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SURFACE SYMMETRIES AND PSLy(p)

MURAD OZAYDIN, CHARLOTTE SIMMONS, AND JENNIFER TABACK

ABSTRACT. We classify, up to conjugacy, all orientation-preserving actions of
PSLa(p) on closed connected orientable surfaces with spherical quotients. This
classification is valid in the topological, PL, smooth, conformal, geometric and
algebraic categories and is related to the Inverse Galois Problem.

1. INTRODUCTION

A classical fact, essentially due to Riemann, states that any finite group G can be
realized as a subgroup of orientation-preserving homeomorphisms of some (closed,
connected, orientable) surface X. In fact, one can also arrange it so that G is a
subgroup of complex analytic automorphisms with respect to some complex struc-
ture on X, and the quotient \X is the Riemann sphere. This is equivalent to
a solution of the Inverse Galois Problem over the function field C(¢). (The field
of meromorphic functions on X is a field extension of C(t) = the field of mero-
morphic functions on the sphere 7\ X with Galois group G.) This realization can
be accomplished by picking a set of generators for G, to be explained in detail in
Section 2 below. Fixing the group G, we can then ask for Gen(G) C Z, the set
of all possible genera of closed, connected, orientable surfaces on which G can act
faithfully, preserving the orientation, or the set of spherical genera when we also
require that the quotient ~\X is a sphere. The answer is best phrased in terms
of G-signatures (defined below) and is given in our Corollaries 5.9 and 5.10 for
PSLs(p),p > 11. These results, somewhat surprisingly, say that any signature
satisfying some obviously necessary conditions is a P.SLy(p)-signature.

Now let G be a nontrivial finite subgroup of orientation-preserving homeomor-
phisms of a closed connected orientable surface X. Then the singular set S of
points with nontrivial stabilizer is discrete, hence finite. This is easy to show when
the action is smooth (or piecewise-linear), but harder to prove in the topological
category [T]. Denote the branch set \S by B = {b1,by,...,by}. We are primarily
interested in the case when the quotient G\X is homeomorphic to a sphere, so
B is nonempty (otherwise X — 7\ X would be a nontrivial regular cover of the
sphere).

Actions of G on a closed connected orientable surface X are usually classified by
their signatures (h;mi,ma, ..., mg), where h is the genus of the quotient \X and
m; > 2 is the order of the (necessarily cyclic) stabilizer of any preimage of b; in S.
When ~\X has genus h = 0, the signature will be denoted (m1,mao,...,my). If
we can find a G-action with signature (my,ma,...,myg), then (my,ma,...,my) is
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called a G-signature. This is equivalent to finding a set of generators {g1, 92, .-, 9k}
of G such that g1g2---gr = 1 with the order of g; equaling m; (see Proposition
2.1 below). We then say that (g1, 92,...,9%) is a realization of the G-signature
(my,ma,...,mg). If we drop the requirement that {g1,go,...,9r} generates G,
then (my,ma,...,mg) is a partial G-signature. Clearly k > 2 when G is nontrivial,
and if kK = 2, then m; = mo and G is cyclic of order m;.

A finer classification of G-actions with spherical quotient is given by the ram-
ification type (C1,Ca,...,Cx) where the C;’s are the conjugacy classes of the ele-
ments ¢(¢;) in G. A ramification type (C1,Ca,...,Cx) corresponds to the signature
(m(Cy),m(Cz),...,m(Cx)), where m(C) is the order of any element of C. We realize
a ramification type analogously (with g; € C;), and a ramification type yielding a
G-signature is called a G-ramification type.

Any permutation of a ramification type yields another ramification type; if the
elements (g1, 92, - .., gk) give a realization for the ramification type (C1,Ca,...,Cg),
then the elements (g1, ..., git1, g;_llgigiﬂ, ..., gk) give a realization for the ramifi-
cation type (Cy,...,Ci+1,Ci,y...,Ck).

In this paper, we determine all possible P.SLy(p)-ramification types for primes
p > 11. In particular we have the following result.

Corollary 5.9. For p prime, p > 11, a signature (my, ma, ..., my) is a PSLs(p)-
signature if and only if each m; is either p or a divisor of % and Zle (1 — m%) >
2.

The first condition (on the m;) is necessary because any element of PSLs(p) has
pE1

order equal to p or dividing %5=. The necessity of the second condition follows from
the Riemann-Hurwitz formula below, and signatures satisfying this condition are
called hyperbolic. Determining all PSLo(p)-signatures for p < 11 can be handled
individually; for instance, p = 7 is done in detail in [MS]. Note that Corollary
5.9 is not valid for p < 11; for instance, one can easily check (using CAYLEY
for example) that the signature (2,2,2,2,2) satisfies the hypothesis but it is not a
PSL(2,p)-signature for p < 11.

While X — ~\X is a branched cover, its restriction to X — S is a regular
cover. Hence, x(X —S) = |G|x(Y), where x denotes the Euler characteristic and

Y = (\X) — B. This is the Riemann-Hurwitz formula

229 = |G <2—2h—i<1—m%>>,
=1

where g is the genus of X and h is the genus of \X. When the quotient ;\X is
a sphere, we have h = 0, so the genus g of X can be computed from the signature
(my, ma,...,mg).

The Riemann-Hurwitz formula imposes strong restrictions on the m;, and con-
sequently, on the group G when g < 1, as described in the table (next page).

In the spherical case, the standard actions of the cyclic and the dihedral groups
(as rotations) and the rotational symmetries of the tetrahedron, the cube, and
the dodecahedron give geometric realizations for G. If o := (mq,ma,...,my) is
a Euclidean or hyperbolic signature, G is not determined by o, in fact, we have
infinitely many groups G for each signature. When o is Euclidean, G is solvable
(because G is a quotient of its lift to the universal cover, which is a subgroup of the
orientation-preserving isometries of the Euclidean plane, a solvable group). When



SURFACE SYMMETRIES AND PSLs(p) 2245

o is hyperbolic, it follows from our classification (Corollary 5.9 below) that ¢ can
be realized as a PSLa(p)-signature for some p > 11 (so there is a nonsolvable
G for each hyperbolic signature). In the next section, we will describe geometric
realizations for all of these signatures.

Case g | Possible signatures (myq,...,mg) Group G

Spherical 0 (m,m) cyclic
(2,2,m) Dihedral of order 2m
(2,3,3) Ay
(273a4) S4
(2,3,5) As

Euclidean | 1 (2,3,6) See Section 2
(2,4.4) .
(3:3,3) 7
(2,2,2,2) »

Hyperbolic | > 1 all remaining 7

We can eliminate certain signatures which cannot occur as PSLqy(p)-signatures
using the orbifold Euler characteristic x(o) := (2 —2h — Zle (1 - mi)) where

o = (h,my,ma,...,mg). The following standard lemma follows from the discussion
above.

Lemma 1.1. Let G be a finite group.

(1) If there exists a G-signature o with x(o) > 0, then G is isomorphic to one
of the groups Z,, D,, Ay, S4 or As.

(2) If there exists a G-signature o with x(o) = 0, then G is solvable. More
specifically, G contains a normal abelian subgroup of index 1,2,3,4 or 6
which is generated by 2 elements.

Another consequence of the Riemann-Hurwitz formula is the Hurwitz 84(g — 1)
Lemma which states that for g > 1, 84(g—1) is an upper bound for the order of any
group of orientation-preserving homeomorphisms of a surface of genus g (see e.g.,
[H], [St]). When the order of G equals 84(g — 1), the group G is called a Hurwitz
group; this happens if and only if 7\ X is a sphere and the signature is (2,3, 7). If
G is a Hurwitz group, then the smallest possible genus g for a surface admitting a
G-actionis g = 1+ % (by the Riemann-Hurwitz formula). Macbeath [Mal] proved
that PSLs(q) is a Hurwitz group if and only if: ¢ = 7 or ¢ is a prime congruent to
+1(mod 7) or ¢ = p> where p # 7 is a prime not congruent to #1(mod 7) (see also
[Ma2]).

As above, let Gen(G) be the set of all possible genera of closed, connected,
orientable surfaces on which G can act effectively, preserving the orientation. Glover
and Sjerve [GS1, GS2] determined the smallest elements of Gen(PSLy(p)) and
Gen(PSLs(q)) for ¢ odd. Tt is easy to see that when the smallest genus arises,
¢ \X is a sphere and the signature is a triple (m1,ma,m3). Hence, the smallest
genus is obtained by plugging (mq,ma, m3) satisfying the conditions of Corollary
5.9 above into the Riemann-Hurwitz formula and minimizing g.

We call g € Gen(G) a spherical genus for PSLs(p) if the quotient surface is
a sphere. Corollary 5.9 lists all signatures corresponding to spherical genera for
PSLs(p), where p > 11. However, a little more work yields all genera for PSLa(p).
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The set Gen(G) for a cyclic p-group G was computed in [KM]. The algebraic
structure of Gen(G) was studied in [K] and [McM]. The authors would like to
thank Andy Miller for suggesting this problem for PSLy(p) to us.

