of left edges of the tree R�. Thus, increasing the exponent of w�10 by 1
adds a left edge to R�.
The numbering of the leaves and carets after this new edge is added must remain the

same, since the normal form (and hence the exponents of the leaves) changes in a single
place. Thus, with the extra edge in R�, BN becomes the new root caret. The left subtree
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of BN , which contains carets with smaller numbers than BN , must become the right subtree
of the old root caret, which is now at position formerly occupied by BI. The left caret BI is
moved down and to the left and remains a left caret, now in the position formerly occupied
by BII and so on. This tree transformation is also called a counterclockwise rotation or
left rotation based at the root. Figure 2 shows the negative trees R� for the elements s and
sw�10 and illustrates a counterclockwise rotation based at the root.
When we consider the action of w0 on s + (R�. R+(, we can assume, according to

Lemma 2.3, that R� has at least two left edges, equivalently, that the exponent of w�10 in
the normal form of s is at least 1. Applying the generator w0 cancels one w�10 in the normal
form. This corresponds to the tree R� losing a left edge, and thus the caret BI becomes the
root caret and the former root caret N moves to the position of BN . The initial right subtree
of BI becomes the left subtree of N in order to preserve the numbering of the carets. This
is a clockwise (or right) rotation based at the root of R� and is illustrated in Fig. 3.
It is more difficult to visually understand the action of w1 and w�11 on the pair (R�. R+(

corresponding to s, as it is more difficult to see how these generators change the normal
form. Using the terminology given above, the following lemmas show that the generators
w1 and w�11 perform counterclockwise and clockwise rotations around the node BN .
We begin with a lemma relating the action of w�11 on (R�. R+( to the normal form of

the corresponding element s ∈ C .

Fig. 2. Rotation at the root induced by applying w�10 to R� .

Fig. 3. Rotation at the root induced by applying w0 to R� .
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Lemma 2.4 (The normal form of sw�11 ). Let s ∈ E be represented by the tree pair
(R�. R+(, and have normal form w

q1
1 · · ·wqmdm w

�rl
il

· · ·w�r1i1
. Then sw�11 has normal form

w
q1
d1

· · ·wqmdm w
�rl
il

· · ·w�rn+1
in+1 w�1� w

�rn
in

· · ·w�r1i1
. (1)

where we might have � + in+1. If the root of R� has right and left subtrees RN and RI,
respectively, then � is smallest leaf number in RN .

Proof. We consider the proof in two cases. In the first case, if i1 ∈+ 0 then � + 1 and the
expression wq11 · · ·wqmdm w

�rl
il

· · ·w�r1i1
w�11 is in normal form. In this case, R� has a single left

edge on the left side of the tree, with leaf labelled 0, and the first left leaf of the first right
subtree will be labelled 1.
In the second case we assume that i1 + 0. Then the relators in F imply that � +

1+ r1 + r2 + · · · + rk , where k is the first index satisfying ik+1 > 1+ r1 + r2 + · · · + rk . It
remains to show that this is the label of the leftmost leaf of the first right subtree of R�.
Let RI and RN be the left and right subtrees of the root caret of R�. We consider the

number of interior carets in RI. If RI is empty, then we are in the first case discussed above.
If RI has no interior carets, but is not empty, then the number of left edges in RI is m,

for some m, and thus the last leaf number in RI is m as well. So the first leaf number in RN
is m+ 1. Given this form of R�, we see that the normal form of w must end with w�r2i2

w�m0
where i2 > m+ 1. Thus, using the relators to put w�11 into its proper position in the normal
form, we see that it becomes w�11+m, agreeing with the statement of the lemma.
If RI has a single interior caret, then the total number of left edges of RI is m+ 1, where

m again represents the length of the left side of RI. The interior caret also adds an additional
leaf, and thus the highest numbered leaf of RI is m+ 1. We know that w�11 becomes w�1m+1
when it is moved left past the w�m0 . However, m+ 1 is now the highest numbered leaf in RI.
The extra left leaf added by the single interior caret corresponds to a letter in the normal
form of w whose index is smaller than m + 1, thus when the w�1m+1 is moved left past this
letter, it becomes an w�1m+2. Since there are no other interior carets in RI, the next possible
index of a letter in the normal form of w is m+ 2. Thus w�1m+2 is now in place in the normal
form, so � + m+ 2, and m+ 2 is the first leaf number of RN , as required.
If RI has two interior carets, then there are m + 2 left edges in RI and the highest

