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Chapter 1

Introduction

Accretion of gas onto a black hole is an important and well-studied phenomenon in the

field of relativistic astrophysics. In general, accretion processes are too complicated to

describe analytically and require the use of a computer (see, e.g., [1] for a recent review).

However, as was first demonstrated by Hermann Bondi in 1952, one simple case can

be understood analytically, namely that of spherically symmetric, radial accretion onto

a single, non-rotating black hole. Bondi considered fluid flow onto a point mass and,

assuming conservation of mass and momentum, derived a set of equations relating the

fluid density, velocity, sound speed, and radial distance. Bondi derived this solution

assuming a Newtonian description of gravity; however, it was later re-derived in the

context of relativistic gravity (see, e.g., [2,3], as well as Appendix G in [4] for a textbook

treatment.) Both the Newtonian and relativistic solutions are referred to in the literature

as Bondi solutions; the accretion process they describe is known as Bondi accretion.

Despite their simplicity, these Bondi solutions have played an important role both in

relativistic astrophysics, where they guide our understanding of more general accretion

processes, and in numerical relativity, where they serve as well-understood test-cases for

numerical codes. It is this second application that we will focus on here.

Many groups (e.g., [5–11]) have used Bondi accretion as a test-bed for numerical rel-

ativistic codes. One problem that must be addressed before the Bondi solution can be

implemented numerically is the choice of coordinate system. The original Bondi solution

is given in so-called Schwarzschild coordinates, the simplest mapping of the Schwarzschild
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spacetime, i.e., the spacetime containing an isolated and non-rotating black hole. Un-

fortunately, these coordinates are not well-suited for numerical simulations. For one,

simulations on a Cartesian grid require coordinate systems that are spatially isotropic,

which Schwarzschild coordinates are not. Furthermore, Schwarzschild coordinates are

singular on the black hole horizon, which introduces additional complications. Such is-

sues can be avoided in codes that assume a fixed spacetime background by using, e.g.,

Kerr-Schild or ingoing Eddington-Finkelstein coordinates. However, in codes that evolve

the matter and gravitational fields self-consistently, another solution is needed.

The first self-consistent evolutions of black hole spacetimes that did not rely on as-

sumptions of symmetry were achieved by Pretorius [12], Campanelli et al. [13], and

Baker et al. [14]. In the latter two publications the authors use an approach in which

Einstein’s equations, expressed in some variation of the Baumgarte-Shapiro-Shibata-

Nakamura (BSSN) formulation [15–17] are evolved using so-called “moving-puncture”

coordinates, which consist of a “1+log” slicing condition for the lapse [18] and a “Gamma-

driver” condition for the shift vector [19]. As explained in greater detail in Section 4.1,

the BSSN equations represent a reformulation of Einstein’s equations in which the four-

dimensional spacetime metric is decomposed into its spatial and time components; the

lapse and shift encode coordinate conditions associated with this so-called 3+1 decompo-

sition. As described in [20, 21], moving-puncture coordinates act to bring the black hole

initial data, which are expressed in isotropic Schwarzschild coordinates (see Section 4.3),

into a so-called “trumpet” geometry (see [22] for a textbook treatment, as well as [23]

for a simple analytical example). Spatial slices in trumpet coordinates are remarkable in

that they penetrate the horizon of the black hole smoothly and end on a limiting surface

with areal radius greater than zero, thereby “shielding” the simulation from the effects

of the spacetime singularity.

One method by which the Bondi solution can be used as a test case for numerical

codes that employ moving-puncture coordinates involves casting Bondi initial data into

isotropic coordinates on slices of constant Schwarzschild time (see, e.g., [10]). Over the

course of the evolution, the coordinate conditions described above act to bring the data

into a trumpet geometry, which, thanks to the properties of trumpet coordinates, can
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be handled numerically. While this is a proven method of simulating Bondi accretion,

it has several disadvantages. First of all, because isotropic Schwarzschild coordinates

cover only the region of the Schwarzschild spacetime corresponding to R > 2GM/c2 (i.e.,

the region outside the horizon), it is necessary to specify artificial initial data inside this

limit. Second, and more importantly, the fact that the coordinates themselves transform

during the course of the evolution means that only gauge-independent quantities can be

compared directly with the analytical Bondi solution.

Here we show that it is possible, and in fact quite straightforward, to transform the

original Bondi solution into coordinates with a trumpet geometry. We then use a numer-

ical code that implements the BSSN formulation of Einstein’s equations, together with

moving-puncture coordinates, to evolve this solution forward in time, and demonstrate

that it remains time-independent. As a result, all quantities, not just those that are

gauge-invariant, can be compared with the analytical solution. Furthermore, casting the

Bondi solution in trumpet coordinates eliminates the need for artificial initial data in the

vicinity of the puncture, since the Bondi solution now extends smoothly into the black

hole interior.

We organize our discussion as follows. In Chapter 2 we reproduce Bondi’s original

derivation in the Newtonian approximation. Next, in Chapter 3, we derive the analogous

solution in relativistic gravity; this is the solution that we will use in the rest of our calcu-

lations. In Chapter 4 we describe how to transform the Bondi solution in Schwarzschild

coordinates into the three coordinate systems we will consider in our numerical simula-

tions: isotropic coordinates on slices of constant Schwarzschild time, maximal trumpet

coordinates, and analytical trumpet coordinates. We present our numerical results for

each of these coordinate systems in Chapter 5, and conclude with a brief summary in

Chapter 6.
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Chapter 2

Bondi accretion onto a black hole:

The Newtonian equations

In this section we derive Bondi’s solution for spherically symmetric, radial flow onto a

point mass. We assume the density is small enough that the self-gravity of the fluid is

negligible. We can choose to think of this solution as representing the flow onto a station-

ary, non-rotating black hole in the Newtonian limit. As may be expected, the Newtonian

solution does not accurately describe the fluid behavior at small radii. A correct descrip-

tion that extends to the event horizon of the black hole can only be obtained through

a relativistic treatment. However, at large radii r � 2GM/c2, the Newtonian solution

offers a good approximation. Furthermore, the structure of the Newtonian solution, as

it is presented below, provides a useful template for the more complicated relativistic

solution, which is presented in Chapter 3. We will see that many of the key equations

in this section have close analogues in the relativistic solution, and we will reference the

corresponding equation in the other section whenever this is the case. All quantities in

this chapter are expressed in SI units.

The following discussion closely follows that presented in Section 14.3 of Shapiro and

Teukolsky [4]. We will reference equations in that text using the notation ST.#, where

# is the corresponding equation number [e.g., Eq. (ST.14.3.1)].
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2.1 Derivation of the fluid equations

We start by assuming the accreting gas to be adiabatic to first approximation. As

discussed in greater detail in the following chapter, this implies that the pressure P is

related to the density ρ of the gas by a polytropic equation of state

P = κρΓ (2.1)

[cf. Eq. (ST.14.3.1)], where κ is known as the polytropic constant and Γ is the adiabatic

index. The sound speed a, which will enter later in our discussion, is given by

a =

(
dP

dρ

)1/2

=
(
ΓκρΓ−1

)1/2
=

(
ΓP

ρ

)1/2

. (2.2)

We use spherical polar coordinates and assume radial flow with velocity u = (ur, 0, 0).

Since we are considering accretion onto the black hole, we have ur ≤ 0 always. For

convenience, we define the inward radial velocity of the fluid as u ≡ −ur. We further

assume that the gas is at rest (u = 0) at r = ∞, and denote the pressure, density, and

sound speed at infinity as P∞, ρ∞, and a∞ = (ΓP∞/ρ∞)1/2, respectively.

The fluid flow is completely governed by three equations, namely the equation of state

(2.1); the continuity equation,

∇ · (ρu) =
1

r2

d

dr

(
r2ρu

)
= 0 (2.3)

[cf. Eq. (ST.14.3.2)], which expresses conservation of mass; and the Euler equation,

u
du

dr
= −1

ρ

dP

dr
− GM

r2
(2.4)

[cf. Eq. (ST.14.3.3)], which expresses conservation of momentum. Note that Eqs. (2.3)

and (2.4) hold only for r > 0. Here G is the gravitational constant and M is the mass of

the black hole. As mentioned above, we assume the density of the gas to be small enough

that we can neglect self-gravity. We find it useful to rewrite the continuity equation (2.3)
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in a slightly different form. Carrying out the total derivative yields

1

r2

d

dr

(
r2ρu

)
=

1

r2

(
2rρu+ r2ρ′u+ r2ρu′

)
=

2ρu

r
+ ρ′u+ ρu′ = 0, (2.5)

where in the last equality we have introduced ρ′ ≡ dρ/dr and u′ ≡ du/dr. Dividing all

terms by ρu, we obtain
ρ′

ρ
+
u′

u
+

2

r
= 0 (2.6)

[cf. Eq. (ST.14.3.6)]. We will refer to Eq. (2.6) as the first Newtonian fluid equation.

We can similarly rewrite Eq. (2.4) to eliminate dependence on the pressure P . From

Eqs. (2.1) and (2.2), we have
dP

dr
=
dP

dρ

dρ

dr
= a2ρ′, (2.7)

which, when substituted into Eq. (2.4), yields

uu′ + a2ρ
′

ρ
+
GM

r2
= 0 (2.8)

[cf. Eq. (ST.14.3.7)]. We designate Eq. (2.8) the second Newtonian fluid equation.

2.2 Solution at the critical radius

Equations (2.6) and (2.8) can now be solved for the radial derivatives u′ and ρ′. Com-

bining the two equations to eliminate ρ yields

uu′ − a2

(
u′

u
+

2

r

)
+
GM

r2
= 0, (2.9)

which can be rearranged to find

u′ = u

(
2a2/r −GM/r2

u2 − a2

)
. (2.10)
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Inserting (2.10) into (2.6) gives

ρ′

ρ
= −2a2/r −GM/r2

u2 − a2
− 2

r
, (2.11)

or

ρ′ = −ρ
(

2u2/r −GM/r2

u2 − a2

)
. (2.12)

Finally, we can rewrite Eqs. (2.10) and (2.12) as

u′ =
D1

D
, ρ′ = −D2

D
(2.13)

[cf. Eq. (ST.14.3.8)], where we have defined

D1 ≡
2a2/r −GM/r2

ρ
, (2.14)

D2 ≡
2u2/r −GM/r2

u
, (2.15)

and

D ≡ u2 − a2

ρu
(2.16)

[cf. Eqs. (ST.14.3.9), (ST.14.3.10), and (ST.14.3.11), respectively].

Now, since the flow is subsonic (u < a) at r = ∞ and supersonic (u > a) close

to the black hole, and we are assuming u increases monotonically as we move inward

from infinity, then somewhere in between it must pass through a critical point where

u = a. We call this point, which marks the transition between subsonic and supersonic

flow, the transonic point. The radius at which it occurs is known as the critical or sonic

radius, denoted rs. From Eq. (2.16), we see that u = a implies D = 0. Since the radial

derivatives of the density and velocity [Eq. (2.13)] must remain finite for all r, we must

have D1 = D2 = D = 0 at r = rs [cf. Eq. (ST.14.3.12)].
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We can use this condition to calculate the fluid velocity and the sound speed at the

transonic point in terms of the sonic radius. From (2.15) we have

2u2
s

rs
− GM

r2
s

= 0, (2.17)

where the s subscript indicates that the quantity is being evaluated at r = rs. Rearrang-

ing yields

u2
s = a2

s =
1

2

GM

rs
. (2.18)

[cf. Eq. (ST.14.3.13)]. (Note that the same result can be found by solving the equation

D1 = 0 for as.)

2.3 Conservation equations

We conclude our derivation by recasting the continuity equation (2.3) and the Euler

equation (2.4) in the form of conservation equations. We begin by recognizing that the

accretion rate, i.e., the flux of the gas through a spherical surface of radius r, is equal to

the area of that surface (4πr2) multiplied by the flux density of the gas (ρu). Since, by

Eq. (2.3), the quantity r2ρu is constant with respect to r, the accretion rate, which we

denote Ṁ , must be constant as well. We therefore have

4πρur2 = constant = Ṁ (2.19)

[cf. Eq. (ST.14.3.4)], where we have defined Ṁ to be positive for ingoing flow (u > 0).

Eq. (2.4) can likewise be integrated to obtain an equation relating the velocity u and the

sound speed a. We start by rewriting Eq. (2.4) as

udu = −dP
ρ
− GM

r2
dr, (2.20)

or, using (2.1) to eliminate the dependence on P ,

udu+ ΓκρΓ−2dρ+
GM

r2
dr = 0. (2.21)
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Integrating this equation yields

u2

2
= −ΓκρΓ−1

Γ− 1
+
GM

r
+ C, (2.22)

where C is a constant of integration. We can rewrite the second term in terms of the

sound speed a to obtain
1

2
u2 +

1

Γ− 1
a2 − GM

r
= C. (2.23)

Eq. (2.23) must hold for all values of the radius r. We can therefore determine the value

of C by evaluating the left-hand side in the limit r →∞ (u→ 0), which yields

1

2
u2 +

1

Γ− 1
a2 − GM

r
=

1

Γ− 1
a2
∞ (2.24)

[cf. Eq. (ST.14.3.5)]. Eq. (2.24) is known as the Bernoulli equation.

In his original analysis, Bondi [24] showed that different values of Ṁ lead to distinct

classes of solutions to the fluid equations (2.6) and (2.8) for the same boundary conditions

at infinity (i.e., the same values of P∞, ρ∞, and a∞). In this chapter, we have limited

our discussion to the unique solution for which the velocity increases monotonically from

u = 0 at r =∞ to the free-fall velocity at small radii [u→ (2GM/r)1/2 as r → 0]. As we

will see in Chapter 3, the relativistic equations for accretion onto a black hole demand

that we choose this solution in order to avoid singularities in the flow outside the event

horizon.