2. BACKGROUND ON SURFACE SYMMETRIES

First, we want to give a short proof of a variant of the Riemann Existence
Theorem (Proposition 2.1 below). Our strategy is to utilize equivariant fatgraphs
to reduce the problem to a free action of the group G on a finite graph. This
approach also explains the equivalence of the realization problem in the topological,
piecewise linear, smooth, complex analytic, and Riemannian categories. Later we
discuss some related topics.

Geometrically, a (finite) fatgraph (also called a map [JS], dessins d’enfants [SV],
[Sc], or a ribbon graph [MP]) is a (finite) graph (i.e., a 1-dimensional CW-complex)
embedded on an oriented closed surface so that its complement is a disjoint union
of disks. The extra structure provided by the embedding is the (clockwise) cir-
cular ordering of the darts, i.e. directed edges, terminating at each vertex. The
graph can be fattened to a bordered surface, or all the way to a punctured surface
without changing its homotopy type. The punctures correspond to the 2-cells in
the geometric cell decomposition of the surface where the 0-cells are the vertices
of the graph and the 1-cells are the edges. The surface can be recovered by filling
in the punctures, i.e., compactifying the ends. The data of a fatgraph I' can be
given combinatorially as a triple (Dr, —, %), where D = Dr is the (finite) set of
darts, d — d is a free involution on D corresponding to reversing the direction
of d, and “x” is a permutation defined on D, so that d* is the next dart in the
clockwise circular ordering of the darts terminating at a vertex. The edge set Er
of the underlying graph will be pairs {d,d}, i.e., the orbits of —, and the vertex
set Vr the x-orbits of darts. The terminal vertex of a dart is its *-orbit. Once the
involution — is specified, the fatgraph can also be defined using the permutation /
of D given by d — d' = (d*) instead of .

The orbits {d,d’,...,d"™,...} of the permutation / give the boundaries of the
(oriented) faces, i.e., 2-cells, of the surface determined by the fatgraph. We obtain
the surface X (I") as the 2-complex whose 1-skeleton X (F)1 is the underlying graph
of T; the 2-cells are obtained by gluing n-gons to the ’-orbits along their (oriented)
boundary, where n is the size of the orbit. It is easy to check that the 2-complex
X(T) is a (closed, oriented) surface. Then X (T') will be connected if and only if
X (1")1 is connected; we say that I' is connected when this happens. The fatgraph
I" will be connected if and only if — and * equivalently, — and / generate a
transitive permutation group.

The dual fatgraph T+ has dart set {d* | d € Dr } and d+ = (d)*, (d+)* = (d')*.
We note that d* is identified with d. Then I'* gives the dual cell structure on the
surface X where the new vertices are the old faces (and vice-versa) and the new
edges can be thought of as the old edges rotated ninety degrees counterclockwise.
Thus, X (T') and X (I't) are the “same” surface, but with opposite orientations.

A morphism from a fatgraph I' to a fatgraph A is a function f : Dr — Dy
satisfying f(d) = f(d) and f(d*) = f(d)*, hence f(d') = f(d)', for every d in Dr.
We say that a subgroup G of the automorphism group of I' is acting freely on T’
when the induced actions on the vertex set Vr and the edge set Er are both free.
For such G, there is an induced fatgraph structure on \I' (the induced involution
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— is free on 7\ D because G is acting freely on the edges), and the quotient map
I' — &\l is a fatgraph morphism.

If G is acting freely on I, then the induced map X (I')' — X(G\I‘)1 is a
regular cover with G as the deck transformation group. Each dart d defines a path,
every path is homotopic to a composition of darts, and we can talk about lifts of
(compositions of) darts from \I' to I. There is an induced action on the surface
X := X(I') (because the action of G is compatible with /), so G is a subgroup of
Homeo™ (X). This action is not necessarily free, but its singular set is a subset of
the vertices of 't (i.e., the punctures or the centers of the 2-cells of X). We can
identify ~\X with X (;\I'). The restriction of the branched cover X — 7\ X to
a 2-cell is z +— z™ (where m is the order of the stabilizer of the 2-cell) when we
use local coordinates identifying 2-cells (corresponding to faces of I and \I') with
the unit disk in C. If a face (equivalently, the corresponding puncture) is singular,
then its stabilizer is a cyclic subgroup of G with a preferred generator given by the
smallest nontrivial counterclockwise rotation fixing that face.

Example A. Consider the graph embedded on the sphere with two vertices, the
north pole and the south pole, and k (> 2) edges given by meridians joining the two
poles. The corresponding fatgraph Aj has 2k darts of the form 4 or i, where i is an
integer mod k. Each i is an oriented edge starting at the south pole and terminating
at the north pole. Finally, let i* =i—1and (7 — 1 )* = 4. The faces ( = the orbits of
1) are the k bigons { 7 — 1, i }. The dual fatgraph A~ has k vertices (corresponding
to the faces of Ay), say b1,ba, ..., bk, ordered counterclockwise around the equator
and k edges (hence 2k darts), which are arcs along the equator connecting adjacent
vertices. The two faces of A,T are the northern and the southern hemispheres.

Example B. Let G be a (finite) group and let g1, go,...,gr € G with g1g2- - -gx =
1. We define I' = I'(G; g1, g2, - - -, g) to be the fatgraph with 2k|G| darts (g,4) or
(g,i ) where g € G and i is an integer mod k; (g,a) = (g9,a); (g,7) = (g, —1)
and (g,7 — 1 )" = (ggi,i) (equivalently, (g,4)* = (g,7 — 1) and (g,i — 1)* = (9gs,1)).
The faces of I' are the 2m;-gons (where m; is the order of g;) with (oriented)
boundary: (g’i)’ (g,Z)' = (gaZ - 1)’ (gaZ - 1)/ = (gglal)a AR (ggzml’z) = (g,z)
There are |G]| Zle -L faces indexed by the (disjoint union of the) left cosets of
the cyclic subgroups g:enerated by g; for i = 1,..., k. The connected components
of the fatgraph I' correspond to the left cosets of the subgroup (g1, 9o,...,9k),
in particular, T is connected if and only if g1, go,...,gr generate G. We have a
free action of G on I' given by g(h,a) := (gh,a), and ;\I' is the fatgraph Ay
of Example A. Let x; be the center of the face with boundary (1,i), (1,7) =
(1,i—1), (1,5 — 1) = (gs,4), - .-, (g:™,i) = (1,i). The singular set of the G-action
on X(I') = X(I'") consists of the G-orbits of those x; for which g; is nontrivial.
The stabilizer subgroup G, is (g;). Two free G-orbits of k-gons, one with vertices
r1,Ts,..., T lying over the northern hemisphere, the other a mirror image of this
lying over the southern hemisphere, make up the faces of T't.

Conversely, assume that a finite group G is acting freely on a connected fatgraph
I', with Ay as the quotient \I'. The fundamental group 7 of the underlying
graph of Ay (based at the north pole) is generated by 3; := [i — 1 i] satisfying
the single relation (3;---0; = 1 (where [i — 1 4] is the homotopy class of the loop
given by the composition of the paths (darts) 7 — 1 followed by 7). We have an
epimorphism ¢ : m — G, because G is the group of deck transformations of a
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connected regular cover. Let g; := ¢(8;), and let us fix a vertex v of T' lying
over the north pole. We will identify the dart set Dr with GxD, where D is
the dart set of the fatgraph Ay, as follows: Let (1,7) € Dr be the lift of ¢ € D
terminating at v, let (1,4) be the lift of i starting at v, and let (g,d) := g(1,d) for
g € G and d € D. The action of G on Dp = G x D is the standard left action
because g(h,d) = g(h(1,d)) = (gh)(1,d) = (gh,d) for all g,h € G and d € D. The
projection Dr — D is given by the projection onto the second factor of G x D,

and we have (g,d) = (g9,d). Now we want to determine the permutation * on
Dr =G x D.

Let u denote the initial vertex of the dart (1,0) of I". The vertex set of I is the
disjoint union of the G-orbits of u and v. From covering space theory, we have that
the lift of the loop 0 1, starting at v, terminates at ¢(81)v = gjv. But the lift of
0, starting at v, is (1,0) which terminates at u, hence the lift of 1 starting at u
terminates at g;v. Similarly, the lift of 0 ¢ (which is homotopic to 0 1 12---i — 1 i),
starting at v, terminates at ¢(31 - - - 8;)v = g1g2- - -¢;v, and hence the lift of ¢ starting
at u terminates at g1gs---g;v. Therefore, (gi---gi,i), the unique dart lying over
i and starting at g; ---g;v, has u as its terminal vertex. Considering the darts
terminating at v, we see that (1,7)* = (1,47 — 1), because * commutes with the
projection Dr — D; similarly, considering the darts terminating at u, we get that
(91---gi,1)* = (g1 - Giz1,7 + 1). As the G-action also commutes with *, we have
(9,4)* = (g,i — 1) and (g,i — 1)* = (gg;,1) for all g € G and where i is an integer
mod k. Thus, T is T'(G; ¢1,92, - - -, gx) defined above.