leaf number in RI is m + 2. Moving left past w�m0 , the w�11 first becomes w�1m+1, as in the
previous case. Again, we see that m+ 1 is a leaf number in RI. Then, since there is a single
leaf numbered higher than m + 1, the are not enough leaves to have the remaining two
carets have leaves numbered higher than m+ 1. So the first interior caret must have a leaf
with a lower number than m + 1, corresponding to a letter in the normal form of w with
index smaller than m+ 1. Thus w�1m+1 must be moved left past this element as well, making
it w�1m+2. Now, m+2 is the highest leaf number in RI, so the second interior caret must again
appear before leaf number m + 2; that is, it corresponds to a letter in the normal form of
w with index smaller than m+ 2. Moving the w�1m+2 past left this letter, we get w�1m+3. Since
there are no more interior carets in RI, there are no other letters in the normal form with
index less than m+ 3, so we must have w�1m+3 in its place in the normal form. Again, we see
that m+ 3 is the first leaf number in RN .



142 S. Cleary, J. Taback / Journal of Algebra 270 (2003) 133–149

In summary, each additional interior caret adds a letter to the normal form with smaller
index than m + 1; thus the w�11 must be moved left past these letters to obtain the normal
form. We can continue this method to apply to an arbitrary number of interior carets in RI,
proving the lemma. �

Lemma 2.5 (The normal form of sw1). Let s satisfy the conditions of Lemma 2.3 and
have normal form w

q1
1 · · ·wqmdm w

�rl
il

· · ·w�r1i1
. Then sw1 has normal form:

w
q1
1 · · ·wqmdm w

�rl
il

· · ·w�(rk�1(
ik

· · ·w�r1i1
. (2)

for some index ik , in which case ik is the smallest leaf number in the right subtree of R�.

Proof. As in the proof of Lemma 2.4, we use the relators of F to move w1 to the generator
w� where � + 1 + r1 + r2 + · · · + rk , and k is the first index satisfying the inequality
ik+1 > 1+ r1 + r2+ · · · + rk , or � + 1+ r1 + r2+ · · · + rl. From the proof of Lemma 2.4
we again know that � is the number of the leftmost leaf of the first right subtree of R�.
According to Lemma 2.3, the left subtree of BI is nonempty, so there is a leaf labelled

� with exponent at least 2, i.e., there is an index ij + � in the normal form of s. Thus the
exponent of wij decreases by 1 because the w� cancels one w

�1
ij
letter giving the normal

form (2). �

Lemma 2.6 (The action of w�11 on R�). The generator w�11 when applied to an element
s of E represented by a tree pair (R�. R+( which satisfies the conditions of Lemma 2.3
leaves R+ unchanged, and affects R� as follows: BNN becomes the right child of the root
caret, and BN becomes the left child of BNN . All other carets remain unchanged.

Proof. Let � be the number of the leftmost leaf in the right subtree of the root of R�. It
follows from Lemma 2.5 that the exponent of w� in the normal form of w is increased by 1;
that is, the exponent D(�( of the leaf � is increased by 1, which means there is one more
left edge emanating from BN in R� and terminating at �. Since the numbering of the carets
is preserved, because the normal form changes in a single letter, and begins at the far left of
the right subtree of the root caret, we see that BN is now an interior caret. To preserve the

Fig. 4. Left rotation around BN induced by applying w�11 .
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numbering of the leaves and carets, the left subtree of BNN must become the right subtree
of BN , because these carets are numbered higher than BN but lower than BNN . This leaves
BNN as the right child of the root caret. All remaining subtrees are left unchanged. �

Lemma 2.7 (The action of w1 on R�). The generator w1 when applied to an elements ∈ E

represented by a tree pair (R�. R+( satisfying the conditions of Lemma 2.3 leaves R+
unchanged, and in R�, causes BNI to become the right child of the root and BN to become
the right child of BNI. All other carets remain unchanged.