At this point we have derived all of the key components of Bondi’s solution for spher-

ically symmetric, radial accretion onto a point mass. In Appendix A, we derive, for

completeness, the equation for the accretion rate in terms of the boundary values at

infinity, as well as the flow profiles in the limits r � rs and r � rs, but this information

is not relevant to the rest of our analysis. It is important to note that nowhere in the

above discussion did we actually write down equations for the density and velocity of the

fluid as functions of r. This is because, as we will see again in the relativistic case, such

functions cannot be expressed analytically. In order to find ρ (r), for example, we must
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compute ρ iteratively for discrete values of r, and then assemble the resulting values into

a radial profile.
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Chapter 3

Bondi accretion onto a black hole:

The relativistic equations

In the previous chapter we derived Bondi’s equations for spherically symmetric, adiabatic

accretion onto a black hole in the Newtonian limit. We now derive an analogous set

of equations assuming a relativistic description of gravity. We assume throughout our

derivation that the self-gravity of the accreting gas (i.e., the warping effect of the gas

on the background spacetime) is negligible. We also ignore any increase in mass of the

black hole due to the inflow of matter over time. One additional subtlety that arises

in the relativistic treatment is that we must now be careful to distinguish between the

total density of the fluid, denoted ρ, and the proper rest-mass density (i.e., the rest-mass

density as measured by an observer comoving with the fluid), denoted ρ0. We define ρ

as the sum of ρ0 and the internal energy density of the fluid:

ρ = ρ0 + ε (3.1)

[cf. Eq. (ST.G.1)]. In the Newtonian approximation, ρ and ρ0 are assumed to be equal,

since the internal energy density of the fluid is negligible by comparison. At infinity, the

gas has rest-mass density ρ0,∞ and total density ρ∞. Here and in the rest of this thesis

we use geometrized units (c = G = 1).
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3.1 Derivation of the fluid equations

We will derive the relativistic Bondi solution from two key equations. The first of these

equations is the law of baryon conservation,

∇a (ρ0u
a) = 0 (3.2)

[cf. Eq. (ST.G.2)], where ua =
(
ut, uR, 0, 0

)
is the four-velocity of the fluid and ∇a repre-

sents the covariant derivative associated with the spacetime metric gab. The Newtonian

analogue of this equation is the continuity equation, Eq. (2.3). The second key equation

is the conservation of energy-momentum,

∇bT
ab = 0, (3.3)

where T ab is the stress-energy tensor for a perfect fluid,

T ab = (ρ+ P )uaub + Pgab. (3.4)

Eq. (3.3) is a vector equation; as shown in Appendix C, the spatial part of this equation

can be rewritten as

(ρ+ P )ub∇bu
a = −∂aP − uaub∂bP (3.5)

[cf. Eq. (ST.G.3)], where P is the pressure of the gas. Eq. (3.5) is known as the relativistic

Euler equation and expresses the conservation of momentum. If we instead evaluate the

time component of Eq. (3.3), we obtain the entropy equation,

d

(
ε

ρ0

)
= −Pd

(
1

ρ0

)
(3.6)

[cf. Eq. (ST.G.4)]. Eq. (3.6) is a statement of the first law of thermodynamics with the

condition that the entropy is constant. We therefore conclude that the flow must be
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adiabatic in the absence of shocks. We will later find it useful to rewrite Eq. (3.6) as

dρ

dρ0

=
ρ+ P

ρ0

(3.7)

[cf. Eq. (ST.G.5)]. [For a complete derivation of Eqs. (3.6) and (3.7), see Appendix D.]

We adopt a Gamma-law equation of state for the accreting fluid, in which the pressure

P is given by

P = (Γ− 1) ε, (3.8)

where Γ is the adiabatic index and ε is the internal energy density of the fluid [see

Eq. (3.1)]. We will proceed to show that this choice of the equation of state, when

combined with the entropy equation (3.6), yields a polytropic relation between P and ρ0

[see Eq. (3.14)]. We begin by rewriting Eq. (3.6) as

1

ρ0

dε− ε

ρ2
0

dρ0 =
P

ρ2
0

dρ0, (3.9)

which simplifies to

ρ0dε = (ε+ P ) dρ0, (3.10)

or
dε

ε+ P
=
dρ0

ρ0

. (3.11)

Using our equation of state (3.8), we can rewrite this as

(
1

Γ− 1

)(
dP

P/ (Γ− 1) + P

)
=
dP

ΓP
=
dρ0

ρ0

. (3.12)

Integrating this equation yields

1

Γ
lnP = ln ρ0 + C, (3.13)

or

P = κρΓ
0 , (3.14)

13



where κ is known as the polytropic constant [cf. Eq. (2.1)].

In order to proceed with our derivation, we must choose a coordinate system. Follow-

ing the example in [24], we will derive the Bondi equations in Schwarzschild coordinates,

in which the line element is given by

ds2 = −
(

1− 2M

R

)
dt2 +

(
1− 2M

R

)−1

dR2 +R2dΩ2, (3.15)

where t is the Schwarzschild time, R is the Schwarzschild radius, and M is the mass of

the black hole; the event horizon of the black hole is located at R = 2M . We can now

evaluate Eqs. (3.2) and (3.5) in these coordinates to obtain the relativistic fluid equations.

Eq. (3.2) evaluated in Schwarzschild coordinates yields

ρ0
′

ρ0

+
u′

u
+

2

R
= 0, (3.16)

[cf. Eq. (ST.G.6)], which is easily recognizable as the relativistic analogue of Eq. (2.6).

Eq. (3.5), on the other hand, yields

uu′ = − 1

ρ+ P

dP

dR

(
1− 2M

R
+ u2

)
− M

R2
, (3.17)

which corresponds to Eq. (2.4). [For complete derivations of Eqs. (3.16) and (3.17), see

Appendix E.] As in the Newtonian case, the speed of sound is given by

a2 =
dP

dρ
=
dP

dρ0

dρ0

dρ
=
dP

dρ0

ρ0

ρ+ P
(3.18)

[cf. Eq. (ST.G.8)], where we have employed Eq. (3.7) in the last equality. Using Eq. (3.18),

we can rewrite dP/dR as

dP

dR
=
dP

dρ0

dρ0

dR
= (ρ+ P ) a2ρ0

′

ρ0

, (3.19)

Substituting this expression into (3.17) yields

uu′ +
M

R2
+

(
1− 2M

R
+ u2

)
a2ρ0

′

ρ0

= 0 (3.20)
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[cf. Eq. (ST.G.9)]. Just as Eq. (3.16) is analogous to Eq. (2.6) in the Newtonian solution,

Eq. (3.20) is the relativistic version of the second Newtonian fluid equation (2.8).

3.2 Solution at the critical radius

As in our derivation of the Newtonian equations, we can use the fluid equations (3.16)

and (3.20) to solve for u′ and ρ0
′. Combining Eqs. (3.16) and (3.20) to eliminate ρ0 yields

uu′ +
M

R2
−
(

1− 2M

R2
+ u2

)(
u′

u
+

2

R

)
= 0, (3.21)

which can be solved for u′ to obtain

u′ = u

(
(1− 2M/R + u2) 2a2/R−M/R2

u2 − (1− 2M/R + u2) a2

)
. (3.22)

Inserting (3.22) back into (3.16) gives

ρ0
′

ρ0

= −(1− 2M/R + u2) 2a2/R−M/R2

u2 − (1− 2M/R + u2) a2
− 2

R
, (3.23)

or

ρ0
′ = −ρ0

(
2u2/R−M/R2

u2 − (1− 2M/R + u2) a2

)
. (3.24)

We can write Eqs. (3.22) and (3.24) more compactly by defining

D1 ≡
1

ρ0

[(
1− 2M

R
+ u2

)
2a2

R
− M

R2

]
, (3.25)

D2 ≡
1

u

(
2u2

R
− M

R2

)
, (3.26)

and

D ≡ 1

ρ0u

[
u2 −

(
1− 2M

R
+ u2

)
a2

]
(3.27)

[cf. Eqs. (ST.G.11), (ST.G.12), and (ST.G.13), respectively]. We then have

u′ =
D1

D
, ρ0

′ = −D2

D
(3.28)
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[cf. Eq. (ST.G.10)]. Note the similarity between Eq. (3.28) and Eq. (2.13) in the Newto-

nian treatment.

We now demonstrate that for any equation of state obeying a2 < 1 (i.e., for which

the speed of sound is less than that of light; this is known as the causality constraint),

the flow must pass through a critical point outside the event horizon at R = 2M . (Recall

that the event horizon is the spherical boundary around the black hole inside which the

escape velocity becomes greater than the speed of light.) Evaluating Eq. (3.27) in the

limit R→∞ gives

D ' u2 − a2

ρ0u
(3.29)

[cf. Eq. (ST.G.14)]. Since u→ 0 as R→∞, we must have D < 0 at infinity. Evaluating

Eq. (3.27) at the horizon, on the other hand, gives

D =
u

ρ0

(
1− a2

)
(3.30)

[cf. Eq. (ST.G.15)], which is necessarily positive. Since D goes from a negative value at

infinity to a positive value at the horizon, somewhere in between it must have a value

of zero. The radius at which this occurs is called the critical radius, R = Rs. To avoid

singularities in the flow (i.e., to avoid infinite expressions for u′ and ρ0
′), we must have

D1 = D2 = 0 at R = Rs [cf. Eq. (ST.G.16)].

We can use this fact to solve Eqs. (3.25), (3.26), and (3.27) for u and a at the critical

radius. Setting D2 = 0 at R = Rs yields

u2
s =

M

2Rs

. (3.31)

Similarly, setting D1 = 0 gives

(
1− 2M

Rs

+ u2
s

)
2a2

Rs

− M

R2
s

= 0, (3.32)
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which we can combine with Eq. (3.31) to obtain

a2
s =

M

2Rs − 3M
. (3.33)

Combining Eqs. (3.31) and (3.33) to eliminate Rs yields

u2
s =

a2
s

1 + 3a2
s

, (3.34)

or

a2
s =

u2
s

1− 3u2
s

(3.35)

[cf. Eq. (ST.G.17)]. In the Newtonian solution, we found that us = as at the critical

point. It is important to note that in the relativistic solution this is no longer true, as we

can see from Eqs. (3.34) and (3.35). One should therefore take the s subscript to refer

to the point at which D1 = D2 = D = 0, not the “transonic” point at which u = a.

3.3 Conservation equations

The last major step in our derivation of the relativistic Bondi solution will be to recast

equations (3.2) and (3.20) in the form of conservation equations. Just as, in the previous

chapter, we used the continuity equation (2.3) to derive Eq. (2.19) for the accretion rate,

we can use the law of baryon conservation (3.2) to show that

4πρ0uR
2 = constant = Ṁ (3.36)

[cf. Eq. (ST.G.21)]. As before, we find that the accretion rate Ṁ , which we define to

be positive for ingoing flow, is independent of the radius R. Eq. (3.20) is slightly more

challenging to recast, since it cannot be integrated directly. We start by recognizing that

uu′ +
M

R2
=

1

2

(
1− 2M

R
+ u2

)′
, (3.37)
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where all primes (′) denote total derivatives with respect R. Substituting (3.37) into

(3.20) gives
1

2

(
1− 2M

R
+ u2

)′
+

(
1− 2M

R
+ u2

)
a2ρ0

′

ρ0

= 0, (3.38)

or
1

2

(1− 2M/R + u2)
′

1− 2M/R + u2
+ a2ρ0

′

ρ0

= 0. (3.39)

We would like to be able to rewrite the second term of (3.39) in a similar way (i.e., as

the derivative of some expression divided by the expression itself). To this end, we will

show that

a2ρ0
′

ρ0

=
ρ0

ρ+ P

(
ρ+ P

ρ0

)′
. (3.40)

Carrying out the total derivative in (3.40) yields

ρ0

ρ+ P

(
ρ+ P

ρ0

)′
=

ρ0

ρ+ P

(
ρ′ + P ′

ρ0

− (ρ+ P ) ρ0
′

ρ2
0

)
. (3.41)

From Eq. (3.7), we have

ρ′ =
dρ

dR
=

dρ

dρ0

dρ0

dR
=
ρ+ P

ρ0

ρ0
′, (3.42)

and from (3.18),

P ′ =
dP

dR
=
dP

dρ0

dρ0

dR
=
ρ+ P

ρ0

a2ρ0
′. (3.43)

Inserting (3.42) and (3.43) into (3.41) gives

ρ0

ρ+ P

(
ρ+ P

ρ0

)′
=

ρ0

ρ+ P

(
ρ+ P

ρ2
0

ρ0
′ +

ρ+ P

ρ2
0

a2ρ0
′ − ρ+ P

ρ2
0

ρ0
′
)

= a2ρ0
′

ρ0

, (3.44)

as desired. Substituting (3.44) into (3.39) then yields

1

2

(1− 2M/R + u2)
′

1− 2M/R + u2
+

ρ0

ρ+ P

(
ρ+ P

ρ0

)′
= 0, (3.45)

18



which can be integrated to obtain

1

2
ln

(
1− 2M

R
+ u2

)
+ ln

(
ρ+ P

ρ0

)
= constant, (3.46)

or (
ρ+ P

ρ0

)2(
1− 2M

R
+ u2

)
= constant =

(
ρ∞ + P∞
ρ0,∞

)2

(3.47)

[cf. Eq. (ST.G.22)], where we have determined the constant of integration by evaluating

the left side of (3.47) in the limit R → ∞. Eq. (3.47) is known as the relativistic

Bernoulli equation, and is the relativistic analogue of Eq. (2.24); the collection of terms

on the right-hand side is referred to as the Bernoulli constant.

Finally, we will rewrite the Bernoulli equation (3.47) in terms of the sound speed a.

(The resulting equation will prove useful when we go to compute the density profile in

the following section.) We begin by combining Eqs. (3.1) and (3.8) to obtain

ρ = ρ0 +
P

Γ− 1
= ρ0 +

κρΓ
0

Γ− 1
(3.48)

[cf. Eq. (ST.G.25)], where we have employed the polytropic relation (3.14) in the last

equality. Using Eqs. (3.14) and (3.48), we can rewrite the first term on the left-hand side

of the Bernoulli equation (3.47) as

ρ+ P

ρ0

= 1 +
κρΓ−1

0

Γ− 1
+ κρΓ−1

0 = 1 +
Γ

Γ− 1
κρΓ−1

0 (3.49)

[cf. Eq. (ST.G.26)]. Inserting Eqs. (3.14) and (3.49) into Eq. (3.18) for the sound speed

a gives

a2 =
ΓκρΓ−1

0

1 + ΓκρΓ−1
0 / (Γ− 1)

(3.50)

[cf. Eq. (ST.G.27)], or

ΓκρΓ−1
0 =

a2

1− a2/ (Γ− 1)
(3.51)

[cf. Eq. (ST.G.28)]. Combining Eqs. (3.51) into (3.49) yields

ρ+ P

ρ0

= 1 +
a2

Γ− 1− a2
, (3.52)
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which we can substitute into (3.47) to obtain

(
1 +

a2

Γ− 1− a2

)2(
1− 2M

R
+ u2

)
=

(
1 +

a2
∞

Γ− 1− a2
∞

)2

(3.53)

[cf. Eq. (ST.G.29)].

We have now derived the bulk of the relativistic solution for spherically symmetric,

radial accretion onto a black hole. In Appendix B we include a few more notes on the

subject (for example, we show how to calculate the accretion rate Ṁ in terms of the

boundary values at infinity, as well as the flow profiles in the limit R � Rs), but this

information is not needed for our main discussion. Finally, note that, as in our treatment

of the Newtonian solution, we did not explicitly write down equations for the rest-mass

density and velocity as functions of R, since these functions are not known analytically.

3.4 Determining ρ0 (R) and u (R)

Now that we have derived the relativistic equations for Bondi accretion onto a black

hole, we will show how those equations can be manipulated to obtain radial profiles of

the fluid rest-mass density ρ0 and four-velocity u in Schwarzschild coordinates. (We save

calculation of the radial three-velocity and other relevant fluid parameters for Chapter

4.) As mentioned above, it is impossible to obtain an analytical expression for ρ0 as a

function of R. Instead, what we will do here is derive a non-linear equation for ρ0, which

we can then solve numerically at each desired value of R. The velocity profile can be

computed straightforwardly once we know ρ0 (R) .

The relativistic Bondi solution can be uniquely determined by just four parameters.

We choose to specify the adiabatic index Γ, the critical accretion rate Ṁ , the critical

radius Rs, and the black hole mass M . (For simplicity, we always take M = 1.) It

is also possible to calculate the fluid profiles given a different set of initial parameters.