We can also put a geometric structure on X(T'), ' = I'(G; g1, 92, - - -, gk ), 1.€.,
a constant curvature (+£1 or 0) Riemannian metric such that G becomes a group
of orientation preserving isometries. Let (mi,ma,...,my) denote the spherical
signature associated with (g1, g2,...,gx) as in Section 1 (where m; is the order of
g:). In the cellular structure given by I'*, we have two free G-orbits of k-gons
(one with vertices x1, 23, ..., 2k, the other a mirror image). We can find a convex
k-gon with interior angles (at x;) being ml1 in the appropriate geometry (spherical,

Euclidean, or hyperbolic depending on whether Zle m; is greater than, equal
to, or less than k — 2, respectively). This is elementary plane geometry when
we have equality (Euclidean), easy to do case by case for the spherical signatures
(m,m), (2,2,m),(2,3,3),(2,3,4),(2,3,5), and is standard hyperbolic geometry for
the remaining cases (see, e.g., [B]). We use |G| copies of such a k-gon and |G|
copies of its reflection as the faces of X (I't). The edge lengths match because we
have k free G-orbits of edges, one orbit for each side of the k-gon with vertices
T1,%2,...,Tk. At each vertex the geometry is defined because the 2m; interior
angles add up to 2.

When G is a group of orientation-preserving isometries, then (forgetting the
metric structure) it is also a group of conformal (equivalently complex analytic)
automorphisms. Specifically, at the level of the universal cover of X, when g = 0,
the orientation-preserving isometry group is SO (R), a maximal compact subgroup
of PSLy(C), the group of complex automorphisms of CP'. When g = 1, the group
of rigid motions of the Euclidean plane is a subgroup of { az+b | a € C*,b e C },
the automorphisms of the complex plane. Finally, when g > 1, PSLs(R) is both
the orientation-preserving isometry group of the hyperbolic plane and the complex
automorphism group of the upper half plane. Now we are ready to prove a variant
of the Riemann Existence Theorem.
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Proposition 2.1. Let G be a finite group and let g1,9o,...,gr be elements of G
so that G = {g1,92,...,9k) and g1g2---gr = 1. Then there is a closed connected
orientable surface X with constant curvature such that G is a subgroup of Isom™* (X)
and \X is the sphere. Conversely, if G is a subgroup of Homeo™ (X) for a closed
connected orientable surface X with \X homeomorphic to the sphere, then we
can find x1,xs,...,x, tn X belonging to distinct G-orbits and a generating set

{91, 92, gk} of G with Gy, = (g;) and g1g2--- gr = 1.

Proof. The first implication follows from Example B. For the converse, let B =
{b1,b2,...,bx} be the branch set in o\X = S%. Let Aj (with vertices at the
poles and 2k darts along meridians) be embedded in S? as in Example A. Up to
a homeomorphism, we may assume that b; is placed on the equator, between the
darts i — 1 and i. So \X is X(Ag). Let Z be the underlying graph of Ay and
Y = q1(Z), where ¢ : X — S — S? — B. We can identify Y with the 1-skeleton
of X(T'), T' =T(G;91,92,---,9k), with g; chosen as in Example B. Both ¢ and the
restriction of ¢ to Y are regular covers (with deck transformation group G), and Z
is a strong deformation retract of S?— B, so Y is a G-equivariant strong deformation
retract of X — S. Also, Y (as the 1-skeleton of X (I')) is a G-equivariant strong
deformation retract of X (I') — F where F is the vertices of I'. From covering space
theory, it follows that ¢ : X —S — S?— B and X(I')—F — S?— B are the “same,”
i.e., there is a G-equivariant homeomorphism from X — S to X(I') — F. But the
G-action on the punctures (= ends) is forced, and there is only one compactification
of a punctured surface which is a closed surface, so X is homeomorphic to X (T'),
the singular set S mapping to F' = {x1,x2, ...,z } of Example B. O

There are two more cases equivalent to realizing G as a group of conformal
automorphisms of a Riemann surface X with spherical quotient. These are realizing
G as a Galois group over the field C(¢), and having G as a group of automorphisms
of a complex projective curve. The Inverse Galois Problem over a field F asks
whether we can find a field extension E of F with G a subgroup of Aut(E) so that
the fixed field E¢ = {a € E|lag = a} is F. When G is a group of complex analytic
automorphisms of a Riemann surface X (with \X = CP'), then the field E of
meromorphic functions on X, i.e., E = { f : X — CP! | f is holomorphic },
has an induced right G-action via (fg)(z) = f(gz). From our description above
of the local structure of the G-action on X, it is rather transparent that E¢ can
be identified with the meromorphic functions on ;\X = CP!. But the field of
meromorphic functions on CP! is isomorphic to C(t) [FK], so we have a solution
for the Inverse Galois Problem.

Conversely, if G is the Galois group of the field extension E/C(t), we can con-
struct a complex projective curve X which is obtained from a polynomial over C(t)
whose splitting field is E and a morphism X — CP! such that the meromor-
phic functions functor described above yields the inclusion F — E [Mi]. Now
G can be recovered as the automorphisms of X covering the identity morphism
on CP!. The points of X correspond to discrete valuations on E, i.e., surjective
maps v : E* — Z satisfying v(ab) = v(a) + v(b) and v(a + b) > min{v(a),v(b)}.
The singular points correspond to valuations v : EX — Z such that the compo-
sition F* — E* — Z is not onto. The index of the image of this composition
in Z equals the order of the inertia group of v, which corresponds to a stabilizer
subgroup.
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Realizing any finite group G as a Galois group over C(t) is essentially due to
Riemann, and the discussion above contains a proof of the so-called Riemann Ex-
istence Theorem. The Inverse Galois Problem for G over Q is a fundamental open
problem and an active area of current research. The most common approach to this
problem is to begin with a solution over C(¢) and then to descend to a (regular)
Galois extension of Q(¢). This gives realizations over Q via Hilbert’s Irreducibility
Theorem [MM], [Se], [FK]. Currently, the answer to the Inverse Galois Problem
for PSLo(p) over Q is still not known for infinitely many primes p. This was one
of the motivations for our consideration of all ramification types for PSLs(p) over
C(t).

A related question (in the topological version) comes from considering (closed,
connected) branched covers f : Z — S? of the sphere, that is, there is a finite
branch set B := { p € S? | |[f~*(p)| < N } such that the restriction f : Z —
f~Y(B) — S? — B is a finite (N-fold) cover. In our setup, this corresponds to
looking at ;,\X — S?, where M is a subgroup of G which is a finite subgroup
of orientation-preserving homeomorphisms of X. The group G and the (closed,
connected, orientable) surface X can be recovered from the branched cover f :
Z — S? as follows:

G=m(*-B) () (pmZ-17B)"

a€en (S2—B)

or equivalently, 71 (S? — B, p) permutes the N points in a fiber f~1(p) for p € S*— B.
This gives a transitive permutation representation p : 71(S? — B,p) — Sym(N).
G is (isomorphic to) the image of p, and M = 7 (Z — f~1(B)) /ker(p).

To recover X in the analytic/algebraic category, f : Z — S? corresponds to
the field extension K(S?) = C(t) — K(Z) (= meromorphic functions on Z). Let
E be the splitting field of K(Z), that is, the smallest Galois extension containing
K(Z). Now X is the Riemann surface which corresponds to E, that is, K(X) is E
and K(X)“ = C(t) and K(X)" = K(2).

So a finite branched cover f : Z — S? corresponds to a pair (G, M), where G is a
finite subgroup of Homeo* (X) and X — 4\ X = §%is a “regular” branched cover.
The (transitive permutation) representation of G on f~1(p) (which is equivalent as
a G-set to 57 \G) is faithful by definition, hence M does not contain any nontrivial
normal subgroup of G. Consequently, the branch set B of f : Z — S? coincides
with the branch set \S, where S ={r € X |G, #1 }.

If X is also S2, then f : X — S? is indecomposable if it cannot be factored as a
composition of two nontrivial branched covers. Any branched cover f : S? — S? is
a product of indecomposable ones. An indecomposable branched cover f : S2 — S?
corresponds to a pair (G, M), where M is a maximal subgroup of G (i.e., the
permutation action of G on j;\G is primitive).

There is an ongoing program to classify all primitive nongeneric branched covers
f:S* — §? [GT, FGM]. (Nongeneric means that the image of p is not the full
symmetric group or the alternating group.) The classification in [FGM] includes
all Lie-type rank-one G, in particular, PSLs(q). However, these restrictions rule
out many actions; specifically, in this case |B| < 6.

In this paper, we only consider “regular” branched covers X — ~\X with
G = PSLy(p) (for p > 11), and show in particular that any branch data satisfying
the two easy necessary conditions of Corollary 5.9 is realizable. The first condition
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is that the genus of X is larger than one because the only finite simple G possible
for genus 0 and 1 is Alt(5) = PSLy(5) as indicated in the table in Section 1. The
second condition is the obvious one that there has to be an element g; of order m;
for each i, 1 < i < k. In particular, there is no bound on k = |B|, unlike the case
of primitive nongeneric branched covers classified in [FGM].

3. THE STRUCTURE OF PSLy(q)

In this section we discuss the structure of PSLs(q), the projective special linear
group with entries in the finite field 'y, where ¢ = p™ for p an odd prime.

Let F = F; and E = F2. Let f(x) be any monic irreducible quadratic of the
form 22 + 3 in the ring of polynomials F[z], with +a € E as roots. Then

Flz]/(f(x)) = F & Fa = E.