Proof. The normal form of sw1 is of the form (2) given in Lemma 2.5. From Lemma 2.4
we know that the index ik is the number of the leftmost leaf in the left subtree of BN in R�.
From the change in normal form we see that the exponent of wik decreases by 1 and thus in
R� the exponent D(ik( decreases by 1. Thus, there is one fewer left edge emanating from
BN ending in the leaf numbered ik . Accordingly, the right subtree of BNI is moved to the
right side of R�, without changing the numbering of the carets. Thus BNI is now the right
child of the root, and BN is the left child of BNI. �

Notice that in all of the descriptions above, the tree R+ is not affected by the action of
a generator. This is not true in general for reduced tree pair diagrams not satisfying the
conditions of Lemma 2.3. In general, R+ can be affected in exactly three ways:

(1) when R� has a single left edge, and the generator is w0,
(2) when the left subtree of BN of R� is empty, and the generator is w1, or
(3) if the generator is � ∈ ]w±1

0 . w±1
1 { and the pair of trees corresponding to w� is not

reduced.

We choose the family of words which will provide the counterexamples to almost convexity
so that the conditions of Lemma 2.3 are always satisfied.

Fig. 5. Right rotation around BN induced by applying w1.
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3. A special family of elements

We define a family �(j(, with integral j > 2, of elements of E which we will use to
prove that E is not AC(2(, and thus not AC(m(. We first define what the negative tree R�
of an element s ∈ �(j( must be, and then define the positive tree R+ so that s is given by
the reduced tree pair (R�. R+(.
Let Rj be the balanced rooted binary tree with 2j leaves; that is, the tree with every node

on the first j levels having two children, as in Fig. 6.
For s + (R�. R+( in the family �(j(, we define R� to be the tree R4j . Note that this is

a very bushy tree, and has at least 2j carets on the left side. Each of these left carets has a
right subtree which is a complete tree with at least j + 2 levels. Similarly, R� has at least
2j right carets, each of which has a left subtree which is a complete tree with at least j+ 2
levels. There are a total of 24j leaves.
We construct the positive tree R+ to have almost all carets of type II and NNI , paired

in a particular way with carets of R�. Let q + 2j�1 + 2j�2 � 1 be the caret number of the
first caret on the right side of R�. Now let the tree R+ correspond to the word wq�20 w1wr ,
where r is 24j � 3. Then R+ will have 24j leaves, the same number as in R�.
We now check that with these definitions, (R�. R+( forms a reduced tree pair diagram.

As pictured in Fig. 7, there are only two carets in R+ with two leaves: one with leaves
numbered 1 and 2, and the other with leaves numbered r + 24j � 3 and r + 1+ 24j � 2.
In R�, it is easy to see that because it is a complete tree, caret number 0 has leaves
numbered 0 and 1. Also in R�, the highest numbered caret has leaves numbered r + 1
and r+ 2. Thus, no reduction of carets occurs, and (R�. R+( is a reduced tree pair diagram.
In Section 2.2 above, the action of the generators of E on a generic element is discussed.

We now describe the action of a generator on an element s of �(j(, and more generally,
the action of a sequence of generators on s. Let η be a word in the generators of E which
has length strictly less than j, and let s+ (R�. R+( ∈ �(j(. We want to make sure that sη

still satisfies the conditions of Lemma 2.3. Because η is not longer than j, it can only affect
a limited number of carets near the root of R�. For example, if η is a power of w1, then each
application of w1 will rotate at the right child BN of the root. The left subtree of BN is, by
construction, a complete tree with at least j+ 2 levels. Thus, after performing j clockwise

Fig. 6. The balanced tree R4.
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Fig. 7. Positive tree for a word s ∈ �(j(.

rotations at the right child of the root, the resulting tree still satisfies the conditions of
Lemma 2.3.
More generally, no matter what the sequence of generators in η is, the composition of

rotations that η performs on R� affects carets only within distance j of the root. Because
of the fullness of the subtrees near the root of R�, the resulting tree will still have carets
in the appropriate locations to satisfy the conditions of Lemma 2.3. Because the exposed
carets in R+ are so far away from the root, we know that no reductions can happen during
the course of applying η to s. Thus, Lemma 2.3 guarantees that only one caret is affected
by each application of a generator.
In the following chart we summarize the possible change in word length when a

generator of C acts on an element sη with }η} , j and s ∈ �(j(. The positive tree R+
has been chosen carefully so that a caret in sη affected by a generator is paired with one
of only two possible types of carets in R+, an II or an NNI .