For example, one might want to specify the rest-mass density at the critical radius, ρ0,s,

instead of the accretion rate; as we will see shortly, this choice does not substantially
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change the derivation. One could also choose to specify the boundary values at infinity,

a∞ and ρ0,∞, although we will not address this case here.

We begin with our equations for the fluid velocity and the sound speed at the critical

radius:

u2
s =

1

2

M

Rs

, a2
s =

M

2Rs − 3M
(3.54)

[cf. Eqs. (3.31) and (3.33)]. These equations allow us to compute us and as given the

critical radius Rs. We can calculate the rest-mass density at the critical radius, ρ0,s, by

evaluating the accretion rate equation (3.36) at R = Rs:

ρ0,s =
Ṁ

4πR2
sus

. (3.55)

[Note that if we had initially chosen to specify ρ0,s instead of Ṁ , we could use Eq. (3.36)

to calculate Ṁ .] We now assume, as we did in our original derivation, that the fluid is a

polytrope with equation of state

P = κρΓ
0 , (3.56)

where P is the pressure and κ is the polytropic constant. We can calculate κ from as by

evaluating Eq. (3.51) at R = Rs. This yields

κ =
(Γ− 1) a2

s

ΓρΓ−1
s (Γ− 1− a2

s)
. (3.57)

Since we cannot derive an analytical expression for ρ0 as a function of R, our goal will

be to construct an equation that contains only these two variables, which we can then

solve numerically for ρ0 at each value of R. Consider the relativistic Bernoulli equation

in the following form:

(
Γ− 1

Γ− 1− a2

)2(
1− 2M

R
+ u2

)
=

(
Γ− 1

Γ− 1− a2
∞

)2

(3.58)
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[cf. Eq. (3.53)]. If we evaluate the left-hand side of this equation at R = Rs rather than

in the limit R→∞, we obtain

(
Γ− 1

Γ− 1− a2

)2(
1− 2M

R
+ u2

)
=

(
Γ− 1

Γ− 1− a2
s

)2(
1− 2M

Rs

+ u2
s

)
≡ E, (3.59)

where E is the Bernoulli constant. We now want to express the left-hand side of (3.59)

in terms of the rest-mass density ρ0. From Eqs. (3.49) and (3.52), we have

Γ− 1

Γ− 1− a2
= 1 +

Γ

Γ− 1
κρΓ−1

0 . (3.60)

In addition, we can use the equation for the accretion rate in its more general form,

Ṁ = 4πR2ρ0u (3.61)

[cf. Eq. (3.36)], to obtain an expression for u in terms of ρ0:

u =
Ṁ

4πR2ρ0

. (3.62)

Inserting Eqs. (3.60) and (3.62) into (3.59) gives

E =

(
1 +

Γ

Γ− 1
κρΓ−1

0

)2
1− 2M

R
+

(
Ṁ

4πR2ρ0

)2
 . (3.63)

We have thus arrived at an equation that relates ρ0, the rest-mass density of the fluid,

and R, the Schwarzschild radius. We can determine the density profile ρ0 (R) by solving

Eq. (3.63) for ρ0 at each desired value of R using a root-finding algorithm, which is exactly

what we do in our numerical code. Once we know ρ0 at a given R, we can compute the

four-velocity u (R) from Eq. (3.62).

In Table 3.1 we list the values of us, as, ρ0,s, κ, and E for the Bondi solution char-

acterized by Γ = 4/3, Rs = 10M , M = 1, and an accretion rate of either Ṁ = 10−5,

Ṁ = 10−4, or Ṁ = 10−3. As described in Chapter 5, this is the solution that we use

in our numerical simulations. Note that us and as, the velocity and sound speed at the
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Ṁ us as ρ0,s κ E

10−5 0.2236 0.2425 3.559× 10−8 16.29 1.253

10−4 0.2236 0.2425 3.559× 10−7 7.560 1.253

10−3 0.2236 0.2425 3.559× 10−6 3.509 1.253

Table 3.1 Values of key fluid parameters for the different Ṁ used in our numerical simulations.

We take Γ = 4/3, Rs = 10M , and, for simplicity, M = 1.

critical radius, are both independent of Ṁ . Physically, this can be explained by the fact

that the Bondi solution neglects the self-gravity of the fluid, i.e., we assume the flow is

dominated by the gravitational field of the black hole. Since the Bernoulli constant E is

computed directly from us and as [see Eq. (3.59)], it too should be independent of Ṁ .

From Eq. (3.55), we know that, since us is constant with respect to Ṁ , the rest-mass

density at the critical point ρ0,s should scale with Ṁ . Finally, we know from Eq. (3.57)

that κ ∝ ρ1−Γ
0,s , or, since Γ = 4/3, κ ∝ ρ

−1/3
0,s . We note that the value Γ = 4/3 describes a

so-called ultra-relativistic gas, in which the internal energy density is large compared to

the proper rest-mass density.

At this point we have all of the tools needed to construct the Bondi solution in

Schwarzschild coordinates. We show this solution, with the input parameters listed

above, in Fig. 3.1. As in most of our numerical simulations, we use an accretion rate of

Ṁ = 10−4. From top to bottom, we plot the rest-mass density ρ0, the time component of

the four-velocity ut, the radial four velocity u, and the radial three-velocity v. [The latter

two quantities can be computed from Eqs. (4.13) and (4.8), respectively.] We note that

the Bondi solution in Schwarzschild coordinates (solid lines in Fig. 3.1) does not extend

smoothly inside the black hole horizon. In particular, while ρ0 and u remain continuous

across the horizon, ut diverges, and v, which is computed from ut, becomes undefined.

For this and other reasons (see Chapter 4), Schwarzschild coordinates are unsuitable

for numerical simulations, motivating us to transform the original Bondi solution (in

Schwarzschild coordinates) into coordinates that are better suited for such purposes. In

the following chapter, we transform the Bondi solution into three alternative coordinate

systems, namely isotropic coordinates on slices of constant Schwarzschild time (Section

23



10−7

10−6

10−5

10−4

ρ
0

ρ0 (R)

ρ0 (r)

ρ0 (rm)

ρ0 (ra)

100

101

102

103

u
t

ut (R)

ut (r)

ut (rm)

ut (ra)

0.0

0.5

1.0

1.5

2.0

u

u (R)

u (r)

u (rm)

u (ra)

10−1 100 101 102

radius/M

0.0

0.1

0.2

0.3

0.4

0.5

v

v (R)

v (r)

v (rm)

v (ra)

Figure 3.1 Fluid profiles for the Bondi solution described by Γ = 4/3, Rs = 10M , and Ṁ =

10−4 in the four different coordinate systems we discuss in this thesis, namely Schwarzschild

coordinates (solid lines), isotropic coordinates on slices of constant Schwarzschild time (dashed

lines), maximal trumpet coordinates (dot-dashed lines), and analytical trumpet coordinates

(dotted lines). From top to bottom, we show the rest-mass density ρ0, the time component

of the four-velocity ut, the radial component of the four-velocity u = −ur, and the radial

component of the normal three-velocity v = −vr. Boxes mark the location of the horizon

in each coordinate system. We note that in both Schwarzschild and isotropic Schwarzschild

coordinates ut → ∞ at the horizon, and, as a result, v becomes undefined. (In isotropic

Schwarzschild coordinates u→∞ at the horizon as well.) In both trumpet coordinate systems,

however, all curves penetrate the horizon smoothly. (Compare Fig. 21 in [10].)
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4.3), maximal trumpet coordinates (Section 4.4), and analytical trumpet coordinates

(Section 4.5). We include, in Fig. 3.1, the equivalent Bondi solution (i.e., using the

same input parameters) in each of these coordinate systems alongside our results for

Schwarzschild coordinates. We will address these other coordinate systems in more detail

later; for now, note that in each of the trumpet coordinate systems the solution is no

longer discontinuous at the horizon, and extends smoothly to the coordinate singularity

at the origin.

25



Chapter 4

Coordinate transformations

Now that we have derived the Bondi solution in Schwarzschild coordinates, we will show

how we can transform this solution into new isotropic, time-independent coordinate sys-

tems. Schwarzschild coordinates, while convenient as an analytical tool, are not well

suited for numerical simulations. In general, simulations on a Cartesian grid demand co-

ordinates that are spatially isotropic, i.e., for which the spatial part of the metric can be

written as a conformal factor ψ to the fourth power times the flat metric. Moreover, not

all isotropic coordinate systems are equally favorable from a numerical relativistic point

of view. As we will see below, isotropic coordinates on slices of constant Schwarzschild

time, which are one example of an isotropic, time-independent coordinate system, do

not support stable evolutions of black hole spacetimes, while coordinate systems with

trumpet geometries, two examples of which are described in detail in Sections 4.4 and

4.5, have been shown to be much more effective.

In this chapter, we first introduce some of the basic formalism of the 3+1 decomposi-

tion of Einstein’s equations. We then use this formalism to establish a general framework

for transforming the original Bondi solution, given in Schwarzschild coordinates, into an

arbitrary isotropic, time-independent coordinate system. Finally, we specialize to three

different coordinate systems of this type: isotropic coordinates on slices of constant

Schwarzschild time, also referred to here as isotropic Schwarzschild coordinates; maximal

trumpet coordinates; and analytical trumpet coordinates.
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Figure 4.3 Embedding diagram for

the analytical trumpet coordinate sys-

tem (Section 4.5) characterized by

R0 = M . Here the areal radius R of a

point on the slice is given by the dis-

tance from the axis of symmetry. The

circle at the top of the figure marks the

event horizon at R = 2M . As is typi-

cal of trumpet coordinate systems, the

slice has an asymptotically cylindrical

end inside the horizon and an asymp-

totically flat end at infinity. (Image

from Dennison and Baumgarte [23].)

areal radius, thereby avoiding numerical issues associated with the central singularity.

Furthermore, any point on this so-called “limiting surface” is an infinite proper distance

away from all other points on the same spatial slice. Spatial slices in trumpet coordinates

asymptote to a cylinder inside the black hole horizon and become asymptotically flat in

the limit r →∞ (see Fig. 4.3).

In this and following section we will introduce the two examples of trumpet coordinate

systems that we use in our numerical simulations. Maximally sliced trumpets, which

we discuss in this section, can be understood semi-analytically [26], while analytical

trumpets, discussed in Section 4.5, are fully analytical [23]. Once we have established

the basic geometry of each coordinate system, we will follow the prescription outlined in

Section 4.2 and show how the Bondi solution can be transformed into the new coordinates.

4.4.1 Overview

In Section 4.1 we noted that the coordinate freedom of general relativity enables us

to impose certain coordinate conditions that constrain the behavior of our solution. For

example, we might want to specify expressions for the lapse and shift. One such condition

that is particularly useful from a numerical point of view is the so-called maximal slicing

condition,

K = 0, (4.27)
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where K ≡ γijKij is the mean curvature. Isotropic coordinates on slices of constant

Schwarzschild time are one example of a maximal slicing of the Schwarzschild spacetime.

In fact, it is possible to derive a whole family of maximally sliced coordinate systems

from the Schwarzschild metric by introducing a time transformation

t = T + h (R) . (4.28)

Note that this transformation is of the same form as the one we considered in Section

4.2 [Eq. (4.5)]. The resulting family of coordinate systems is time-independent, and is

described by the spatial metric

γijdx
idxj = f−2dR2 +R2dΩ2, (4.29)

the lapse,

α = f, (4.30)

and the shift,

βR =
Cf

R2
(4.31)

[cf. Eqs. (3a), (3b), and (3c) in [26]]. The function f is given by

f =

(
1− 2M

R
+
C2

R4

)1/2

(4.32)

[cf. Eq. (3d) in [26]], where C is an arbitrary parameter. Note that for C = 0 we recover

the original Schwarzschild solution. It was demonstrated by [27] that the slicing condition

∂tα = −2αK, (4.33)

a version of the “1 + log” slicing described above, causes numerical simulations of black

holes to settle down into a member of this family of coordinate systems with C =

3
√

3M2/4; this value of C corresponds to a maximal trumpet geometry with a limit-

ing surface of areal radius R = 3M/2.
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In order to use this solution to construct initial data for our numerical code, it is

necessary to transform it into isotropic coordinates. As shown in [26], this can be done

analytically. We start by equating the spatial metric (4.29) with its counterpart in

isotropic form:

f−2dR2 +R2dΩ2 = ψ4
(
dr2 + r2dΩ2

)
(4.34)

[cf. Eq. (4) in [26]]. We then have

R2 = ψ4r2 (4.35)

and

f−2dR2 = ψ4dr2 (4.36)

[cf. Eqs. (5) and (6) in [26], respectively]. Combining Eqs. (4.35) and (4.36) and inte-

grating yields an expression for r in terms of the areal radius R:

r =

[
2R +M + (4R2 + 4MR + 3M2)

1/2

4

]

×
[ (

4 + 3
√

2
)

(2R− 3M)

8R + 6M + 3 (8R2 + 8MR + 6M2)1/2

]1/
√

2

(4.37)

[cf. Eq. (11) in [26]]. Note that this r is different from the r in isotropic Schwarzschild

coordinates. In these coordinates, the black hole horizon is located at r ' 0.799M . As

expected, we have R → 3M/2 as r → 0. Combining Eqs. (4.35) and (4.37) yields the

conformal factor

ψ =

[
4R

2R +M + (4R2 + 4MR + 3M2)1/2

]1/2

×
[

8R + 6M + 3 (8R2 + 8MR + 6M2)
1/2(

4 + 3
√

2
)

(2R− 3M)

]1/2
√

2

, (4.38)

[cf. Eq. (12) in [26]]. We note that ψ diverges at r = 0 (R = 3M/2), indicating that this

point represents a coordinate singularity. We can expand (4.38) to find ψ ≈ (3M/2r)1/2

in the limit r → 0 [cf. Eq. (13) in [26]]. The proper length along a radial segment is

then ds = ψ2dr = (3M/2r) dr, which diverges logarithmically at r = 0. We therefore
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have a limiting surface at r = 0 that is an infinite proper distance from the rest of the

spatial slice. We refer to the coordinate singularity at r = 0 as a “puncture” (as in

“moving-puncture” coordinates). In isotropic coordinates, the lapse is given by

α =

(
1− 2M

R
+

27M4

16R4

)1/2

(4.39)

and the shift by

βr =
dr

dR
βR =

3
√

3M2

4

r

R3
=

3
√

3M2

4

1

ψ2R2
(4.40)

[cf. Eqs. (14), and (15) in [26], respectively].

As for isotropic Schwarzschild coordinates, we compute the extrinsic curvature Kij

from Eq. (4.21). We find that the nonzero components of Kij are

Krr = −2ψ4C

R3
, Kθθ =

Kφφ

sin2 θ
=
C

R
. (4.41)

(For detailed calculations of these expressions, see Appendix G). A quick check, also

included in Appendix G, confirms that the trace of the mean curvature vanishes (K = 0),

as expected.