Thus, any element of E can be expressed uniquely as a + ba with a and b in F.
If A\ = a+ba € E, define A = a — ba. For any field F, let F* = F — {0} and
Fy = {da*la € F}.

The projective space of dimension 1 over I is defined to be

Py = F*I\E*.

Any element [u : v] € P} can be written uniquely as [% : 1] if v # 0 or [1 : 0] if
v = 0. Thus we can identify PL with F U {co}. Analogously, define PL =~ E U {cc}.
The groups PSLy(F) and PGLy(F) for F = F or F = E act on PL by matrix
multiplication.

The lemmas in this section are easily verified. We refer the reader to [Su] or [Si]
for more details on lemmas stated without proof.

Lemma 3.1. Let a,b € F. Then ¢ € F* iff ab e F.
The norm map N : E* — F* is defined by N()\) = A\.
Lemma 3.2. The norm map N : (Fgp2)* — (Fq)* is surjective.

Proof. We know that A € ker(N) iff 1 = AX = AX? = A9t1. So |ker(N)| = ¢ + 1.
Thus,

Im(N)| =

Lemma 3.3. The action of:

1) PGLy(q?) on Pk is sharply triply transitive.

(q) on E —TF is transitive and on IP’]% s sharply triply transitive.
) on PL is doubly transitive.
on Ph is doubly transitive.

2)

3) (
4) PSLs(q
5) (¢) on E —TF is transitive.

—_— N

The stabilizer of a point = in a group G will be denoted G,. Any subgroup
of PSLs(q) conjugate to PSLy(q)a, for a € P} chosen above, is called a Cartan
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subgroup. Any subgroup of PSLs(q) conjugate to PSLs(q)eo is called a Borel
subgroup. A counting argument shows that PGL2(q)q = Zgy1 and PSLa(q)a =
Zg+.

2

Considering the fixed points of g € PGLs(q) or g € PSLy(q) yields the following
classification of elements, according to type. This classification is invariant under

conjugation.

Proposition 3.4 ([Su]). Let g € PGLy(q), and let € : GLa(q) — PGLo(q) be the
projection map. Suppose A € GLy(q) satisfies e(A) = g. Every 1 # g € PGLy(q)
is one of the following types:
1. hyperbolic iff tr*(A) — 4det(A) € Fy,
iff g is conjugate to ax for some a € F,,
iff order(g)| 45+ when g € PSLa(q).
2. parabolic  iff tr?(A) = 4,
iff g is conjugate to x + b for some b € F*,
iff order(g) = p.
3. elliptic iff tr?(A) — 4det(A) € F* — F,
iff g is conjugate to “bzzjrlf fora,beF, g eF*—F,,

iff order(g)\% when g € PSLy(q).

Thus, up to conjugation, we can assume that the fixed point set of an element g
of PGLs(q) is either {0,000}, {o0}, or {a, @}, where & denotes the conjugate of a.

We note that in PSLs(q) there are two conjugacy classes of parabolic elements
which become conjugate in PGLy(q). There is an elementary way to distinguish
the parabolic conjugacy classes.

Lemma 3.5. The parabolic elements x + a and x + b are conjugate iﬁ"% cFt.

Conjugacy of hyperbolic and elliptic elements is the same in both groups. An
elliptic element in PSLs(p) (resp. PGL2(q)) is conjugate to a hyperbolic element
in PSLy(g?) (resp. PGLy(g*)) of the form az where a € (F2) — F4 [Su].

Lemma 3.6. Let g € PSLs(q), and let € : SLy(q) — PSLa(q) be the projection
map. Suppose A € SLo(q) satisfies €(A) = g. Then tr?(A) determines both the
type and the order of g in PSLy(q) and its conjugacy class in PGLa(q).

Proof. According to Proposition 3.4, g is parabolic iff |g| = p iff tr2(A) = 4. Since
all parabolic elements are conjugate in PG Ly(q), the lemma is proved in this case.

Given g and A as above, with g hyperbolic or elliptic, we form the characteristic
polynomial 22 —tr(A)z +1 which has roots A and % Beginning with —A we obtain
the polynomial z? + ¢r(A) 4+ 1 which has roots —A and 5. In either case, g is
conjugate to the transformation A2z, and thus its order is determined by tr?(A).
For elliptic elements this conjugation occurs in PG Lo (q?), while hyperbolic elements
can be conjugated in PSLsy(q).

When g is elliptic, A € E—F, and when g is hyperbolic, A € F. Thus conjugation
by elements of P.SLy(p) does not change the type of the element. It is already true
that all elliptic or hyperbolic elements of a given order in PSLs(p) are conjugate,
proving the lemma. O

The following elementary fact lists some specific instances of Lemma 3.6.
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Lemma 3.7 ([GS2]. Order and trace of certain elements). Let g € PSLy(q), and
let € : SLa(q) — PSLy(q) be the projection map. Suppose A € SLa(q) satisfies
e(A) = g. Then:

(1) lgl = 2 iff tr(4) = 0.

(2) If p> 3, then |g| = 3 iff tr(A) = £1.

(3) gl =4 iff tr(A)? = 2.

(4) If p#5, then |g| =5 iff a®> £a — 1 = 0 where a = tr(A).

4. A CHARACTERIZATION OF PSLy(p)-RAMIFICATION TRIPLES

We start with a special case in our characterization of all PS Lo (p)-ramification
types, namely the case of three conjugacy classes of elements. We call these ram-
ification triples. In Section 5 we present the complete description of all PSLs(p)-
ramification types and their corresponding P.S Lo (p)-signatures. We recall that for
a signature (mg,...,mg) to be a PSLa(p)-signature, we must have m; dividing
the order of PSLs(p), for all i. In any ramification type (C1,Cs,...,Cx), each C;
represents a conjugacy class of nontrivial elements of PSLa(p).

Since PSLs(p) for p > 11 is neither cyclic, dihedral, polyhedral (isomorphic to
Ay, S4 or Aj) nor solvable, by Lemma 1.1, all signatures with nonnegative Euler
characteristic are not PSLsy(p)-signatures. The following signatures comprise this
list:

(n,n), (2,2,n), (2,3,3), (2,3,4), (2,3,5), (2,3,6), (2,4,4), (3,3,3), (2,2,2,2).

In the following two sections, we consider ramification triples (Cy,Cs,C3) accord-
ing to two cases. First we consider ramification-type triples whose corresponding
signature has a realization which might generate a polyhedral subgroup of PSLs(p).
If the signature does generate a polyhedral subgroup, we call (C1,Cs,C3) a polyhedral
ramification triple. Second, we consider ramification triples without any restrictions
on signature. In either case, we determine which ramification types are PSLy(p)-
ramification types, i.e., represent a PSLy(p) action on a surface with spherical
quotient. In §5 we give a complete characterization of all PSLy(p)-ramification
types, using the fact that this set has the structure of a semigroup.

Each element g € PSLy(p) corresponds to a pair of matrices A4 € SLa(p)
whose traces have the same square. So given a k-tuple of elements (g1, g2, ..., gx)
of PSLs(p), there is a corresponding k-tuple (&t1, £to, ..., +tx), where *t; is the
trace of matrix +£A4; € SLy(q) corresponding to g;. If k = 3 we call this vector a
trace triple. When we choose a representative matrix from +A; to calculate with, we
are making an initial choice of trace from each pair +t;. We often change our choice
from A to —A (or t; to —t;) to simplify computations without changing conjugacy
classes. In the proofs below, we often begin by considering traces of elements of
S Lo (p) rather than orders or conjugacy classes in PSLsy(p), since Lemma 3.6 shows
that tr?(A;) determines the order and conjugacy class of g; in PSLo(p), unless g;
is parabolic. When t; = +2, it will be necessary to consider different cases since
there are two conjugacy classes of parabolic elements in PSLy(p). We often refer
to Lemma 3.7 which lists some specific correlations between trace and order in

We begin with an elementary lemma giving a specific example of matrices which
realize a particular type of trace triple.
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Lemma 4.1. If the trace triple (0, £to, £t3) can be realized in a Cartan subgroup
of PSLa(p), then the realization is given by matrices of the form

(1) (2

4.1. Polyhedral ramification triples. We begin by showing that any ramifi-
cation triple (C1,C2,Cs) corresponding to a polyhedral signature is a PSLy(p)-
ramification triple. We begin with the following lemma about the subgroup struc-
ture of PSLa(q).

fora,ccTF,.

Lemma 4.2 ([D]. Subgroup structure of PSLs(p)). If H is a subgroup of PSLs(q),
then H 1is either:

(1) A projective subgroup, i.e., PSLa(p™) if min or PSLa(p™) if 2m|n.

(2) A Borel subgroup.

(3) A Cartan subgroup.

(4) A polyhedral subgroup, i.e., dihedral, Ay, S4, or As, when these exist within

The only dihedral signature is (2,2,n) and x(2,2,n) > 0. Thus, we only need to
consider ramification types corresponding to polyhedral signatures.

Let o = (mq,ma2,m3) be a polyhedral signature. If o is an A4 signature, then
m; € {2,3} for all 4. Similarly, if o is an S4 signature, then m; € {2, 3,4} for all
i and m; € {2,3,5} if o is an Aj signature. Since we require that x(o) < 0, there
are no possible A4 signatures, and we have possible S, signatures (3,3,4), (3,4,4),
and (4,4,4) and Ay signatures (2,5,5), (3,3,5), (3,5,5), and (5,5,5).