Generator Original New Change in word Change in word
caret caret length when paired length when paired
type type with II with NNI

w0 II NG �1 1
w�10 NG II 1 �1
w1 GN NG �1 �1
w�11 NG GN 1 1

We see immediately from this chart that w0 and w�10 will reduce the word length of
s ∈ �(j( because of the caret pairings in s. It is also true from the chart that w1 will
reduce the length of the original word s. The two elements we will consider to contradict
almost convexity will be sw0 and sw�10 for s ∈ �(j(. If the length }s} + m+ 1, then the
length of sw�10 and sw0 will each be m. Furthermore, those two elements are distance 2
apart since there is an obvious path fromsw0 tos tosw�10 of length 2. That path, however,
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does not lie in the ball of radius m. In the proof of Theorem 1.1, we will show that there is
no short path from sw0 to sw�10 which lies in the ball of radius m.

4. Almost convexity and �

We now prove that E does not satisfy Cannon’s AC(2( condition, and obtain as a
corollary that E does not satisfy AC(m( for any integral m> 2.
The idea of the proof of Theorem 1.1 is the following. Assuming E satisfies the AC(2(

condition, we would obtain a constant j so that any two points in >(m( at distance 2 from
each other would be connected by a path of length at most j which remains in >(m(. Using
this constant j, consider a point s + (R�. R+( ∈ �(j + 2(. The points sw0 and sw�10 are
both in >(m( for m+ }s} � 1 and are distance two apart. Thus, there would be a path γ of
length at most j connecting them. We assume this path is oriented to go fromsw0 to sw�10
and we follow the position of the root caret N of R� as it moves under the letters in the
path γ . We know that in sw0 the caret N has moved to the right side of the new negative
tree. The main lemma to the proof of this theorem says that if at any time along the path γ

the caret N becomes a left or an interior caret, then the path γ leaves >(m( at that point.
Let γ ± + w0γ w0 denote the loop based ats. The contradiction to almost convexity arises

from the following: Since the word sw0 has N as the right child of the root, and the word
sw�10 has N as the left child of the root, the final w0 in the path γ ± would return N to the
root position from the left. Thus, at some point along γ , the caret N would have changed
from a right caret to a left or interior caret and at that point, the path γ would have left the
ball >(m(.
We begin with the proof of the necessary lemma.

Lemma 4.1. Let s + (R�. R+( ∈ �(j( with }s} + m+ 1, and γ ± + wl0 γ ±±w0 be a loop based
at s of length at most j, with l maximal. Let N be the root caret of R�, and η the shortest
prefix of γ ±± so that in swl0 η the caret N is not a right caret. Then the element swl0 η is not
in >(m(.

Proof. First, note that the negative tree of the element swl0 has exactly l right carets
which are paired with II carets, and we can number them as we move away from the root
as b1. b2. ) ) ) . bl + N, with b1 , b2 , · · ·, bl. Since the numbering of the carets does not
change when generators are applied, at the first point where N is not a right caret, then
neither are any of the carets bd .
In the statement of the lemma, we are not distinguishing between N becoming a left

caret and N becoming an interior caret. This will not matter either for this proof or for the
proof of Theorem 1.1 below.
The idea of the proof is to follow the path of each caret bd as it is affected by different

letters in the word η, and note the net change in word length. Note that when we apply a
generator of E to a word of the form sχ , where χ is a word in the generators of E of
length at most j, only a single caret in the negative tree of sχ is affected. In general, there
are times when this action can also affect a caret in the positive tree, but we have chosen
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the form of elements of �(j( carefully so that this is not the case, when applying strings of
generators of length less than j.
Each caret bd is originally paired with an II caret in the positive tree by construction,

and since the positive tree will be unchanged, the positive part of these pairing types will
not change. Consider all the letters in η which change the caret type of bd . The last of these
letters is either an w�10 changing bd from a right caret to a left caret, or an w�11 changing
bd from a right caret to an interior caret. According to the chart in Section 3, this is a net
change in word length of +1.
There are other letters in η which can affect the caret bd . However, they must come in

pairs, each pair leaving bd as a right caret so that the final letter in η which affects it can
change it to a left or interior caret. These pairs can be in one of two forms:

(1) an w�10 which makes bd a left caret followed later in η by an w0 making it again a right
caret, or

(2) an w�11 making bd an interior caret and an w1 later in η making it again a right caret.