4.4.2 Transformation of the Bondi solution

As discussed in Section 4.2, the rest-mass density ρ0 is invariant under the transformation

from Schwarzschild to maximal trumpet coordinates and can therefore be computed as

outlined in Section 3.4. We compute the radial four-velocity of the fluid from Eq. (4.7),

which yields

ur =
dr

dR
uR =

uR

ψ2f
. (4.42)

Here uR is the four-velocity as expressed in Schwarzschild coordinates and ψ and f are

given by Eqs. (4.38) and (4.32), respectively. We have used Eq. (4.36) to evaluate the

derivative of r with respect to R. As above, the time component of the four-velocity can
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be computed from Eq. (4.13), giving

ut =
1

R− 2M

[
−Cψ

2

R
u+

(
C2ψ4

R2
u2 +R (R− 2M)

(
ψ4u2 + 1

))1/2
]

=
1

ψ2r − 2M

[
−C
r
u+

(
C2

r2
u2 + ψ2r

(
ψ2r − 2M

) (
ψ4u2 + 1

))1/2
]
, (4.43)

where C = 3
√

3M2/4 and we have substituted u = −ur. Before moving on, we note

a potential problem with Eq. (4.43), namely that both the numerator and denominator

go to zero as we approach the horizon (R → 2M). We know (see Fig. 3.1) that ut

remains finite across the horizon and diverges only at the coordinate singularity at r = 0

(R = 3M/2). However, in order to compute ut at the horizon, we need to rewrite

Eq. (4.43) to get rid of singular terms. We can accomplish this using a Taylor expansion.

First, we rewrite Eq. (4.43) as

ut =
1

R− 2M

Cψ2

R
u

[
−1 +

(
1 +

R3

C2ψ4

1

u2
(R− 2M)

(
ψ4u2 + 1

))1/2
]
. (4.44)

We now expand in a Taylor series about R = 2M , keeping only the first two non-vanishing

terms. We see that the leading-order terms cancel, and we are left with

ut ≈ R2

2Cψ2

1

u

(
ψ4u2 + 1

)
=
ψ2r2

2C

1

u

(
ψ4u2 + 1

)
, (4.45)

where all terms on the right-hand side are evaluated at the horizon. Note that it is

somewhat arbitrary whether we express these quantities in terms of areal or isotropic

radius, since in the case of maximal trumpet coordinates the conformal factor is given in

terms of R [see Eq. (4.38)], and the equation for r [Eq. (4.37)] cannot be inverted to find

R as a function of r. In our numerical code, we use r whenever possible, and convert

to R if needed; here, for completeness, we present both expressions. Finally, the normal

three-velocity of the fluid vr can be computed from Eq. (4.8). We do not include the

result here, since it is fairly complicated and we only use the general expression (4.8) in

our numerical code.
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Plots of ρ0, ut, ur, and vr for maximal trumpet coordinates are included in Fig. 3.1.

Unlike in isotropic Schwarzschild coordinates, all of these quantities remain finite and

well-behaved inside the black hole horizon. From a numerical point of view, this means

that we no longer have to introduce artificial initial data in the vicinity of the black hole.

4.5 Analytical trumpets

4.5.1 Overview

We now turn our attention to the second example of a trumpet coordinate system that

we will use in our numerical code, namely the analytical trumpet of [23]. We begin by

noting that when we refer to analytical trumpets, we are actually referring to a family of

isotropic, trumpet-like coordinate systems. We will ultimately choose one (particularly

simple) member of this family to use in our numerical simulations, but for now we will

keep our discussion completely general.

In analytical trumpet coordinates, the four-dimensional metric is given by

ds2 = −r +R0 − 2M

r +R0

dt2 +
2f1

r
dtdr +

(
1 +

R0

r

)2 (
dr2 + r2dΩ2

)
(4.46)

[cf. Eq. (1) in [23]], where r is the isotropic radius and R0 is a constant that parameterizes

each member of the family. We have also defined, for convenience,

f1 (r) ≡
√

2r (M −R0) +R0 (2M −R0) (4.47)

[cf. Eq. (2) in [23]]. As shown in [23], the line element (4.46) can be derived from the line

element for Schwarzschild coordinates by introducing a time transformation

t = T + h (R) , (4.48)
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where T is the Schwarzschild time, followed by a radial transformation to an isotropic

radial coordinate

r = R−R0, (4.49)

where 0 ≤ R0 ≤ M . Note that the time transformation (4.48) is of the same form as

the one considered in the context of maximal trumpet coordinates [Eq. (4.28)], although,

since we are no longer considering maximal slicing, the height function h (R) takes a

different form. We note from the relation between r and R that r = 0 corresponds to a

nonzero areal radius R = R0. In other words, the coordinates terminate on a sphere of

areal radius R0.

By comparing (4.46) with the general metric in 3 + 1 form (4.2), we can identify the

lapse,

α =
r

r +R0

, (4.50)

the radial component of the shift vector,

βr =
rf1

(r +R0)2 , (4.51)

and the spatial metric γij = ψ4ηij, where

ψ =

(
1 +

R0

r

)1/2

(4.52)

[cf. Eqs. (13) and (15) in [23]]. We note that, as in maximal trumpet coordinates, ψ

has a 1/r dependence, which means that the proper length of a radial segment, given

by ds = ψ2dr = (1 +R0/r) dr, diverges logarithmically at the puncture (r = 0). We

therefore conclude that any point on the limiting surface at r = 0 is an infinite proper

distance away from the rest of the spatial slice. The nonzero components of the extrinsic

curvature, computed using Eq. (4.21), are

Krr = −r (M −R0) +MR0

f1r2
, Kθθ =

Kφφ

sin2 θ
= f1 (4.53)
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[cf. Eq. (16) in [23]], and the mean curvature is

K ≡ γijKij =
(3r + 2R0) (M −R0) +MR0

f1 (r +R0)2 . (4.54)

[cf. Eq. (17) in [23]]. (Once again, complete derivations of these results can be found

in Appendix G.) In our simulations of Bondi flow in analytical trumpet coordinates,

we specialize to the case R0 = M , for which many of the above expressions simplify

significantly.

4.5.2 Transformation of the Bondi solution

We will now use the prescription given in Section 4.2 to determine how the fluid variables

change under the transformation to analytical trumpet coordinates. First, we note that

the rest-mass density once again remains invariant under this transformation, and be

computed as described in Section 3.4. As above, the radial four-velocity of the fluid can

be computed from Eq. (4.7), which gives the remarkably simple result

ur =
dr

dR
uR = uR. (4.55)

We calculate the time-component of the four-velocity from Eq. (4.13), which yields

ut =
r +R0

r +R0 − 2M

[
−f1

r
u+

(
r +R0 − 2M

r +R0

+ u2

)1/2
]
, (4.56)

where f1 is given by Eq. (4.47). (Note that here, as above, we have used u = −ur.)
If we consider Eq. (4.56) more carefully, we recognize that, as in the case of maximal

trumpet coordinates, we encounter a problem at the black hole horizon, R = 2M . In

analytical trumpet coordinates, the horizon occurs at an isotropic radius r = 2M−R0 [see

Eq. (4.49)]. However, if we insert r = 2M − R0 into our expression for f1 [Eq. (4.47)],

we get f1 = 2M − R0, so f1 and r are equal at the horizon. As a result, both the

numerator and denominator of (4.56) go to zero as R → 2M , and we need to use a

Taylor expansion to evaluate ut in this limit. We first recognize that we can rewrite
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(r +R0 − 2M) / (r +R0) as (r2 − f 2
1 ) / (r +R0)2. Our expression for ut then becomes

ut =
(r +R0)2

r2 − f 2
1

[
−f1

r
u+

(
r2 − f 2

1

(r +R0)2 + u2

)1/2
]
, (4.57)

which we rewrite as

ut =
(r +R0)2

r2 − f 2
1

[
−f1

r
u+ u

(
r2 − f 2

1

(r +R0)2

1

u2
+ 1

)1/2
]
. (4.58)

We now use a Taylor series to expand the square root about r = 2M −R0 = f1, keeping

only the first two non-vanishing terms. This yields

ut ≈ (r +R0)2

r2 − f 2
1

[
−f1

r
u+ u+

1

2

r2 − f 2
1

(r +R0)2

1

u

]
, (4.59)

or

ut ≈ (r +R0)2

r (r + f1)
u+

1

2u
, (4.60)

where all quantities on the right-hand side are evaluated the horizon (r = 2M − R0).

We find that, as in maximal trumpet coordinates, ut is regular at the horizon. For the

special case R0 = M , we have f1 = M , so Eqs. (4.56) and (4.60) become

ut =
r +M

r −M

[
−M
r
u+

(
r −M
r +M

+ u2

)1/2
]

(4.61)

and

ut ≈ r +M

r
u+

1

2u
, (4.62)

respectively. As before, the normal three-velocity vr can be computed from Eq. (4.8).

We plot ρ0, ut, ur, and vr for analytical trumpet coordinates in Fig. 3.1, along with the

corresponding solutions for Schwarzschild, isotropic Schwarzschild, and maximal trumpet

coordinates. As for maximal trumpets, we find that the solution now extends smoothly

inside the black hole horizon, and, as a result, we no longer have to specify artificial

initial data in this regime.
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Chapter 5

Numerical examples

We have now derived all of the equations necessary to implement the Bondi solution

numerically. In this section, we first describe the basics of our numerical code. We

then briefly specify the parameters that characterize the particular Bondi solution that

we use in our simulations, along with the integration parameters (e.g., grid size and

maximum integration time). Finally, we discuss our numerical results using initial data

in each of the discussed coordinate systems: isotropic coordinates on slices of constant

Schwarzschild time, maximal trumpet coordinates, and analytical trumpet coordinates.

5.1 Numerical code

We use a C++ code that implements the BSSN formulation of Einstein’s equations

[15–17], together with the equations of relativistic hydrodynamics, in spherical polar

coordinates [25, 28, 29]. The code takes as input some type of initial data (which may

or may not satisfy the constraint equations; see below) and then solves the evolution

equations to evolve that data forward in time. The evolution equations are integrated

using a second-order PIRK (partially implicit Runge-Kutta) scheme, without relying on

any assumptions of symmetry. One of the ingredients in the BSSN implementation is a

so-called reference metric [30, 31]. We distinguish between a “full” approach to solving

the equations of relativistic hydrodynamics, in which all fluid equations are expressed in

terms of the reference metric, and a “partial” approach, in which the reference metric is
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used only for the relativistic Euler equation [Eq. (3.5)]. Both approaches, however, solve

all of the equations of relativistic hydrodynamics self-consistently. As discussed below,

there are advantages and disadvantages to each approach (see, e.g., [25]); we focus mainly

on the partial approach, which, in the case of Bondi accretion, appears to generate smaller

errors close to the black hole puncture, where the conformal factor ψ diverges. The code

is structured to allow for many different types of initial data, both vacuum and non-

vacuum, as well as different slicing and gauge conditions. In our simulations, we use

Bondi flow initial data in either isotropic Schwarzschild, maximal trumpet, or analytical

trumpet coordinates (Sections 5.2, 5.3, and 5.4, respectively). Our choice for the slicing

and gauge conditions depends on the coordinate system.

Each initial data type is described in its own C++ class. My primary contribution to

this code consisted of writing the class of initial data used to simulate Bondi accretion.

This part of the code is organized as follows. Most of the key equations are implemented

in a class called Bondi Solution. In addition, there are three classes that are derived

from this class, one for each of the coordinate systems listed above. Bondi Solution

contains the equations that are common to all coordinate systems [e.g., Eqs. (4.8) and

(4.13) for vr and ut, respectively], while the derived classes contain equations that are

unique to each coordinate system, such as those for α, βi, and ψ. Finally, there is a

parent class to Bondi Solution, Bondi, which in turn is derived from the parent class of

all initial data types, InData. Bondi reads in key parameters (including the coordinate

type and values of Γ, Ṁ , and Rs) from an input file, instantiates the appropriate derived

class, and facilitates the transfer of information from the ensemble of Bondi classes to

the main program.

In all of our simulations we assume a Gamma-law equation of state [Eq. (3.8)] with

Γ = 4/3 and a critical radius of Rs = 10M (see Table 3.1). We choose this value

of Γ because it describes a so-called ultra-relativistic gas, in which the internal energy

density is large compared to the rest-mass density. We use three different values for

the accretion rate, Ṁ = 10−5, Ṁ = 10−4, and Ṁ = 10−3, but focus on the case in

which Ṁ = 10−4. All plots included here use Ṁ = 10−4 unless stated otherwise. For

simplicity, we take the mass of the black hole to be M = 1. We keep the outer boundary
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set at rmax = 64M , where r is the isotropic radius in our chosen coordinate system, and

integrate to a maximum time of tmax = 64M . Note that this combination of parameters

ensures that the change in mass of the black hole (which, analytically, is equal to the

accretion rate multiplied by the integration time) remains small compared to the mass

of the black hole. Unless stated otherwise, we use Nr = 2048 grid points in the radial

direction. Because all solutions are spherically symmetric, we use with the minimum

number of angular grid points: Nθ = Nφ = 2. For plots that show different resolutions

at a fixed time, data are taken at t = 63M .

5.2 Isotropic Schwarzschild coordinates

We first consider evolutions of Bondi flow in isotropic Schwarzschild coordinates. As

discussed in Section 4.3, these coordinates become singular on the black hole horizon at

r = M/2. As a result, the fluid velocity diverges there when it is expressed in these

coordinates (see Fig. 3.1). In order to use initial data expressed in isotropic coordinates,

the authors of [10] use artificial initial data inside the horizon (r ≤ M/2), and modify

the initial data in the vicinity of the black hole (M/2 < r < M); we will use the same

approach here. For the rest-mass density, we fit a quadratic function between r = M/2

and r = M such that the radial derivative matches the analytical solution at r = M and

goes to zero at r = M/2. Inside the horizon, we choose the density to be proportional to

1− cos (2πr/M); at the origin, we set ρ0 equal to its value at the critical radius, R = Rs.

For the radial velocity, we let

u (r) = u|r=M ×
r

M
(5.1)

for r < M . Since the flow is supersonic at r = M/2, we expect the initial data inside

the horizon to have no affect on the exterior solution. Furthermore, we will see that

the solution in this regime quickly settles down to an equilibrium over the course of the

evolution.

In order to evolve isotropic Schwarzschild initial data, we employ moving-puncture

coordinates, which bring about a coordinate transformation into the maximal trumpet

geometry described in Section 4.4. As mentioned in Chapter 4, moving-puncture co-
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ordinates are characterized by some variant of the “1 + log” slicing condition for the

lapse [18] and a Gamma-driver condition for the shift vector [19]. Here we use a non-

advective 1 + log slicing condition,

∂tα = −2αK, (5.2)

where K is the mean curvature, and a non-advective Gamma-driver of the form

∂tβ
i = Bi

∂tB
i =

3

4
∂tΛ̄

i, (5.3)

where Λ̄ is a so-called connection vector (see, e.g., [28]). Instead of the lapse (4.18)

we start with a “pre-collapsed” lapse α = ψ−2. (Recall from Section 4.1 that we are

free to choose the lapse and shift freely as a result of the coordinate freedom of general

relativity; this choice of α proves more useful for numerical simulations that employ

moving puncture coordinates.)