In S4, every permutation of order 3 has sign 1, and every permutation of order
4 has sign —1. Therefore neither (3,3,4) nor (4,4,4) can be realized in Sy. We
are then left with a list of five potential polyhedral signatures corresponding to the
ramification type (C1,Cs,Cs3). We will need the following elementary lemma about
the orders of certain elements in S4 and As.

Lemma 4.3 (Orders of products in PSLy(p)). Let C and D be elements of
(1) If|C| =3, |D| = 4 and |CD| = 4 with (C, D) =Sy, then |[CD~| = 2.
(2) Assume (C, D) = As.
(a) If |C| = |D| =3 and |CD| =5, then |D7*C| = 5.
(b) If|C| =3, |D| = 5 and |CD| = 3, then |D~'C| = 5.
(¢) If|C| =3, |D| =5 and |CD| =5, then |D~'C| =2 or |D71C| = 3.
(d) If |C| = |D| =5 and |CD| =5, then |D~1C| = 3.
(e) If|C| =2, |D| =5 and |CD| =5, then |[CDC~'D~!| = 3.

Lemma 4.4 (Subgroups of PSLa(q) containing elements of certain orders).
(1) If H is a subgroup of S4, and C, D € H with |C| = 3 and |D| = 4, then
H=S,.
(2) Let H be a subgroup of S5 and C, D € H.
(a) If |C| =3 and |D| =5, then H = As.
(b) If |C| =2, |D| =5 and |CD| =5, then H = As.
(¢c) If H=(C,D) with |C| =|D| =5, then H = Zs or H = As.
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We include the proofs of Lemmas 4.3 and 4.4 in the Appendix.

Let ¥ = (C1,C2,C3) be a ramification triple whose corresponding signature o =
(m1, ma, ms) is one of the five exceptional signatures listed above. In each case we
will produce a realization of (Cy,Cq,C3) which generates PSLy(p).

Let (g1,92,93) be a realization of X. If o # (5,5,5), then (g1, g2, g3) is not
abelian. (In a finite abelian group, o(xy) = o(x)o(y) when (o(x),o(y)) = 1.) Since
no g; is parabolic (p > 11), the group (g1, 92,93) is S4 or PSLy(p) if o = (3,4,4),
and As or PSLy(p) otherwise. Thus, it suffices to show that the realization of X
does not generate Sy or Aj, respectively. For o = (5,5,5) we must show that the
realization of ¥ does not generate A5 or a cyclic subgroup.

Lemma 4.3 shows that |[C~1D| (resp. |[CDC~*D~1|) is uniquely determined for
any realization (C, D, (CD)™1) of a polyhedral signature (my,mo,m3) # (2,5,5)
(resp. (2,5,5)). We will find a realization of the above triples in which the or-
der of the element C~1D (resp. CDC~'D™1!) contradicts Lemma 4.4. This will
be checked via trace considerations using Lemma 3.7. It then follows that the
realization generates P.SLs(p) and not the polyhedral subgroup.

We will need the following elementary observations.

Lemma 4.5. Ifr satisfies 22 £ 1 —1 = 0, then neither r +1 nor r — 1 satisfies the
equation (% +z —1)(2? — 2 — 1) = 0.

Lemma 4.6. If A, B € SLs(q), then
tr(AB) +tr(AB™') = tr(A)tr(B)
and
tr(ABAT'B™Y) = tr(A)? + tr(B)? + tr(AB)* — tr(A)tr(B)tr(AB) — 2.
We can now prove the following theorem.

Theorem 4.7 (All polyhedral ramification triples are P.S Lo (p)-ramification triples).
All ramification triples (C1,Ca,Cs) whose corresponding signature o is polyhedral
with x(o) < 0 are PSLy(p)-ramification triples.

Proof. Let ¥ = (C1,Cs,C3) have corresponding signature o = (mq,ma, mg) with
x(0) < 0, and trace triple (£t1, +-to, £t3). Make an initial choice of traces (1, ta, t3).
If mi|pgl for any 4, then we may assume by permuting the m; (and thus the C;)
that mg\%.

We will produce a realization (A4, B, (AB)~!) of (C1,Ca,C3). From the conjugacy

classes C1 and Co, choose representatives A and B as follows:
(1) If mo| 252
(2) Tf mo| 2
(A0 [Ty . —
A(O >andB<y x)vvlth:c:c yy =1,

where in (1), we have a,d € F, and a € (F,)* — (Fp)+, and in (2) we have z,y € I,
and A € (Fp)*.
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We will prove that any ramification triple ¥ with corresponding signature o =
(3,3,5) is a PSLo(p)-ramification type. For other polyhedral signatures, see the
Appendix.

Suppose that o is a permutation of (3,3,5). If ma = 3, we may assume that
my = 3. Consider the realization (A, B,(AB)~!) given above of the trace triple
(£1,41,t3), where t3 satisfies one of the equations #? £z — 1 = 0. It follows that
—t3 satisfies the other equation, and tr(BA™!) cannot be a root of either equation
by Lemma 4.5. Consequently, |BA™!| # 5, contradicting Lemma 4.4.

If my = 5, then m; = 3. Interchanging the roles of ¢ and ¢3 in the argument
above again yields |[BA™!| # 5. Thus (A, B) 2 As, and we conclude that X is a
PSLy(p)-ramification triple. O

4.2. Nonpolyhedral ramification triples. We now prove the following theorem.

Theorem 4.8 (Complete characterization of PSLs(p)-ramification triples). All
ramification triples (C1,Ca,Cs) corresponding to the trace triple (£tq, tto, +t3) are
PSLy(p)-ramification triples except:

(1) All ramification triples corresponding to one of two signatures: (£2,£3, +6)
and (£2,+2,+4).

(2) All ramification triples (C1,Ca,C3) having all C; conjugacy classes of para-
bolic elements, with one of the following conditions:

(a) When —1 is a square in Fy, any permutation of (C1,C1,Cs).
(b) When —1 is not a square in Fq, the triple (C1,C1,Cy).

(3) All ramification triples (C1,Ca,C3) with Cy and Cy distinct conjugacy classes
of parabolic elements and Cs not a conjugacy class of parabolic elements,
with one of the following conditions:

(a) When 2 —t3 is a square in Fy, the triple (C1,C2,C3).

(b) When 2 — t3 is not a square in Fy, one of two ramification types
(C1,C1,C3) and (Ca,C2,C3).

If —1 is a square in Fy, then Cs is a conjugacy class of hyperbolic elements.

If —1 is not a square in F,, then C3 is a conjugacy class of elliptic elements.

Proof. Let (+t1, tta, £t3) be a trace triple and choose initial traces (¢, t2,t3). Let
(C1, Cs, C3) be a ramification triple corresponding to the trace triple, i.e., each C;
is the conjugacy class of an element of PSLo(p) whose trace is t;. We present one
case of the proof and leave the rest to the Appendix. All the cases are similar in
nature.

Case 1. Suppose t; = 2 and to, t3 # 2. By Proposition 3.4, C; is a conjugacy
class of parabolic elements. We may assume that (1) is a representative of Cy. If
this matrix was not in C, but in the other conjugacy class of parabolic elements,
then we conjugate it by an appropriate element of PG Ls(p) so that it lies in Cy.

We want to find elements g; € C; with g3 = (g192) "% Let (£ %) € SLs(p), so
zw — yz = 1. Choose traces (2,ta,t3). Multiplying these matrices, we see that
(2,ta,t3) can only be realized if we can solve the equations

(1) z4+w=to,z+w+2z=ts,
(2) 22 —tox + (t3 —t2)y + 1 =0, and
(3) 2w —yz=1.

(i) Suppose to = 0 = t3. In this case, the signature corresponding to the trace

triple is (2,2, p) by Lemma 3.7. Moreover, the equation 22 —tox + (t3 —t2)y+1 =0
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becomes z? + 1 = 0, which has a solution if and only if —1 is a square in F,. If
—1 is a square in F), then the signature (2,2,p) can be realized, but it is not a
PSLs(p)-signature since it has nonnegative Euler characteristic. When —1 is not a
square, the dihedral group D, is not a subgroup of PSLs(p) and thus the signature
(2,2,p) does not arise.

(ii) Suppose t2 and t3 are not both zero. Substituting —t, for ¢5 if necessary, we
can assume that to — t3 # 0. We solve the equation x? — tox + (t3 —t2)y + 1 = 0,

where z is any element of I, for y, to get y = % Thus, the matrix (7 %)
ol % ), and the ramification type (C, Ca, C3) is realizable.
We must now determine whether (Cy,Cq,C3) is a PSLa(p)-ramification type.
Let g1 = (1) and g2 = (tgfb %) Since g; fixes infinity but g» does
not (since t3 — ta # 0), these two elements are not contained in the same Borel

subgroup. Since g; is parabolic, the subgroup generated by these two elements is
not contained in a Cartan subgroup. Moreover, g; has order p and therefore (g;, g2)
cannot be an exceptional subgroup since p > 11. Hence, (g1,92) & PSLs(p) by
Lemma 3.2 and (C4, Cs, C3) is a PSLy(p)-ramification triple. O

becomes ( z

5. A COMPLETE DESCRIPTION OF PSLy(p)-RAMIFICATION TYPES

Recall that a semigroup S is a nonempty set S together with a binary operation
on S which is associative. An atom a for a semigroup S satisfies a + s € S for all
s € §. Consider the following addition operation defined on G-signatures. Suppose
(g;m1,ma,...,my) and (h;ny,na,...,ng) are G-signatures. Then their sum is the
G-signature

(g+ hymy,ma,...,myny,ng, ..., ng).
It is proved in [MS] that G-signatures corresponding to a finite group G form a
commutative semigroup with identity (0; ) under this addition. In fact, the following
stronger statement is true.