In either case, bd is always paired with an II caret, and we see from the chart in
Section 3 that the net change to the total word length corresponding to either of these
pairs is always 0. Thus, as we consider the letters of η which change the caret type of all l
of the bd ’s, we see that they contribute a total of +l to the overall change in word length.
There may be letters in η which affect the types of carets other than the bd . Suppose

caret c ∈+ bd is a caret affected by a letter in η. We claim that we must have c , bd for
some d , and thus c is also paired with an II caret. If c < bd for all d , then c would be a
caret which appears after N. In order for η to affect a caret after N, the caret N would have
had to have already moved from a right caret to a left or interior caret, contradicting our
assumption about η. Thus, we have established the claim that c , bd for some d .
Given the initial form of s ∈ �(j(, we see that c may begin as an interior caret, and be

initially moved to a right caret by an element w1. From the chart in Section 3 we see that
this changes word length by �1. Since c , bd for at least one value of d , and all the bd must
be changed from right carets to non-right carets by the end of the path η, we must also
have c changed from a right caret to a non-right caret. Thus the last letter in η affecting
c is either an w�10 which changes c to a left caret or an w�11 which changes c back to an
interior caret. From the chart in Section 3 we see that in either case, the change to the word
length is +1 making the total contribution of these two letters in η zero.
There may be other letters in η which affect the caret c . They must form the same pairs

as listed above of “intermediate” letters which can affect the bd , and thus contribute a total
word length change of zero.
The only other possibility for c is that it begins as a left caret, paired with an II caret

for the same reasons as above. Then the initial letter in η affecting c must be an w0, making
it a right caret. The final letter in η affecting c again is either an w�10 or an w�11 . Again,
we see from the chart in Section 3 that the net change in word length coming from these
two elements is 0. There can also again be intermediate pairs of elements affecting c of the
same forms as given above, which also contribute 0 to the net change in word length.
Since every letter of η affects a single caret of s, each letter of η is one of the

types listed above. So the total change in word length from sw0 to swl0 η is l. Given
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the initial form of s, it is easy to see from the chart that }swl0 } + }s} � l. Thus
}swl0 η} + }s} �l+l+ }s} + m+ 1 and swl0 η is not in >(m(. �

We are now ready to prove Theorem 1.1 using Lemma 4.1.

Proof of Theorem 1.1. Assume that E satisfies the AC(2( condition with respect to the
generating set ]w0. w1{. Then there would be a constant j so that for every two points
w. x ∈ >(m( with c(w. x(+ 2, there would a be a path between them of length at most j
lying completely inside >(m(.
Consider a point s + (R�. R+( ∈ �(j + 2( with }s} + m+ 1. By construction, }sw0} +

}sw�10 } + m and c(sw0.sw
�1
0 ( + 2. The assumption of almost convexity guarantees a

path γ from sw0 to sw�10 which remains inside >(m( whose length is bounded by j. Let
γ ± + w0γ w0 be the loop based at s containing the path γ .
Let N be the root caret in R�. The word sw0 has N as the right child of the root, so the

initial w0 in the path γ ± moves N to a right caret. The word sw�10 has N as the left child of
the root, so the final w0 in the path γ ± must return N to the root position from the left. Thus,
at some point along the path γ , the caret N must change from being a right caret to a left
caret. So there is a minimal prefix η of γ so that in sw0η, the caret N is not a right caret. It
then follows from Lemma 4.1 that sw0η is not in >(m(, contradicting the assumption that
E is AC(2(. �

We immediately obtain the proof of Corollary 1.2.
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