In general, the Bondi solution in isotropic Schwarzschild coordinates is time-depen-

dent under the conditions (5.2) and (5.3). In Fig. 5.1 we plot the normal three-velocity

v = −vr [see Eq. (4.8)] as a function of r at different instances of time; as expected,

the solution fluctuates over the course of the evolution. Ideally, we would like to be able

to compare our numerical solution with an analytical result (e.g., to get a measure of

the numerical error). In the case of isotropic initial data evolved with moving puncture

coordinates, the only way to do this is by looking at invariants, i.e., those quantities that

remain time-independent. One such invariant is the rest-mass density ρ0 plotted as a

function of areal radius (Fig. 5.2). We see that the profiles of ρ0 at each time step fall

directly on top of one another, indicating the time-independence of the solution. In addi-

tion, the smallest value of the areal radius decreases over the course of the evolution, from

R = 2M at t = 0 to R ' 1.5M at t = 63M ; this shift is evidence of the transformation

from isotropic Schwarzschild coordinates, which terminate on the horizon, to maximal

trumpet coordinates, which terminate on a limiting surface of areal radius R = 1.5M .
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Figure 5.1 Normal three-velocity v = −vr as a function of isotropic radius r for isotropic

Schwarzschild initial data evolved with the 1+log slicing condition (5.2). In contrast to Fig. 5.2,

which shows the rest-mass density ρ0 as a function of R, each of the curves, which represent

different time points, are distinct, indicating the time-dependence of the solution. We note

some noise in the velocity profile well inside the horizon due to the proximity of the coordi-

nate singularity. Similarly, deviations from the smooth profile at large radii are the result of

interactions between the fluid and the outer boundary.

We also plot the lapse α as a function areal radius for isotropic Schwarzschild initial

data (Fig. 5.3). Since α describes the geometry of the coordinate system, and the coordi-

nates themselves undergo a transformation during the evolution, we do not expect it to

be time-independent. However, we do expect that it converges to the analytical solution

for a maximal trumpet; this is what we see in Fig. 5.3. It is important to note that we

would not see the same convergent behavior in a plot of α versus the isotropic radius r;

this is because r takes on a different meaning as a result of the underlying coordinate

transformation.

In general, initial data in isotropic Schwarzschild coordinates are not ideal for sim-

ulations that employ moving puncture coordinates. For one, it is necessary to specify

artificial initial data in the vicinity of the puncture, and for another, the underlying co-

ordinate transformation makes it difficult to obtain a reliable measure of the numerical

error. As we will see in the following two sections, casting the Bondi solution in trumpet

coordinates solves both of these issues.
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Figure 5.2 Rest-mass density ρ0 as a function of areal radius R for isotropic Schwarzschild

initial data evolved with the 1 + log slicing condition (5.2). For the sake of clarity, we eliminate

the innermost grid points in this plot, and show only results for the exterior of the black hole

throat (see text for details). All of the curves, which correspond to different time points, fall

directly on top of one another. However, this does not mean the solution is completely time-

independent. Rather, it appears time-independent if we graph gauge-invariant quantities (such

as ρ0) as a function of the areal radius R, which itself has an invariant meaning (see Section

4.2). As expected, the curves also match the analytical solution for a maximal trumpet.

5.3 Maximal trumpets

As discussed in Section 4.4, maximal trumpet coordinates penetrate the black hole hori-

zon smoothly and terminate at a nonzero areal radius R = 1.5M . As a result, the fluid

variables are all continuous across the horizon and in the vicinity of the puncture (see

Fig. 3.1), and it is no longer necessary to specify artificial initial data in that region, as

it was in the case of isotropic Schwarzschild coordinates.

We evolve maximal trumpet initial data using the slicing condition (5.2) and gauge

condition (5.3), i.e., moving-puncture coordinates. When they act on initial data ex-

pressed in maximal trumpet coordinates, these conditions no longer bring about a co-

ordinate transformation, but instead keep the coordinates fixed in a maximal trumpet

geometry. We therefore expect that all quantities, not just those that are gauge-invariant,

will remain time-independent when expressed in these coordinates.
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Figure 5.3 Lapse α as a function of areal radius R for isotropic Schwarzschild initial data

evolved with the 1 + log slicing condition (5.2). In general, the lapse is time-dependent under

this slicing condition. However, it is seen to settle down to the maximal trumpet solution when

plotted versus the areal radius. Note that the loop in the t = 0 curve back toward larger areal

radii is a manifestation of the fact that the isotropic radius is double-valued.

We begin by employing the relativistic Cowling approximation, in which we evolve

the fluid but keep the spacetime fixed. In Fig. 5.4 we show the rest-mass density ρ0 (top

panel) and the relative error ∆ρ0/ρ0 (bottom panel) for both the partial (left panel) and

full (right panel) approaches to solving the equations of relativistic hydrodynamics. To

begin with, we find that the relative error obtained using the full approach is less than that

obtained using the partial approach at all but the innermost few grid points. In addition,

the bottom panels of Fig. 5.4 reveal that, regardless of the approach, the code converges

to second order, meaning that the numerical errors decrease with the square of the grid

resolution. (In order to demonstrate this behavior, we use grid resolutions Nr = 256×N
grid points for N = 1, 2, 4, and 8, and multiply the errors for each resolution by N2;

the resulting curves converge to one another, demonstrating second order convergence.)

With regard to the plots of ρ0 (top panels), we note that for finer resolutions, the point

at which the numerical solution deviates from the analytical solution is closer to the

puncture, i.e., we have better agreement over a larger radial range. Note that here and
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Figure 5.4 Rest-mass density ρ0 (top panel) and relative error ∆ρ0/ρ0 (bottom panel) as a

function of isotropic radius r for maximal trumpet initial data evolved in the Cowling approx-

imation. On the left and right we show data obtained using the partial and full approaches,

respectively. In each plot the number of radial grid points is given by Nr = 256×N for N = 1,

2, 4, and 8. We can see in the top panels that for higher resolutions, the point at which our

numerical results deviate from the analytical solution is closer to the puncture. (Note that

the resolution also affects the placement of the first grid point, i.e., higher resolution curves

terminate at smaller minimum radii.) In the bottom panels we have scaled the relative error

for each resolution by N2 to show second-order convergence. We note that the full approach

leads to smaller relative errors at all but the innermost few grid points. The dip in the relative

error at the right of each of the bottom panels is a numerical artifact caused by interaction of

the fluid with the outer boundary.

in all future plots of the rest-mass density ρ0 (Figs. 5.4 and 5.5), we define the relative

error as ∆ρ0/ρ0 ≡
(
ρ0 − ρinit

0

)
/ρ0.

We then switch to evolving the fluid self-consistently with gravitational fields; plots

of ρ0 for these simulations are shown in Fig. 5.5. As before, we plot results for both the

partial (left panel) and full (right panel) approaches. For coarse enough resolutions, the

code will still converge; however, at finer resolutions, the relative error bottoms out at
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Figure 5.5 Rest-mass density ρ0 (top panel) and relative error ∆ρ0/ρ0 (bottom panel) as a

function of isotropic radius r for maximal trumpet initial data evolved self-consistently with

the spacetime using the 1 + log slicing condition (5.2). As in Fig. 5.4, we show data obtained

using both the partial (left panel) and full (right panel) approaches. The grid resolution is

again given by Nr = 256×N for N = 1, 2, 4, and 8. We note that, in general, the errors in this

plot are larger than those obtained using the Cowling approximation. In particular, we find

large errors at the first grid point for the partial approach and at the first three grid points for

the full approach; for the sake of clarity, we omit those grid points in this plot. We note that,

in evolving the spacetime as well as the fluid, we introduce another source of numerical error,

namely the fact that our solution is no longer an exact solution to Einstein’s equations (i.e.,

since we neglect the self-gravity of the fluid). We expect this error to be approximately Ṁt/M ,

and this is exactly what we see in the bottom panels, in the form of a floor in the relative error

at ∆ρ0/ρ0 ' 6 × 10−3. We therefore see convergence only as long as the numerical error is

dominated by finite-differencing (i.e., for coarser resolutions). Note that, as in Fig. 5.4, finer

resolution leads to better agreement closer to the puncture.

∆ρ0/ρ0 ' 6×10−3. This is as expected, since, in turning on the evolution of gravitational

fields, we have introduced another source of error due to the fact that the Bondi solution

is not an exact solution to Einstein’s equations, since it neglects the self-gravity of the

fluid. We expect the resultant deviations in the evolved data to scale with the fluid
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density, or the accretion rate; specifically, we expect a relative error of approximately

Ṁt/M . As shown in Fig. 5.5, this deviation becomes the dominant source of numerical

error for sufficiently fine resolutions (i.e., when the error associated with grid resolution

becomes sufficiently small). We note that, in general, the errors obtained using the

partial approach are comparable to those obtained using the full approach, except at the

innermost few grid points (excluded in the plot), where the errors for the full approach are

much larger. For this reason, we choose to employ the partial approach for simulations

that evolve both the fluid and spacetime.
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Figure 5.6 Normal three-velocity v = −vr as a function of isotropic radius r for maximal

trumpet initial data evolved with the 1 + log slicing condition. Sufficiently far from the coor-

dinate singularity at the puncture (r = 0), profiles of v at different instances of time cannot be

distinguished, indicating the time-independence of the solution. (Compare to Fig. 5.1, in which

the velocity profile is shown to evolve over the course of the evolution.) We conclude that, by

expressing the Bondi solution in maximal trumpet coordinates, it becomes possible to compare

all quantities with their analytical counterparts, not only those that are gauge-invariant. As in

Fig. 5.1, there is some noise in the profile well inside the horizon; this is due to the proximity

of the puncture.

In Fig. 5.6 we plot the normal three-velocity of the fluid as a function of r at different

instances of time. As expected, the velocity profile remains approximately constant over

the course of the evolution (compare to Fig. 5.1 above), indicating that even gauge-

dependent quantities remain time-independent under these coordinate conditions. As a
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result, we are able to compare our numerical data directly with the analytical solution,

and no longer have to rely solely on invariants as a means of measuring numerical error.

We note that the numerical results do diverge slightly from the analytical solution inside

the horizon; this is due to the proximity of the coordinate singularity at the puncture.
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Figure 5.7 Accretion rate Ṁ as measured by the growth of the event horizon for analytical

values Ṁ = 10−5, Ṁ = 10−4, and Ṁ = 10−3, plotted as a function of time. Initial data

are given in maximal trumpet coordinates and evolved using the moving-puncture method. In

order to directly compare our results for different accretion rates, we normalize the computed

value of Ṁ (Ṁsim) by the corresponding analytical value (Ṁexact). For all values of Ṁ , there

is an initial period of adjustment (0 < t < 0.4tmax) before the solution settles down into an

approximately steady state. We might expect smaller values of Ṁ (i.e., lower densities) to

result in better agreement with the exact solution; the fact that this does not occur may be

the result of numerical uncertainty in horizon-finding process. To obtain these data we used a

resolution of Nr = 256 on a logarithmic grid.

Finally, in Fig. 5.7, we show the accretion rate, which is computed in our numerical

code from the growth of the event horizon, as a function of time for several different

values of Ṁ . In each case, we normalize the numerical value (Ṁsim) by the corresponding

analytical value (Ṁexact) in order to directly compare our results. (Note that Ṁ is

an input parameter and, as such, does not change over the course of the evolution.

However, due to numerical effects, there is a discrepancy between the measured value of
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the accretion rate and the value of Ṁ .) While we do not necessarily see convergence for

decreasing Ṁ , all curves do approach the analytical value after an initial period of flux.

5.4 Analytical trumpets

As for maximal trumpet coordinates, spatial slices in an analytical trumpet geometry

penetrate the black hole horizon smoothly and terminate on a limiting surface at a

nonzero distance (as measured in areal radius) from the spacetime singularity. Recall

that analytical trumpet coordinates encompass a family of coordinate systems that are

parameterized by the value R0, where 0 ≤ R0 ≤ M . In our numerical simulations, we

consider the member of this family corresponding to R0 = M , for which the limiting

surface occurs at an areal radius R = M . In these coordinates, the fluid variables are

all well-behaved at the horizon (see Fig. 3.1), and it is not necessary to specify artificial

initial data close to the puncture.

In order to evolve initial data in analytical trumpet coordinates, we use a variation

of the 1 + log slicing condition given by

∂tα = −α (1− α)K, (5.4)

and a non-advective Gamma-driver condition for the shift (5.3). As mentioned in [23],

the slicing condition (5.4) can lead to coordinate pathologies. However, as shown below,

we are nonetheless able to carry out simulations of Bondi accretion using initial data

expressed in these coordinates. We expect data given in analytical trumpet coordinates

to remain time-independent under the above coordinate conditions.

All of the key results discussed above in the context of maximal trumpet coordi-

nates (notably the time-independence of both gauge-independent and gauge-dependent

quantities) also apply, in general, to simulations in analytical trumpet coordinates. In

Fig. 5.8 we show snapshots of the normal three-velocity of the fluid as a function of r at

different instances of time. As in the analogous plot for maximal trumpet initial data

(Fig. 5.6), and in contrast to that for isotropic Schwarzschild initial data (Fig. 5.1), all of

58



10−2 10−1 100 101

r/M

0.00

0.05

0.10

0.15

0.20

0.25

0.30

v

t = 0

t = 16M

t = 31M

t = 47M

t = 63M

Figure 5.8 Normal three-velocity v = −vr as a function of isotropic radius r for analytical

trumpet initial data evolved with the 1 + log slicing condition (5.4). Once again, profiles at

different instances of time overlap very closely, demonstrating the time-independence of the

solution. We observe slightly larger errors than we did for maximal trumpets (Fig. 5.6); this

discrepancy is most clearly visible at the peak of the velocity profile. However, we still find

that the numerical results converge to the analytical solution with increasing resolution. Once

again, the noise at small radii inside the horizon is a numerical artifact caused by interaction

with the puncture.

the curves fall on top of one another, indicating the time-independence of the solution.

As in Fig. 5.6, we observe small discrepancies between the numerical and analytical so-

lutions at small radii; this is again due to the proximity of the coordinate singularity at

r = 0. Finally, we note that, in general, analytical trumpet coordinates lead to slightly

larger errors than maximal trumpets. (In Figs. 5.6 and 5.8, this discrepancy is most

visible at the peak of the profile.) However, in both cases we find that the numerical

data converge to the analytical solution with increasing resolution.
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Chapter 6

Summary

The Bondi solution, which was originally derived by Hermann Bondi in 1952, describes

spherically symmetric, radial accretion onto a non-rotating black hole in the fluid limit.

Because it can be understood analytically, this solution serves as a powerful test for rel-

ativistic hydrodynamics and magnetohydrodynamics codes. The original Bondi solution

is formulated in Schwarzschild coordinates (Chapter 3), which, while convenient from

an analytical point of view, cannot be implemented numerically. As a result, numerical

simulations of Bondi accretion (or at least those that evolve the fluid and spacetime self-

consistently) typically cast the solution in isotropic Schwarzschild coordinates (Section

4.3) and then evolve it using so-called moving-puncture coordinates (Section 4.4), which

induce a transition into a trumpet geometry. Trumpet coordinates have proven to be

very useful in numerical simulations of black hole spacetimes. For one, they penetrate the

black hole horizon smoothly, thereby avoiding issues that arise there in other coordinate

systems. In addition, they terminate on a limiting surface of nonzero areal radius, thus

avoiding problems associated with the spacetime singularity.