Proposition 5.1. Let G be a finite group with subgroups H and K, and k,l >
1. If (g;C4,Cy,...,Ck) is an H-ramification type and (h; D1, Da, ..., D)) is a K-
ramification type with (Cy,)~! = Dy, then there is an (H, K)-ramification type

(9+h;C1,Cy,...,Cr1,D1,...,Di_1).
Proof. First choose a realization of each ramification type:
(alabla oo aagvbgaylv oo ayk) and (a’/lﬂblla s 7a;mb/h,zla e 7Zl),

with all entries elements of G. We have the relations

I7_, [as, bi]H§=1ys =1= H?:l[a;w b;']Hf:=1zt
and

<{aia bz}a {yé}> = H and <{CL;, b;}a {Zt}> =K.
This yields a realization of the ramification type

(g +gl;617627 cee 7Ck717D17D27 s 7Dl71)
using the elements

!/ / / /
{al,bl,...,ak,bk,al,bl,. ..,al,bl,yl,...,ys_l,zl,.. ~aZt—1}~
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For this to be an (H, K)-ramification type, we must show that

H?:l[aia bi]H?:l[a;" b;‘]H{:;llySHi;%Zt =1

and

({as, bi}, {a;‘a b;‘}v {ysh {z}) = (H, K),
where s =1,2,...,k—1landt=1,2,...,l—1. If the highest indices in the product
relation above were k and [, then the product would be the identity by construction.
Since we chose yp = 2z, ! the above product relation also holds.

Let G = {a;,bi} U {a},bi} U{ys} U {2}, where s = 1,2,....,k — 1 and t =
1,2,...,1 — 1. To show that G generates (H, K), note that both y; and z; can be
expressed in terms of elements of G. Thus both H and K are subgroups of (G), and
(G) is clearly a subgroup of (H, K). O

So far we have completely described all PSLy(p)-ramification types with exactly
three conjugacy classes of elements of PSLs(p). We now describe all PSLy(p)-
ramification types consisting of more than three conjugacy classes of elements,
using the semigroup structure of the set of ramification types.

We note that C and C~' represent the same conjugacy class of elements of
PSLsy(p).

Lemma 5.2. Suppose that (C1,Cs,C3) is a PSLy(p)-ramification triple, and that C
is a conjugacy class of nontrivial elements of PSLs(p). Then (C1,Cs,Cs,C) is also
a PSLsy(p)-ramification type.

Proof. Using Theorem 4.8, we can determine if (C;,C,C;) is a PSLs(p)-ramification
triple for any ¢ = 1,2, 3. If it is, we may assume that ¢ = 3, and using the semigroup
structure of the set of ramification types outlined in Proposition 5.1, it follows that
(C1,C2,C3) + (C3,C,C3) = (C1,Cq,C3,C) is a PSLa(p)-ramification type.

Suppose that (C;,C,C;) is not a PSLy(p)-ramification triple for any i = 1,2, 3.
This could happen in two ways.

Case 1. If the ramification triple is not realizable, then from Theorem 4.8 we know
that C; is a conjugacy class of parabolic elements for all 7.

(1) Suppose that C is a conjugacy class of parabolic elements. Two of the
conjugacy classes C1, Cy and C3 are identical; without loss of generality
assume they are C; and Cs.

(a) If C3 and C are conjugate, let D be any conjugacy class of hyper-
bolic elements. Then both ramification types (C1,Cq, D) and (Cs3,C, D)
are PSLy(p)-ramification triples by Theorem 4.8, and it follows from
Proposition 5.1 that (Cy,Cs,Cs,C) is a PSLy(p)-ramification type.

(b) If C3 and C do not represent the same conjugacy class of elements, then
according to Theorem 4.8 there is a unique choice of nonparabolic con-
jugacy class D so that (Cs,C,D) is a PSLa(p)-ramification triple. It
also follows from Theorem 4.8 that (C1,Ca, D) is a PSLy(p)-ramifica-
tion triple. Then by Proposition 5.1, (C1,Cs,C3,C) is a PSLa(p)-
ramification type.

(2) If C is not a conjugacy class of parabolic elements, then (Cs,C,Cs) is
a PSLy(p)-ramification triple and it follows from Proposition 5.1 that
(C1,Cq,C3,C) is a PSLy(p)-ramification type.
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Case 2. If the ramification triple corresponds to a signature ¢ with two identical
entries, which is not a P.S Lo (p)-signature, then o must be one of (2,2,n), (2,3, 3), or
(2,4,4). In any of these cases, the ramification triple does not contain a conjugacy
class of parabolic elements, which are all of order p. (Note that (2,2,p) is not a
PSLy(p)-signature.) Let D be a conjugacy class of parabolic elements of P.SLy(p),
chosen in accordance with Theorem 4.8 so that (C1,Ca, D) is a PS La(p)-ramification
triple. Since neither C3 nor C is a conjugacy class of parabolic elements, it follows
that (Cs,C, D) is also a PSLy(p)-ramification triple. Then by Proposition 5.1 their
sum, (C1,Cs,Cs,C), is a PSLy(p)-ramification type. O

Lemma 5.3. All ramification types (C1,Cs,Cs,Cyq) are PSLs(p)-ramification types
except for any corresponding to the signature (2,2,2,2).

Proof. Suppose there is a permutation of the C; so that the triple (C1,C2,C3) is a
PSLsy(p)-ramification triple. Then by Lemma 5.2 so is (Cy,Ca,C3,Cy).

Suppose that no permutation of the C; yields a triple which is a PSLs(p)-
ramification type. If the signature corresponding to this ramification type is
(2,2,2,2), which is not a PSLy(p)-signature since it has nonnegative Euler charac-
teristic, then the ramification type is not a P.SLy(p)-ramification type.

Otherwise, any permutation (Cy,Cs,C3) contains at least two conjugacy classes
of parabolic elements. Since there are only two such conjugacy classes in PSLs(p),
we may assume that C, and C3 represent the same conjugacy class of parabolic
elements.

Let C; denote the conjugacy class of parabolic elements which is distinct from
Cs. It follows from Theorem 4.8 that both (Cy,Ca,C%) and (Cs,Cy,Ch) are PSLo(p)-
ramification triples, and from Proposition 5.1 that (Ci,Cs,C3,C4) is a PSLy(p)-
ramification type. (I

Lemma 5.4. (2,2,2,2,2) is a PSLy(p)-signature.

Proof. We know that (2, %, %) is a PSLy(p)-signature when p > 11. Let
(91,92,93) be a realization of this signature with (g1, g2,93) = PSLa(p). Now
go and g3 are rotations in the dihedral group D Pl Consequently, each can be
written as the product of two reflections, say go = hi1ho and g3 = hzhy. Then
(g1, h1, ha, h3, he) is also a realization of a PSLy(p)-signature. Since the order of

any reflection is two, it follows that (2,2,2,2,2) is a PSLo(p)-signature. O

Corollary 5.5. All ramification types corresponding to the signature (2,2,2,2,2)
are PSLo(p)-ramification types.

Proof. Since all subgroups of PSLs(p) of order 2 are conjugate [D], the only possible
ramification type corresponding to this signature is (C,C,C,C,C) where C is the
conjugacy class of elements of PSLy(p) of order 2. O

Proposition 5.6. For k > 4, all ramification types are PSLy(p)-ramification types
except for any corresponding to the signature (2,2,2,2).

Proof. We prove the lemma by induction on the following statement. For k > 4,
suppose that (Cy1,Ca,...,Ck) is a PSLs(p)-ramification type, and C is a conjugacy
class of nontrivial elements of PSLy(p). Then (C1,Cs,...,Ck,C) is also a PSLy(p)-
ramification type, and all (C1,Cs,...,Cx11) are PSLo(p)-ramification types except
for any corresponding to the signature (2, 2,2, 2).
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When k = 4 the above statement is proved in Lemmas 5.2 and 5.3. We use this
as the base case for our proof by induction.

Assume that the statement of the proposition is true for n = 4,5,...,k and
consider the ramification type (C1,Ca,...,Ck,Cr+1). Suppose that for some per-
mutation of the C;, the triple (Cg,Ck11,Ck) is a PSLy(p)-ramification triple. By
the induction hypothesis, (C1,Ca,...,Ck) is a PSLy(p)-ramification type. It follows
from Proposition 5.1 that (C1,Ca,...,Ck,Crs1) is a PSLa(p)-ramification type.

If (Cj,Cik+1,Cj) is not a PSLy(p)-ramification triple for any j € {1,2,...,k},
then C, must be parabolic for all j. There must be a pair of equivalent conjugacy
classes; without loss of generality we assume that Cj_; and Cj, are identical. Let C},
be the conjugacy class of parabolic elements which is distinct from Cp. We know
that (C1,Ca,...,C},) is a PSLy(p)-ramification type by the induction hypothesis,
and that (Cx,Cry1,Cy,) is a PSLy(p)-ramification triple by Theorem 4.8. It follows
from Proposition 5.1 that (C1,Ca,...,Ck,Crs1) is a PSLo(p)-ramification type.

We can now show that all (C1,Ca,...,Ck,Crt1) are PSLo(p)-ramification types,
except for any ramification types corresponding to the signature (2, 2,2, 2).

Suppose that k = 5 and consider the ramification type ¥ = (Cy,...,Cs5). If no
permutation of ¥ yields a PSLs(p)-ramification type (Ci,...,C4), then ¥ corre-
sponds to the signature (2,2,2,2,2). In this case, ¥ is a P.SLs(p)-ramification type
according to Corollary 5.5.

If some permutation of ¥ yields a PSLy(p)-ramification type (Ci,...,Cy), then
by the above argument, (Ci,...,Cs5) is a PSLy(p) ramification type. If k > 5
then the above argument also shows that all ramification types (Cy,...,Crs1) are
PSLy(p)-ramification types. O

Corollary 5.7. Let C be a conjugacy class of nontrivial elements of PSLa(p). Then
(C) is an atom for the semigroup of PSLo(p)-ramification types.

We summarize these results in the following theorem.

Theorem 5.8. All ramification types (C1,Ca,...,Cr) are PSLo(p)-ramification
types except when the corresponding signature is (2,d,d), (2,d,2d) or (2,2,2,2).

Corollary 5.9. For p > 11, a signature (my, ma,...,my) is a PSLs(p)-signature
1 .
=) >2 e,

my

if and only if each m; is either p or a divisor of p—ﬁl and Zle (1 —
the FEuler characteristic is negative.

We would now like to determine the set of spherical genera g so that the surface
Sy of genus g admits a PSLy(p)-action with spherical quotient. It is easier to
describe a translate of this set. For a finite group G, the set Genera(G) is the set
of all genera g so that G acts on Sy. The set H(G) = Genera(G) + |G| —1 is called
the Hurwitz semigroup for G and was first defined in [MS]. The Hurwitz semigroup
is a subset of the positive integers which is closed under addition. It follows from
the Riemann-Hurwitz formula that an element h is in the Hurwitz semigroup if and
only if there exists a G-signature o with h = |G|(1 — $x(0)). We will denote the
Spherical Hurwitz semigroup, which is a translate of the set of spherical genera, by

H.G={|G|(1 - %X(O’)) | 0 = (m1,ma,...,my) is a G-signature}.
We define

1
Ho(G) ={|G|(1 - §X(U)) | o = (my,ma,...,my), 1#my, divides |G| for all i }.
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We are now able to give a concise description of Hs(PSLa(p)).
Corollary 5.10. H,(PSLa(p)) = Ho(PSLa(p))N[|PSLa(p)|+1,00) when p > 11.

Proof. First observe that the Hurwitz semigroup is always contained in the interval
[[PSLs(p)| — 1,00). The only signatures which are not PSLy(p)-signatures are
those with nonnegative Euler characteristic, which occur in H,(PSLa(p)) as:

e |PSLs(p)| — 1, corresponding to actions of PSLo(p) on the sphere, and
e |PSLs(p)|, corresponding to actions of PSLa(p) on the torus.

Therefore Hs(PSLa(p)) = Ho(PSLa(p)) N[|PSLa(p)| + 1, 00). O

The description of the sets H(PSLy(7)) and Hs(PSLs(7)) are given in [MS].
The analog of Lemma 5.4 fails in this case since (2,2,2,2,2) is not a PSLy(7)-
signature. Moreover, a careful analysis of our proofs shows that every possible
signature for PSL4(11) with negative Euler characteristic is a PSLo(11) signature
with the possible exception of (2,2,2,3). A computer check shows that (2,2,2,3)
cannot possibly be a PSLs(11)-signature. These are the only exceptions to Corol-
lary 5.9 for p = 7orp = 11. As PSL3(2) = D3, PSL2(3) = A4, and PSLy(5) = As,
we see that there is no loss of generality in restricting to the case p > 11.

APPENDIX

We now present proofs of several results stated in Section 4.

Proof of Lemma 4.3. Orders of products in PSLo(p).
(1) Since (C, D) =S4, we know that the signature

(IC7', 1D, D7) = (3,4,|D71C))

is an Sy-signature. Therefore the order |[CD~1| # 3, since (3,3,4) is not a
possible Sy-signature. Relabelling if necessary, we may assume that as an
element of Sy, we have C' = (123). Since |CD| = 4, the element C'D has
no fixed points. Consequently, we know that as a permutation on 3 letters,
D(2) #1, D(3) # 2 and D(1) # 3. If |[D7'C| = |C~'D| = 4 then C~'D
has no fixed points. Since C~! = (132), we know that D(3) # 1, D(2) # 3
and D(1) # 2. But D has no fixed points since |D| = 4. Thus D satisfies the
following conditions: D(1) =4, D(2) =4 and D(3) = 4 and so |D~1C| = 2.
(2) Assume (C, D) = As.
(a) Since (C, D) = As, the signature

(IC7', 1D, ID7IC)) = (3,3,|D71C))

is an As-signature. Since x(3,3,3) = 0 and Aj is not solvable, |[D~1C|
# 3. If [ID7'C| = 2, then we may assume that D = (123) and 1
is the fixed point of D~'C. Since |C] = 3 and C # D, we must
have C = (124) or C' = (125), contradicting the order of C'D. Thus
|D~1C| # 2, and we must have |D~1C| = 5.

(b) Since |C~! =3, |CD| =3 and |¢c"'CD| = |D| =5, it follows from (a)
above that |[D~1C| = 5.

(c) The argument given above in (1) shows that |[D~1C| # 5. If [D71C| =
2, then we have found a realization of the triple (2,3,5), a contradic-
tion. Thus |[D~1C| = 3.
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(d) Relabelling if necessary, we may assume that D = (12345). Since

|C| = |CD| = 5, neither C' nor D has fixed points. We then deduce
that C(n) cannot be n or n — 1, for 1 < n <5, and we reduce modulo
5. If in addition |[D~1C| = 5, we add the restriction that C(n) # n+1.
Choosing C(1), we see that either C = (13524) or C = (14253). It
follows in the first case that D=1C = D and in the second that CD =
D=L, In either case we contradict the fact that (C, D) = As. Thus
|D~1C| # 5.
If |ID71C| = 2, without loss of generality assume that D=1 = (1a)(bc)
where a,b,c € {2,3,4}, making 5 the fixed point of D. The assump-
tions a = 2, 3, 4 respectively give the contradictions C'(2) =2, C(2) =
1 and C(5) = 4. Thus |[D~1C| # 2, and we must have |D~1C| = 3.

(e) We may assume that D = (12345) and 3 is the fixed point of C. Since
CD has no fixed points, we know that C(1) # 5, C(2) # 1, C(3) # 2,
C(4) # 3 and C(5) # 4. Since C = (1b)(cd) with b,¢,d € {2,4,5}, we
must have C' = (14)(25). Consequently, CDC~1D~1 = (134), which
has order 3. O

Proof of Lemma 4.4. Subgroups of PSLs(q) containing elements of certain orders.

(1)
(2)

Since |C| = 3 and |D| = 4, we know that 12||H|. Since D € H and H # Ay,

we know that |H| # 12. Thus |H| =24 and H = S,.

Since Aj is simple, it has no subgroups of order 15, 20 or 30.

(a) Since 15||H| and |H||60, we must have |H| = 60 and H = As.

(b) Since 10||H| and |H||60, we must have |H| = 10 or H = A;. If
|H| = 10, then H has a unique Sylow 5-subgroup S. Since D and CD
are in S, we must have C' € S. But |C| = 2. Thus H = A;.

(c) Since 5||H| and |H||60, we must have |H| € {5,10,60}. If |H| = 10,
then H has a unique Sylow 5-subgroup S. Since C' and D! are in
S, we must have D~1C € S. This contradicts Lemma 4.3, which says
that |[D~1C| = 3. This H & Zs or H = As. O

Proof of Theorem 4.7. All polyhedral ramification triples are P.S Ls(p)-ramification

triples.

(1)

Let o be a permutation of (3,3,4). Suppose m; = 3 and my = 4. Choose
a realization (A, B, (AB)™!) as in Section 4.1, of the trace triple (1,t, —t).
Then tr(B~1A) = 2t # 0, and it follows from lemma 4.3 that |[BA™Y| # 2.
Any permutation of the trace triple yields |BA~!|#2. Thus (4, B, (AB)™!)
# S4 by Lemma 4.4.
Let o be a permutation of (3,5,5). Suppose that m; = 3 and mg = 5.
Choose a realization (A, B, (AB)~1) as above, of the trace triple (1,t¢,«),
where t is a root of 22+ 2—1 and « is a root of 22—z —1. Then tr(B~1A) =
dt—a = —a—1# 0sincet # —a. If tr(B~tA) = 41, then either —a = t—1
or t = o — 1. In either case it follows from Lemma 4.5 that |[B~1A| # 1.
Interchanging ¢ and d yields the same contradiction when my = 3. Thus
|[B71A| # 2 and |B~'A| # 3 by Lemma 3.7 and (A, B) # A5 by Lemma
4.3.
Let o be a permutation of (2,5,5). If ms = 5 we may assume that m; = 2.
Choose a realization as above of the trace triple (0, ¢, «), where ¢ is a root of
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22— z—1and aisaroot of 22+2—1. Then tr(ABA™'B™!) =t+a? -2 =
t — a # £1. Consequently, |[ABA~1B~1| +# 3.