Here we transform the Bondi solution into two different trumpet coordinate systems.

In the new coordinates, the Bondi solution is no longer singular at the horizon, and

remains time-independent when evolved with moving-puncture coordinates. We demon-

strate the usefulness of this solution in several numerical examples. In particular, we show

that all quantities, not just those that are gauge-invariant, remain time-independent over
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the course of the evolution. As a result, we can more easily determine and characterize

the numerical error associated with our simulations.
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Appendix A

Notes on Newtonian Bondi accretion

In this appendix, we continue the discussion of non-relativistic Bondi accretion presented

in Chapter 2. First, in Section A.1, we derive an equation for the accretion rate Ṁ in

terms of the boundary values at infinity. Then, in Section A.2, we consider the behavior

of the fluid in the limits r � rs and r � rs.

A.1 Computing Ṁ in terms of boundary values

We start by using the Bernoulli equation (2.24) to express the sonic radius rs in terms

of the sound speed at infinity. Recall that at the sonic radius

u2
s = a2

s =
1

2

GM

rs
(A.1)

[cf. Eq. (2.18)]. Inserting this equation into (2.24) gives

1

4

GM

rs
+

1

2 (Γ− 1)

GM

rs
− GM

rs
=

1

Γ− 1
a2
∞, (A.2)

which can be rearranged to obtain

a2
∞ =

(
5− 3Γ

4

)
GM

rs
, (A.3)
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or

rs =

(
5− 3Γ

4

)
GM

a2
∞

(A.4)

[cf. Eq. (ST.14.3.14)]. Substituting (A.4) into (A.1) yields

u2
s = a2

s =

(
2

5− 3Γ

)
a2
∞. (A.5)

We now want to express the density ρ in terms of a and the boundary values ρ∞ and a∞.

From our equation for the sound speed (2.2) we have

a2 =
ΓP

ρ
= ΓκρΓ−1, (A.6)

or

ρ =

(
a2

Γκ

)1/(Γ−1)

. (A.7)

This implies ρ ∝ a2/(Γ−1), so

ρ

ρ∞
=

(
a

a∞

)2/(Γ−1)

(A.8)

[cf. Eq. (ST.14.3.15)]. Inserting (A.8) into our equation for the accretion rate (2.19) and

evaluating at the sonic radius yields

Ṁ = 4πρ∞asr
2
s

(
as
a∞

)2/(Γ−1)

, (A.9)

where we have also substituted us = as. We can now insert Eqs. (A.4) and (A.5) for rs

and as, respectively, to obtain

Ṁ = 4πλs

(
GM

a∞

)2

ρ∞a∞ (A.10)

[cf. Eq. (ST.14.3.16)], where λs = λs (Γ) is the so-called accretion eigenvalue for the

transonic solution,

λs =

(
1

2

)(Γ+1)/2(Γ−1)(
5− 3Γ

4

)−(5−3Γ)/2(Γ−1)

(A.11)
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[cf. Eq. (ST.14.3.17)]. Values of λs for several different Γ, 1 ≥ Γ ≥ 5/3, are given in

Table 14.1 of [4]. In our numerical simulations we use Γ = 4/3, which corresponds to

λs ' 0.707.

A.2 Fluid profiles in the limits r � rs and r � rs

We will now calculate the flow profiles for the transonic solution in the limits r � rs

and r � rs. In order to calculate the temperature profile, we specialize to the case of a

Maxwell-Boltzmann gas of mean molecular weight µ. In this case the pressure is given

by

P =
ρκT

µmu

, (A.12)

where T is the temperature and mu is the atomic mass. Inserting (A.12) into our equation

for the sound speed (2.2) gives

a2 =
ΓP

ρ
=

ΓκT

µmu

. (A.13)

The temperature is therefore proportional to the sound speed squared, so

T

T∞
=

(
a

a∞

)2

=

(
ρ

ρ∞

)Γ−1

(A.14)

[cf. Eq. (ST.14.3.19)], where we have used Eq. (A.8) in the final equality. For r � rs,

the gravitational potential of the black hole is negligible, and the density, temperature,

and sound speed remain close to their asymptotic values:

ρ ≈ ρ∞, T ≈ T∞, a ≈ a∞,
r

rs
� 1 (A.15)

[cf. Eq. (ST.14.3.21)]. We can calculate the velocity profile in this limit by combining

Eqs. (2.19) and (A.10) to obtain

Ṁ = 4πr2ρu = 4πλs

(
GM

a2
∞

)2

ρ∞a∞. (A.16)
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Since ρ ≈ ρ∞ for r � rs [Eq. (A.15)], this yields

u

a∞
≈ λs

(
GM

a2
∞

)
r−2,

r

rs
� 1 (A.17)

[cf. Eq. (ST.14.3.22)].

In the limit r � rs, the fluid is significantly influenced by the gravitational field of

the black hole; the deceleration of the fluid due to gas pressure becomes negligible and u

approaches the free-fall velocity. In Eq. (2.24), the term GM/r dominates over the term

a2/ (Γ− 1), giving

u ≈
(

2GM

r

)1/2

,
r

rs
� 1

(
1 ≤ Γ <

5

3

)
(A.18)

[cf. Eq. (ST.14.3.23)]. The density profile can be calculated from Eqs. (A.16) and (A.18).

From (A.16) we have
ρ

ρ∞
= λs

(
GM

a2
∞

)
a∞r

−2u−1. (A.19)

which, when combined with Eq. (A.18) for the fluid velocity, yields

ρ

ρ∞
=

λs
21/2

(
GM

a2
∞

)3/2

r−3/2,
r

rs
� 1

(
1 ≤ Γ <

5

3

)
(A.20)

[cf. Eq. (ST.14.3.24)]. The temperature profile in the limit r � rs can be found by

inserting our expression for the ρ/ρ∞ (A.20) into Eq. (A.14). This yields

T

T∞
≈
[
λs

21/2

(
GM

a2
∞

)3/2
]Γ−1

r−3(Γ−1)/2,
r

rs
� 1

(
1 ≤ Γ <

5

3

)
(A.21)

[cf. Eq. (ST.14.3.25)]. Note that Eqs. (A.18), (A.20), and (A.21) are also true in the rel-

ativistic case if we identify r with the Schwarzschild radius, u with the radial component

of the four-velocity, and ρ with the proper rest-mass density [cf. Eqs. (B.19), (B.21), and

(B.24)].

These same three equations are altered slightly in the case Γ = 5/3. In the Newtonian

approximation, Γ = 5/3 corresponds to a transonic radius of rs = 0 [see Eq. (A.4)], which
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means that we can use Eq. (2.18), which describes the flow at the transonic radius, to

approximate the flow at small radii r/ (GM/a2
∞)� 1. We therefore have

a ≈ u ≈
(
GM

2r

)1/2

,
r

GM/a2
∞
� 1

(
Γ =

5

3

)
(A.22)

[cf. Eq. (ST.14.3.26)]. In analogy to the more general case described above, we can

calculate the density profile from Eqs. (A.19) and (A.22). Inserting Eq. (A.22) for the

fluid velocity into Eq. (A.19) yields

ρ

ρ∞
≈ 1

23/2

(
GM

a2
∞

)3/2

r−3/2,
r

GM/a2
∞
� 1

(
Γ =

5

3

)
, (A.23)

where we have substituted λs = 1/4 for Γ = 5/3. Inserting (A.23) into (A.14) gives the

temperature profile,

T

T∞
≈ 1

2

(
GM

a2
∞

)
r−1,

r

GM/a2
∞
� 1

(
Γ =

5

3

)
(A.24)

[cf. Eq. (ST.14.3.27)]. In the relativistic case, Eqs. (A.22), (A.23), and (A.24) are multi-

plied by numerical factors of order unity [cf. Eqs. (B.36), (B.37), and (B.38)].
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Appendix B

Notes on relativistic Bondi accretion

In this appendix, we continue where we left off in our discussion of relativistic Bondi

accretion in Chapter 3. We first show how to calculate the accretion rate Ṁ in terms of

the boundary values ρ∞ and a∞ (Section B.1), and then derive expressions for the fluid

variables in the limit R� Rs and at the horizon (Section B.2).

B.1 Computing Ṁ in terms of boundary values

We begin by using the relativistic Bernoulli equation (3.53) to relate as, the sound speed

at the critical radius, and a∞, the sound speed at infinity. Evaluating the left side of

Eq. (3.53) at R = Rs, and using Eqs. (3.33) and (3.34) to express us and Rs in terms of

as, we obtain (
Γ− 1

Γ− 1− a2
s

)2(
1

1 + 3a2
s

)
=

(
Γ− 1

Γ− 1− a2
∞

)2

, (B.1)

or, taking the inverse of both sides,

(
1− a2

s

Γ− 1

)2 (
1 + 3a2

s

)
=

(
1− a2

∞
Γ− 1

)2

(B.2)

[cf. Eq. (ST.G.30)]. At large radii R ≥ Rs, we expect the fluid particles to be non-

relativistic (a ≤ as � 1), provided they were non-relativistic at infinity (a∞ � 1). In

order to solve for as in terms of a∞, we expand (B.2) to lowest non-vanishing order in

a2
s and a2

∞. Here and in the calculations that follow, we must be careful to distinguish
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the cases Γ 6= 5/3 and Γ = 5/3. For the more general case Γ 6= 5/3, we can expand the

left-hand side of (B.2) as

(
1− a2

s

Γ− 1

)2 (
1 + 3a2

s

)
≈
(

1− 2a2
s

Γ− 1

)(
1 + 3a2

s

)
≈ 1 +

3Γ− 5

Γ− 1
a2
s. (B.3)

Notice that for Γ = 5/3 the term (3Γ− 5) / (Γ− 1) vanishes, and we must expand to

higher order [see Eq. (B.7) below]. Expanding the right side of Eq. (B.2) gives, for

Γ 6= 5/3, (
1− a2

∞
Γ− 1

)2

≈ 1− 2

Γ− 1
a2
∞. (B.4)

Thus, we have

1 +
3Γ− 5

Γ− 1
a2
s ≈ 1− 2

Γ− 1
a2
∞, (B.5)

or

a2
s ≈

2

5− 3Γ
a2
∞

(
Γ 6= 5

3

)
(B.6)

[cf. Eq. (ST.G.31)]. We now consider the special case Γ = 5/3. Expanding the left side

of Eq. (B.2), this time to order a4
s, gives

(
1− 3

2
a2
s

)2 (
1 + 3a2

s

)
=

(
1− 3a2

s +
9

4
a4
s

)(
1 + 3a2

s

)
≈ 1− 27

4
a4
s, (B.7)

while on the right side we have

(
1− 3

2
a2
∞

)2

≈ 1− 3a2
∞. (B.8)

Thus, for Γ = 5/3, we have

1− 27

4
a4
s ≈ 1− 3a2

∞, (B.9)

or

a2
s ≈

2

3
a∞

(
Γ =

5

3

)
(B.10)
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[cf. Eq. (ST.G.31)]. We can now use Eqs. (B.6) and (B.10) in combination with (3.33)

to solve for Rs in terms of a∞. Rearranging (3.33) to solve for Rs gives

Rs = M

(
1 + 3a2

s

2a2
s

)
. (B.11)

Then, for Γ 6= 5/3, we have

Rs ≈
5− 3Γ

4

M

a2
∞

(
1 +

6

5− 3Γ
a2
∞

)
≈ 5− 3Γ

4

M

a2
∞

(
Γ 6= 5

3

)
, (B.12)

where to obtain the final expression we have taken the term in parentheses to be ≈ 1,

since we are assuming a2
∞ � 1. For Γ = 5/3, we have

Rs ≈
3

4

M

a∞
(1 + 2a∞) ≈ 3

4

M

a∞

(
Γ =

5

3

)
, (B.13)

where we have again used the fact that a∞ � 1 to simplify our result. We now use

Eq. (3.51) to relate the rest-mass density at the critical radius, ρ0,s, to the rest-mass

density at infinity, ρ0,∞. For large radii R ≥ Rs (a� 1), Eq. (3.51) simplifies to

ΓκρΓ−1
0 ≈ a2, (B.14)

which implies ρ0 ∝ a2/(Γ−1). Thus,

ρ0,s

ρ0,∞
≈
(
as
a∞

)2/(Γ−1)

(B.15)

[cf. Eq. (ST.G.32)].

We can now use Eqs. (3.34), (3.36), (B.6), (B.12), and (B.15) to express the accretion

rate Ṁ in terms of the boundary values at infinity, a∞ and ρ0,∞. Evaluating (3.36) at

R = Rs gives

Ṁ = 4πρ0,susR
2
s. (B.16)
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Rewriting ρ0,s, us, and Rs in terms of a∞ and ρ0,∞ according to above equations, we

obtain

Ṁ = 4πλsM
2ρ0,∞a

−3
∞ (B.17)

[cf. Eq. (ST.G.33)], where λs = λs (Γ) is given by

λs =

(
1

2

)(Γ+1)/2(Γ−1)(
5− 3Γ

4

)−(5−3Γ)/2(Γ−1)

(B.18)

[cf. Eq. (ST.14.3.7)]. Note that to lowest order, the relativistic accretion rate (B.17) is

equal to the accretion rate for Newtonian (i.e., non-relativistic) Bondi flow [cf. Eq. (A.10)].

The equivalence of these two results is physically reasonable, since the critical accretion

rate is determined by the fluid parameters at R = Rs, which is far from the event horizon

of the black hole (Rs � 2M) and thus, to reasonable approximation, uninfluenced by

non-linear gravity.

B.2 Fluid profiles in the limit R� Rs

We now investigate the behavior of the gas in the limit R � Rs. We can estimate the

fluid velocity in this limit using Eq. (3.53). The first term on the left-hand side and the

sole term on the right-hand side both remain finite in the limit R � Rs. Therefore,

the middle term must also remain finite. Since 2M/R diverges to infinity as R → 0, we

conclude that u2 must diverge in the same way. That is,

u2 ≈ 2M

R
, R� Rs

(
Γ 6= 5

3

)
(B.19)

[cf. Eq. (ST.G.34)]. The u2 and 2M/R terms will now cancel, and both sides of the

equation will remain finite in the limit R � Rs. We now want to obtain an expression

for the compression of the gas at small radii. Combining Eqs. (B.16) and (B.17) yields

ρ0

ρ0,∞
≈ λsM

2a−3
∞ u

−1R−2, (B.20)
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or, inserting Eq. (B.19) for the fluid velocity,

ρ0

ρ0,∞
≈ λs

21/2

(
M

a2
∞R

)3/2

, R� Rs

(
Γ 6= 5

3

)
(B.21)

[cf. Eq. (ST.G.35)]. If we assume the fluid to be a Maxwell-Boltzmann gas with pressure

P = ρ0kT , then we can calculate the temperature profile from the equation of state

(3.14). Combining these two relations yields

P = ρ0kT = κρΓ
0 , (B.22)

from which we can discern that T ∝ ρΓ−1
0 . Thus,

T

T∞
=

(
ρ0

ρ0,∞

)Γ−1

, (B.23)

or, substituting Eq. (B.21) for the rest-mass density,

T

T∞
≈
(
λs

21/2

)Γ−1(
M

a2
∞R

)3/2(Γ−1)

, R� Rs

(
Γ 6= 5

3

)
(B.24)

[cf. Eq. (ST.G.36)].

We can also calculate the fluid velocity, compression, and temperature at the horizon

by evaluating the above equations at R = 2M . From Eqs. (B.19), (B.21), and (B.24),

respectively, we obtain

uh ≈ 1

(
Γ 6= 5

3

)
, (B.25)

ρ0,h

ρ0,∞
≈ λs

4

(
c

a∞

)3 (
Γ 6= 5

3

)
, (B.26)

and

Th
T∞
≈
[
λs
4

(
c

a∞

)3
]Γ−1 (

Γ 6= 5

3

)
(B.27)

[cf. Eq. (ST.G.37)], where in the last two equations we have reinserted c, the speed of

light. Note that all three of these equations are independent of the black hole mass M .
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Eqs. (B.25), (B.26), and (B.27) are slightly modified in the special case Γ = 5/3.

In this case, a remains comparable to u inside the transonic radius (R < Rs). From

Eq. (B.10), we know that a2 ∼ a∞. As a result, we can neglect all terms in Eq. (3.53)

that are of order a2
∞, in which case the right-hand side reduces to unity. Inserting R = 2M

and Γ = 5/3 and evaluating at the horizon then yields

uh

(
1 +

a2
h

2
3
− a2

h

)
≈ 1 (B.28)

[cf. Eqs. (ST.G.38)]. We now want to express ah in terms of the rest-mass density at the

horizon, ρ0,h. Evaluating Eq. (3.50) at the horizon gives

a2
h =

5
3
κρ

2/3
0,h

1 + 5
2
κρ

2/3
0,h

(B.29)

for Γ = 5/3. Inserting this expression into (B.28) then yields

uh

(
1 +

5

2
κρ

2/3
0,h

)
≈ 1 (B.30)

[cf. Eqs. (ST.G.39)]. We can use Eqs. (3.36) and (B.17) to solve for ρ0,h in terms of

the boundary values at infinity. Combining these two equations and evaluating at the

horizon yields

ρ0,h =
λs
4

ρ0,∞
a3
∞uh

=
ρ0,∞

16a3
∞uh

(B.31)

[cf. Eqs. (ST.G.40)], where in the last equality we have inserted λs = 1/4 for Γ = 5/3.

We use Eq. (3.50) to express a∞ in terms of ρ∞. For Γ = 5/3, this gives

a2
∞ =

5
3
κρ

2/3
0,∞

1 + 5
2
κρ

2/3
0,∞
≈ 5

3
κρ

2/3
0,∞ (B.32)

[cf. Eqs. (ST.G.41)]. Note that the final approximation is justified because we are as-

suming ρ0,∞ � 1. We can now use Eqs. (B.31) and (B.32) to rewrite the density term in

(B.30) as

5

2
κρ

2/3
0,h =

5

2

κρ
2/3
0,∞

162/3a2
∞uh

=
3

211/3
u
−2/3
h . (B.33)
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Making this substitution in Eq. (B.30) yields

uh

(
1 +

3

211/3
u
−2/3
h

)
≈ 1, (B.34)

or

uh +
3

211/3
u

1/3
h ≈ 1 (B.35)

[cf. Eq. (ST.G.42)], which can be solved numerically to find

uh ≈ 0.782

(
Γ =

5

3

)
. (B.36)

[cf. Eq. (ST.G.43)]. Using Eq. (B.31), we can write the gas compression at the horizon

as
ρ0,h

ρ0,∞
≈ 1

16uh

(
c

a∞

)3 (
Γ =

5

3

)
. (B.37)

The temperature is then given by

Th
T∞

=

(
ρ0,h

ρ0,∞

)2/3

≈
(

1

16uh

)2/3(
c

a∞

)2 (
Γ =

5

3

)
(B.38)

[cf. Eq. (ST.G.44)].
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Appendix C

Derivation of the relativistic Euler

equation

In this appendix we derive the relativistic Euler equation,

(ρ+ P )ub∇bu
a = −∂aP − uaub∂bP (C.1)

[cf. Eq. (3.5)], from the conservation of energy-momentum,

∇aT
ab = 0 (C.2)

[cf. Eq. (3.3)]. We take T ab to be the stress-energy tensor for a perfect fluid,

T ab = (ρ+ P )uaub + Pgab. (C.3)

We begin by evaluating the divergence of T ab. Inserting (C.3) into (C.2) gives

∇bT
ab = ∇b

[
(ρ+ P )uaub + Pgab

]
= uaub∇b (ρ+ P ) + (ρ+ P )ub∇bu

a + (ρ+ P )ua∇bu
b + gab∇bP, (C.4)
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or, contracting with ua,

ua∇bT
ab = uau

aub∇b (ρ+ P ) + (ρ+ P )uau
b∇bu

a + (ρ+ P )uau
a∇bu

b + ub∇bP. (C.5)

Recall the normalization condition for the four-velocity,

ubu
b = −1. (C.6)

Operating on this equation with ∇a yields

∇a

(
ubu

b
)

= ub∇aub + ub∇au
b = 0, (C.7)

or, since ∇a is compatible with gab,

ub∇au
b = 0. (C.8)

Using Eqs. (C.6) and (C.8) in Eq. (C.5), we find

ua∇bT
ab = −ub∇b (ρ+ P )− (ρ+ P )∇bu

b + ub∇bP

= −ub∇bρ− (ρ+ P )∇bu
b = 0, (C.9)

or, multiplying with ua,

−uaub∇bρ− (ρ+ P )ua∇bu
b = 0. (C.10)

We can now add Eq. (C.10) to our original equation for the divergence of T ab (C.4) to

obtain

uaub∇bP + (ρ+ P )ub∇bu
a +∇aP. (C.11)

Since P is a scalar, we have ∇bP = ∂bP and ∇aP = ∂aP . Making these substitutions in

(C.11) and rearranging terms gives

(ρ+ P )ub∇bu
a = −∂aP − uaub∂bP, (C.12)
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which is the desired result.

79



Appendix D

Derivation of the entropy equation

In this appendix we derive the entropy equation,

d

(
ε

ρ0

)
= −Pd

(
1

ρ0

)
(D.1)

[cf. Eq. (3.6)], from the law of baryon conservation,

∇a (ρ0u
a) = 0 (D.2)

[cf. Eq. (3.2), and the conservation of energy-momentum,

∇aT
ab = 0 (D.3)

[cf. Eq. (3.3)]. We begin, as in our derivation of the relativistic Euler equation, by

contracting Eq. (D.3) with the covariant four-velocity ua. As shown in Appendix C, this

yields

ua∇bT
ab = −ub∇bρ− (ρ+ P )∇bu

b = 0. (D.4)

[cf. Eq. (C.9)]. From the law of baryon conservation (D.2), we have

∇a (ρ0u
a) = ρ0∇au

a + ua∇aρ0, (D.5)
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or

∇au
a = − 1

ρ0

ua∇aρ0. (D.6)

Making this substitution in Eq. (D.4) yields

ub∇bρ =
ρ+ P

ρ0

ub∇bρ0. (D.7)

We recognize that ub∇b is equivalent to d/dτ , where τ is the proper time as measured

by an observer comoving with the fluid. We therefore have

dρ

dτ
=
ρ+ P

ρ0

dρ0

dτ
, (D.8)

or
dρ

dρ0

=
ρ+ P

ρ0

(D.9)

[cf. Eq. (3.7)]. We will now show that Eq. (D.9) is equivalent to the entropy equation

(D.1). We first use (3.1) to rewrite (D.9) as

dρ =
ρ+ ε+ P

ρ0

dρ0. (D.10)

Multiplying both sides by 1/ρ0 and rearranging terms yields

1

ρ0

dρ− 1

ρ0

dρ0 −
ε

ρ2
0

dρ0 =
P

ρ2
0

dρ0, (D.11)

or
1

ρ0

dε− ε

ρ2
0

dρ0 =
P

dρ2
0

dρ0, (D.12)

which we can write more compactly as

d

(
ε

ρ0

)
= −Pd

(
1

ρ0

)
. (D.13)
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Appendix E

Derivation of the relativistic fluid

equations

In this appendix we derive the relativistic fluid equations (3.16) and (3.17) from the law

of baryon conservation,

∇a (ρ0u
a) = 0 (E.1)

[cf. Eq. (3.2)], and the relativistic Euler equation,

(ρ+ P )ub∇bu
a = −∂aP − uaub∂bP (E.2)

[cf. Eq. (3.5)], respectively. Here ua =
(
ut, uR, 0, 0

)
is the four-velocity of the fluid, ρ

and ρ0 are the total mass-energy density and rest-mass density, respectively, and P is

the pressure. We choose to derive these equations in Schwarzschild coordinates, in which

the line element is given by

ds2 = −
(

1− 2M

R

)
dt2 +

(
1− 2M

R

)−1

dR2 +R2dΩ2, (E.3)

where t is the Schwarzschild time, R is the Schwarzschild radius, and M is the mass of

the black hole.
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E.1 The first fluid equation

We begin with the law of baryon conservation (E.1). Expanding the covariant derivative

yields

∇a (ρ0u
a) = ∂a (ρ0u

a) + ρ0u
bΓaab = 0. (E.4)

Since we are assuming steady-state flow, we have ∂tρ0 = ∂tu
a = 0. We can therefore

rewrite the first term of (E.4) as

∂a (ρ0u
a) = ∂R

(
ρ0u

R
)

= uR∂Rρ0 + ρ0∂Ru
R. (E.5)

We define u = −uR to be the inward velocity of the fluid. Eq. (E.5) then becomes

∂a (ρ0u
a) = −u∂Rρ0 − ρ0∂Ru = −ρ0

′u− ρ0u
′, (E.6)

where in the last equality we have introduced ρ0
′ ≡ dρ0/dR and u′ ≡ du/dR. In order

to evaluate the last term in Eq. (E.4), we need to compute the Christoffel symbols Γabc

associated with the Schwarzschild metric (E.3). From the definition of Γabc,

Γabc =
1

2
gad (∂cgdb + ∂bgdc − ∂dgbc) , (E.7)

we obtain

ΓttR =
M

R (R− 2M)

ΓRtt =
M

R3
(R− 2M)

ΓRRR = − M

R (R− 2M)

ΓRθθ = − (R− 2M)

ΓRφφ = − (R− 2M) sin2 θ

ΓθRθ = ΓφRφ =
1

R

Γθφφ = − sin θ cos θ
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Γφθφ =
cos θ

sin θ
. (E.8)

(Note that Γabc are symmetric under exchange of the lower two indices: Γabc = Γacb.) We

can now rewrite the last term in Eq. (E.4) as

ρ0u
bΓaab = ρ0u

RΓaaR = −ρ0u
(
ΓttR + ΓRRR + ΓθθR + ΓφφR

)
, (E.9)

or, since ΓRRR = −ΓttR and ΓθθR = ΓφφR = 1/R [see Eq. (E.8)],

ρ0u
bΓaab = −2ρ0u

R
. (E.10)

Inserting (E.6) and (E.10) into (E.4), we obtain

−ρ0
′u− ρ0u

′ − 2ρ0u

R
= 0. (E.11)

Dividing through by −ρ0u yields

ρ0
′

ρ0

+
u′

u
+

2

R
= 0, (E.12)

which is the desired result [cf. Eq. (3.16)].

E.2 The second fluid equation

We now turn our attention to the relativistic Euler equation (E.2). As above, we begin

by expanding the covariant derivative. The left hand side then becomes

ub∇bu
a = ub (∂bu

a + ucΓabc) . (E.13)

Since we are assuming radial flow, the only non-vanishing spatial component of Eq. (E.2)

is the a = R component:

ub∇bu
R = ub

(
∂bu

R + ucΓRbc
)
, (E.14)
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Carrying out the sum over b and c yields

ub∇bu
R = ut

(
∂tu

R + utΓRtt
)

+ uR
(
∂Ru

R + uRΓRRR
)
. (E.15)

In steady-state flow, we have ∂tu
R = 0, so Eq. (E.15) simplifies to

ub∇bu
R =

(
ut
)2

ΓRtt +
(
uR
)2

ΓRRR. (E.16)

Before we can evaluate the right side of (E.16), we need an expression for ut, the time

component of the fluid four-velocity. We can calculate ut from the normalization condi-

tion uau
a = −1. This gives

−1 = gabu
aub = gtt

(
ut
)2

+ gRR
(
uR
)2
, (E.17)

or, inserting our expressions for the metric coefficients [see Eq. (E.3)],

−1 = −
(

1− 2M

R

)(
ut
)2

+

(
1− 2M

R

)−1 (
uR
)2
. (E.18)

Substituting u = −uR and rearranging terms yields

(
ut
)2

=
R

R− 2M

(
R

R− 2M
u2 + 1

)
=

(
R

R− 2M

)2(
1− 2M

R
+ u2

)
, (E.19)

or

ut = ± R

R− 2M

(
1− 2M

R
+ u2

)1/2

. (E.20)

Both of these solutions are mathematically valid; in order to determine which one is

physically relevant, we consider the limit R → ∞. In this limit, we want ut = 1, so we

choose the positive solution,

ut =
R

R− 2M

(
1− 2M

R
+ u2

)1/2

. (E.21)
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We can now insert (E.21) into (E.16) to obtain

ub∇bu
R =

(
R

R− 2M

)2(
1− 2M

R
+ u2

)
M

R3
(R− 2M)− M

R (R− 2M)
u2 + uu′, (E.22)

or

ub∇bu
R =

M

R2
+ uu′. (E.23)

We now have to deal with the right-hand side of Eq. (E.2). Since we are assuming

spherically symmetric, radial flow, the only nonzero derivative of P is in the radial

direction. We can therefore rewrite the first term on the right-hand side as

−∂RP = −gRa∂aP = −gRR∂RP = −
(

1− 2M

R

)
dP

dR
(E.24)

and the second term as

−uRub∂bP = −
(
uR
)2
∂RP = −u2dP

dR
. (E.25)

Inserting (E.23), (E.24), and (E.25) into Eq. (E.2) yields

(ρ+ P )

(
M

R2
+ uu′

)
= −dP

dR

(
1− 2M

R
+ u2

)
, (E.26)

or, dividing by (ρ+ P ) and rearranging terms,

uu′ = − 1

ρ+ P

dP

dR

(
1− 2M

R
+ u2

)
− M

R2
, (E.27)

which is the desired result [cf. Eq. (3.20)].
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Appendix F

Invariance of the fluid equations

under the transformation t = T + h (r)

Consider the Schwarzschild solution in Schwarzschild coordinates

ds2 = −f0dT
2 + f−1

0 dR2 +R2dΩ2, (F.1)

where T is the Schwarzschild time, R is the Schwarzschild radius, and

f0 = f0 (R) = 1− 2M

R
. (F.2)

In the previous Appendix (Appendix E), we used this coordinate system to derive the

relativistic fluid equations
ρ0
′

ρ0

+
u′

u
+

2

R
= 0 (F.3)

and

uu′ = − 1

ρ+ P

dP

dR

(
1− 2M

R
+ u2

)
− M

R2
(F.4)

[cf. Eqs. (3.16) and (3.20), respectively]. Our goal here is to show that both of these

equations are invariant under coordinate transformations of the form

t = T + h (R) (F.5)
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[cf. Eq. (4.5)], where the height function h depends on the radial coordinate only.

Let h′ ≡ dh/dR. From (F.5), we have dt = dT + h′dR, or dT = dt− h′dR. In terms

of the new time coordinate t, the line element (F.1) then becomes

ds2 = −f0dt
2 + 2f0h

′dtdR +
(
f−1

0 − f0h
′2) dR2 +R2dΩ2. (F.6)

In order to derive Eqs. (F.3) and (F.4), we will need the Christoffel symbols Γabc associ-

ated with (F.6). From the definition of Γabc [Eq. (E.7)], we obtain

Γttt =
M

R2
f0h

′

ΓttR =
M

R2

(
f−1

0 − f0h
′2)

ΓtRR = −3M

R
f0h

′ +
M

R2
f−1

0 +
1

R2
f0h

′3 − h′′

Γtθθ = −Rf0h
′

Γtφφ = −Rf0h
′ sin2 θ

ΓRtt =
M

R2
f0

ΓRtR = −M
R2
f0h

′

ΓRRR = −M
R2

(
f−1

0 − f0h
′2)

ΓRθθ = −Rf0

ΓRφφ = −Rf0 sin2 θ

ΓθRθ = ΓφRφ =
1

R

Γθφφ = − sin θ cos θ

Γφθφ =
cos θ

sin θ
. (F.7)

F.1 The first fluid equation

As in Appendix E, we will derive the first fluid equation (F.3) from the law of baryon

conservation,

∇a (ρ0u
a) = 0 (F.8)
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[cf. Eq. (3.2)], where ρ0 is the rest-mass density of the fluid and ua is the four-velocity.

As before, we assume radial fluid flow (uθ = uφ = 0) with inward velocity u = −uR. We

start by expanding the covariant derivative in (F.8). This gives

∇a (ρ0u
a) = ∂a (ρ0u

a) + ρ0u
bΓaab = ua∂aρ0 + ρ0∂au

a + ρ0u
bΓaab, (F.9)

or, since ρ0 and u both depend only on R,

∇a (ρ0u
a) = uR∂Rρ0 + ρ0∂Ru

R + ρ0u
bΓaab = −ρ0

′u+ ρ0u
′ + ρ0u

bΓaab, (F.10)

where we have substituted u = −uR and defined ρ0
′ ≡ ∂ρ0/∂R and u′ ≡ ∂u/∂R. We

now expand the sum in the last term to obtain

ρ0u
bΓaab = ρ0u

tΓaat + ρ0u
RΓaaR

= ρ0u
t
(
Γttt + ΓRRt

)
+ ρ0u

R
(
ΓttR + ΓRRR + ΓθθR + ΓφφR

)
. (F.11)

From Eq. (F.7), we have ΓRRt = −Γttt and ΓRRR = −ΓttR, so

ρ0u
bΓaab = ρ0u

R
(
ΓθθR + ΓφφR

)
= −2ρ0u

R
, (F.12)

and (F.8) becomes

−ρ0
′u− ρ0u

′ − 2ρ0u

R
= 0. (F.13)

Dividing through by −ρ0u gives

ρ0
′

ρ0

+
u′

u
+

2

R
= 0, (F.14)

which is the desired result [cf. Eq. (F.3)].
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F.2 The second fluid equation

We will derive the second fluid equation (F.4) from the relativistic Euler equation,

(ρ+ P )ub∇bu
a = ∂aP − uaub∂bP (F.15)

[cf. Eq. (3.5)]. Here ρ = ρ0 + ε is the total mass-energy density of the fluid and P is the

pressure. We evaluate (F.15) for a = R, since this is the only component that will yields

a nontrivial result. Expanding the covariant derivative on the left-hand side then gives

ub∇bu
R = ut

(
∂tu

R + uaΓRat
)

+ uR
(
∂Ru

R + uaΓRaR
)

= ut
(
utΓRtt + uRΓRRt

)
+ uR

(
∂Ru

R + utΓRtR + uRΓRRR
)

=
(
ut
)2

ΓRtt + 2utuRΓRtR +
(
uR
)2

ΓRRR + uR∂Ru
R. (F.16)

As in Appendix E, we compute ut from the normalization of the four-velocity, uau
a = −1.

This gives

−1 = gabu
aub

= gtt
(
ut
)2

+ 2gtru
tur + grr (ur)2

= −f0

(
ut
)2 − 2f0h

′uut +
(
f−1

0 − f0h
′2)u2, (F.17)

or

f0

(
ut
)2

+ 2f0h
′uut −

(
f−1

0 − f0h
′2)u2 − 1 = 0. (F.18)

We can now solve for ut using the quadratic formula:

ut =
1

2f0

[
−2f0h

′u±
√

4f 2
0h
′2u2 + 4f0

((
f−1

0 − f0h′2
)
u2 + 1

)]
=

1

2f0

[
−2f0h

′u±
√

4f0 + 4u2
]

= −h′u± f−1
0

√
f0 + u2. (F.19)
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We want ut = 1 in the limit r →∞ (u→ 0), so we choose the positive solution:

ut = −h′u+ f−1
0

√
f0 + u2. (F.20)

We are now ready to evaluate each of the terms in (F.16). The first term becomes

(
ut
)2

ΓRtt =
[
−h′u+ f−1

0

√
f0 + u2

]2 M

R2
f0

=
[
h′2u2 − 2f−1

0 h′u
√
f0 + u2 + f−2

0

(
f0 + u2

)] M
R2
f0

=
M

R2
f0h

′2u2 − 2M

R2
h′u
√
f0 + u2 +

M

R2
+
M

R2
f−1

0 u2, (F.21)

the second

2utuRΓRtR = 2
[
−h′u+ f−1

0

√
f0 + u2

] M
R2
f0h

′u

= −2M

R2
f0h

′2u2 +
2M

R2
h′u
√
f0 + u2, (F.22)

the third

(
uR
)2

ΓRRR = u2

[
−M
R2

(
f−1

0 − f0h
′2)] = −M

R2
f−1

0 u2 +
M

R2
f0h

′2u2, (F.23)

and the last term is simply

uR∂Ru
R = uu′. (F.24)

When we insert Eqs. (F.21), (F.22), (F.23), and (F.24) back into (F.16), we find that

many terms cancel, and we are left with

ub∇bu
R = (ρ+ P )

(
M

R2
+ uu′

)
. (F.25)

We now turn our attention to the right hand side of Eq. (F.15). The first term can be

rewritten as

∂RP = gRR∂RP = f0∂RP = −f0
dP

dR
, (F.26)
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and the second term as

uRub∂bP =
(
uR
)2
∂RP = u2dP

dR
. (F.27)

The entire right-hand side then becomes

−∂RP − urub∂bP = −dP
dR

(
f0 + u2

)
. (F.28)

Substituting Eqs. (F.25) and (F.28) into (F.15) yields

(ρ+ P )

(
M

r2
+ uu′

)
= −dP

dr

(
f0 + u2

)
, (F.29)

or

uu′ = − 1

ρ+ P

dP

dr

(
f0 + u2

)
− M

r2
= − 1

ρ+ P

dP

dr

(
1− 2M

r
+ u2

)
− M

r2
, (F.30)

which is the desired result [cf. Eq. (F.4)].

We have thus shown that Eqs. (F.3) and (F.4) are invariant under coordinate trans-

formations of the form t = T + h (R).
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Appendix G

Computing Kij in maximal and

analytical trumpet coordinates

In this appendix we compute the components of the extrinsic curvature Kij for maximally

sliced and analytical trumpet coordinates. We can calculate Kij from the spatial metric,

lapse, and shift vector:

Kij =
1

2α
(−∂tγij +Diβj +Djβi) (G.1)

[cf. Eq. (4.21)]. Here Di denotes the covariant derivative associated with the spatial

metric, defined as

Di ≡ ∂iβj − βkΓkij, (G.2)

where

Γkij ≡ 1

2
γkl (∂jγli + ∂iγlj − ∂lγij) (G.3)

are the three-dimensional connection coefficients.

G.1 Maximal trumpets

In maximal trumpet coordinates, the spatial metric is

γij = ψ4ηij =

(
R

r

)2

diag
(
1, r2, r2 sin2 θ

)
, (G.4)
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where we have expressed ψ using Eq. (4.35). Since γij is diagonal, the inverse metric is

simply

γij = ψ−4ηij =
( r
R

)2

diag
(
1, r−2, r−2 sin−2 θ

)
. (G.5)

Using Eq. (G.3) we find that the nonzero connection coefficients in these coordinates are

Γrrr =
ψ2

R
(f − 1)

Γrθθ = −fR
2

ψ2

Γrφφ = −fR
2

ψ2
sin θ

Γθrθ = Γφrφ =
ψ2f

R

Γθφφ = − cos θ sin θ

Γφθφ =
cos θ

sin θ
. (G.6)

We also need the covariant form of the shift vector:

βr = γriβ
i = γrrβ

r =
ψ2C

R2
. (G.7)

In both maximal and analytical trumpet coordinates, the spatial metric is time-indepen-

dent (∂tγij = 0), so

Kij =
1

2α
(Diβj +Djβi) . (G.8)

We find that the only nonzero components of Kij are the diagonal components, Krr, Kθθ,

and Kφφ. From Eq. (G.8), we have

Krr =
1

α
Drβr =

1

α

(
∂rβr − βkΓkrr

)
. (G.9)

Consider the two terms in parentheses separately. Using the relation between R and r,

we can rewrite βr as

βr =
ψ2C

R2
=

C

Rr
. (G.10)
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Then the first term in (G.9) becomes

∂rβr =
∂

∂r

(
C

Rr

)
= − C

R2r

(
∂R

∂r
+
R

r

)
= − C

R2r

(
ψ2f + ψ2

)
= −ψ

2C

R2r
(f + 1) . (G.11)

For the second term, we have

βrΓ
r
rr =

ψ4C

R3
(f − 1) . (G.12)

Substituting (G.11) and (G.12) into (G.9) yields

Krr =
1

f

[
−ψ

4C

R3
(f + 1)− ψ4C

R3
(f − 1)

]
= −2ψ4C

R3
(G.13)

We now want to compute Kθθ and Kφφ. Since βθ = βφ = 0, we have

Kθθ =
1

α

(
∂θβθ − βkΓkθθ

)
= − 1

α
βrΓ

r
θθ =

C

R
, (G.14)

and

Kφφ =
1

α

(
∂φβφ − βkΓkφφ

)
= − 1

α
βrΓ

r
φφ =

C

R
sin θ (G.15)

[cf. Eq. (4.41)]. Finally, since maximal trumpet coordinates represent a maximal slicing

of the Schwarzschild spacetime, we should find K = 0 in these coordinates. Using the

above expressions for the components of Kij, we have

K ≡ γijKij = γrrKrr + γθθKθθ + γφφKφφ = −2C

R3
+
C

R3
+
C

R3
= 0. (G.16)

G.2 Analytical trumpets

We now repeat the above calculation in analytical trumpet coordinates. In these coordi-

nates, the spatial metric is

γij = ψ4ηij =

(
1 +

R0

r

)2

diag
(
1, r2, r2 sin2 θ

)
, (G.17)
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and the inverse metric is

γij =

(
1 +

R0

r

)−2

diag
(
1, r−2, r−2 sin−2 θ

)
. (G.18)

From Eq. (G.3) we find the nonzero three-dimensional connection coefficients

Γrrr = − R0

r (r +R0)

Γrθθ = − r2

r +R0

Γrφφ = −r
2 sin2 θ

r +R0

Γθrθ = Γφrφ =
1

r +R0

Γθφφ = − cos θ sin θ

Γφθφ =
cos θ

sin θ
. (G.19)

The covariant form of the shift vector is

βr = γrjβ
j = γrrβ

r =

(
1 +

R0

r

)2
f1r

(r +R0)2 =
f1

r
. (G.20)

Once again, we find that the only nonzero components of the extrinsic curvature are the

diagonal components. From Eq. (G.8), we again have

Krr =
1

α

(
∂rβr − βkΓkrr

)
. (G.21)

We can use the definition of f1 [Eq. (4.47)] to rewrite the first term in parentheses as

∂

∂r
βr =

∂

∂r

[
(2r (M −R0) +R0 (2M −R0))1/2

r

]

=
M −R0

r [2r (M −R0) +R0 (2M −R0)]1/2
− [2r (M −R0) +R0 (2M −R0)]1/2

r2

=
M −R0

f1r
− f1

r2
. (G.22)
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For the second term, we have

βkΓ
k
rr = βrΓ

r
rr =

f1R0

r2 (r +R0)
. (G.23)

Inserting (G.22) and (G.23) into Eq. (G.21) yields

Krr =
r +R0

r

[
M −R0

f1r
− f1

r2
+

f1R0

r2 (r +R0)

]
, (G.24)

Reinserting Eq. (4.47) for f1 and simplifying gives our final result,

Krr = −r (M −R0) +MR0

f1r2
. (G.25)

We now compute the two other diagonal components, Kθθ and Kφφ. We again have

βθ = βφ = 0, so Eq. (G.21) yields

Kθθ = − 1

α
βrΓ

r
θθ = f1 (G.26)

and

Kφφ = − 1

α
βrΓ

r
φφ = f1 sin2 θ. (G.27)

[cf. Eq. (4.53)]. We can also combine Eqs. (G.25), (G.26), and (G.27) to obtain an

expression for the mean curvature K. From the definition of the mean curvature, we

have

K = γrrKrr + γθθKθθ + γφφKφφ

=

(
1 +

R0

r

)−2 [
−r (M −R0) +MR0

f1r2
+

2f1

r2

]
, (G.28)

or

K =
(3r + 2R0) (M −R0) +MR0

f1 (r +R0)2 (G.29)

[cf. Eq. (4.54)].

97





References

[1] M. A. Abramowicz and P. C. Fragile. Foundations of Black Hole Accretion Disk

Theory. Living Rev. Relativity, 16:1, 2013.

[2] F. C. Michel. Wormhole initial conditions. Ap. Space Sci., 15:153, 1972.

[3] M. C. Begelmann. Black holes in radiation-dominated gas: an analogue of the Bondi

accretion problem. Mon. Not. R. Astron. Soc., 184:53–67, 1978.

[4] S. L. Shapiro and S. A. Teukolsky. Black Holes, White Dwarfs, and Neutron Stars:

the Physics of Compact Objects. Wiley Interscience, New York, 1983.

[5] J. F. Hawley, L. L. Smarr, and J. R. Wilson. A numerical study of nonspherical

black hole accretion. I. Equations and test problems. Astrophys. J., 277:396–311,

1984.

[6] J. F. Hawley, L. L. Smarr, and J. R. Wilson. A numerical study of nonspherical

black hole accretion. II. Finite differencing and code calibration. Astrophys. J. Suppl.,

55:211–246, 1984.

[7] J.-P. De Villiers and J. F. Hawley. A numerical method for general relativistic

magnetohydrodynamics. Astrophys. J., 589:458–480, 2003.

[8] C. F. Gammie, J. C. McKinney, and G. Tóth. HARM: a numerical scheme for
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