We obtain the same contradiction when mgs = 2, and it follows from
Lemma 4.3 that (A, B, (AB~!) # As.

(4) Let o be a permutation of (5,5,5). Let (a, —a, ) be a trace triple cor-
responding to this signature, where o satisfies 22 — z — 1, and choose a
realization (A4, B, (AB)™!) as above. Compute that tr(B~'A) = —a? — a.
If tr(B7'A) = +1, then « satisfies the equations —a? — a + 1 = 0 and
a? —a—1 = 0 simultaneously, leading to the contradiction o = 0 or a = 1.
Thus |[B~A| # +1 and |[B~ 14| # 3.

Choose a realization of the trace triple (a, %,a) as above, where «
satisfies 22 — 2 —1 = 0. Then tr(B71A) =1 —a # +1 and |[B71A| # 3.
Thus (A, B, (AB)™1) # As.

We now check that (A, B, (AB)~!) is not cyclic. If m2|p—;1, then the
matrix B in our realization fixes oo, while the matrix A does not. Thus
(A, B,(AB)~1) is not abelian.

If m2|p7+1, then the realization given in §4.1 yields the matrices A =

(S 2) with trace o and B = (%%) with trace —o or trace _71 We will
show that T # 1, which implies that ¥ # 0 since co will not be a fixed
point of B. It then follows that (A, B, (AB)~!) is not abelian, hence not
cyclic.

Solving the equation tr(AB)~! = a we see that z = XXt:f’
1

or t = —. Setting 27 = 1 yields the equation a® —3a? — 4 = 0 when
t=—aand o' —a® +a* —3 =0 when t = =1, Solving either equation
simultaneously with a? — a — 1 = 0 yields a contradiction. Consequently,

(A, B,(AB)™1) is not cyclic and must be PSLy(p). O

where t = —«

Proof of Theorem 4.8. Characterization of PSLy(p)-ramification triples. Consider
a trace triple (+t1, £to, £t3) and choose initial traces (t1,t2,t3). Let (C1, Cq, C3) be
a ramification triple corresponding to the trace triple, i.e., each C; is the conjugacy
class of an element of PSLy(p) whose trace is t;.

Case 2. Suppose C; is a conjugacy class of hyperbolic elements, and neither Co
nor Cs is a conjugacy class of parabolic elements. Without conjugacy classes of
parabolic elements, PG Ls(q)-ramification types are exactly the same as PSLo(q)-
g‘ (i) ) is a representative

ramification types. We conjugate C; in PSLs(p) so that (

of C, where A € F, — {#1} and t; = A+ +. Let (% %) be a representative of Cs,
with z +w = to. If (C1,C2,C3) can be realized, then we can solve the equations
r+w =tz and Az + § = t3 subject to the constraint rw — yz = 1.

This set of equations has the following solution:

o M2~ Az —ty (Mg — t3) (M3 — ta)

=— r=-—>  yz= —
Py _1 Y - -1
Taking y = 1 we see that all ramification types containing at least one conjugacy
class of hyperbolic elements can be realized.
Now we must see which of these ramification types are P.SLq(p)-ramification
types, i.e., when elements from the three conjugacy classes generate PSLy(p). We
will denote the subgroup of PSLy(p) generated by representatives of the conjugacy
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classes by (C1,Cs,Cs). The matrix (8‘ 2 ) € (1 has fixed points 0 and co. We now
consider whether or not (C1,Cs,Cs) is contained in a Borel subgroup.
(1) Suppose that (Cy,Co,C3) is contained in a Borel subgroup B. Then B fixes
0 or oo which implies that y = 0 or z = 0. In either case, yz = 0.

If yz = 0, then (A%t — At3)(At3 —t2) = (A2 —1)(A\? — 1). If we change ¢»
to —to with the result that this equation changes, then (C1,Cs,Cs) will no
longer be contained in a Borel subgroup. If this does not occur, then after
negating, the trace (Cq,Cs,Cs) is still contained in a Borel subgroup, and
both t; and —t, satisfy the quadratic equation Ax? — (A2 + 1)tzz + M2 +
(A= $)? = 0. But =+t, are also roots of the quadratic 2% — ¢3 = 0, and
scaling by A to equate leading terms, we obtain

M2 — (A2 4 Dtaz + M2+ (A — %)2 — A2 - B).

It follows that (A% + 1)t3 = 0, so either t3 = 0 or A2 + 1 = 0, which
occurs iff t; = 0. The above equation then reduces to At5+(A—+)% = —t3\.
Rearranging terms yields t3+t3+(t1 — £)? which simplifies to t3+t3+t3 = 4.

(a) Suppose t3 = 0. Then 3 + 3 — 4 = 0, and making the substi-
tution § = A — { yields ¢3 + 62 = 0 which has a solution iff —1
is a square in F,. In this case, (C1,Cq,Cs) will always generate a
Borel subgroup, and the ramification type will not be a PSLs(p)-
ramification type. This ramification type is represented by the trace
triple (0, £(XA+ 1), £v=1(A+ 1)), and Cs is a conjugacy class of hy-
perbolic elements.

When —1 is not a square in F, the equation ¢t3+62 = 0 has no solutions
and thus (Cq,Cs,C3) is a PSLs(p)-ramification type.

(b) Suppose t; = 0. Then ¢? + 3 + t2 = 0 simplifies to t3 +t3 — 4 = 0,
which again has a solution iff —1 is a square in [F,. In this case, C3 is a
conjugacy class of hyperbolic elements, and switching ¢; and t3 brings
us back to case (a).

(2) Now suppose that (C1,Cs,C3) is not contained in a Borel subgroup, so yz #
0. Since C; is a conjugacy class of hyperbolic elements, (Cy,Cy,C3) cannot
be contained in a Cartan subgroup of PSLy(p). If it generates a polyhedral
subgroup, then the ramification type is a PSLo(p)-ramification type. If not,
then it must generate PSLy(p).

Thus, when C; is a conjugacy class of hyperbolic elements and C; and C3 are
not conjugacy classes of parabolic elements, the only triple that is not a PSLy(p)-
ramification type corresponds to the trace triple (0, £(\ 4+ %), +v/—1(\ — %))

We now compute the signatures corresponding to this ramification type which is
not a PSLy(p)-ramification type. These traces correspond to the transformations
T1(2) = A2z and Ty(2) = —A\%z in PSLs(p). Suppose that d is the multiplicative
order of Ty. If d is odd, then the order of T5 is 2d, where 2d|% since T5 is also
hyperbolic. Then the signature corresponding to this trace triple is (2,d,2d). If d
is even, then 4|d and the order of T» is also d, so the corresponding signature is
(2,d,d).

In the signature (2,d, d), all three conjugacy classes are of hyperbolic elements,

since 2d and hence d divide %1. Although the quadratic A(t?> — t3) has only the

roots 4-t3, we can find other traces £t} giving rise to elements of order d. A counting
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argument shows that there are @
and @ > 1 unless d = 3,4,6. The signature (2,6,6) does not correspond to
non-PS Ly (p)-ramification type because 6 is not divisible by 4. Thus, all o except

(2,3,6) and (2,4,4) can be moved out of a Borel subgroup.

traces (up to sign) giving elements of order d,

Case 3. AllC; are conjugacy classes of elliptic elements. We can conjugate P.SLo(p)

inside PGLy(q) so that a representative element of C; is of the form (3%) where
A € E—F, and a representative element of Cy is of the form (3 7’) where z,y € E.

We know that A+ X = t; and x + T = t5 by trace considerations, and 27 + yy = 1.
Multiplying yields the additional restriction Az + Az = t3.

Solving the above equations, we obtain expressions for z and =:

Aty —t3 Mo —t3
A=A A=

Rewriting 27 + yy = 1 as yy = 1 — 2%, we see that unless xZ = 1 we apply Lemma
3.2 to find a value of y realizing the above equation since yy = ||y|| and the norm
map is surjective onto F*. Thus all ramification types can be realized when 27 # 1.
(1) Suppose 2T =1 and tat5 # 0. Then by negating a nonzero trace (either ¢o
or t3) we obtain new expressions for 2’ and 2’ for x and Z. It is easy to see
that the equations 27 = 1 and 'z’ = 1 cannot be satisfied simultaneously,

allowing us to use the above argument to realize the ramification type.

Since the representative matrices of C; and Cs given above have different
fixed points, (C1,Cs,C3) cannot be contained in a Cartan subgroup. It is
easily checked that (Ci,Cs,Cs) is not contained in a dihedral or polyhedral
subgroup and thus must generate PSLy(p).

(2) Suppose 2T = 1 and tot3 = 0, so that either Cs or Cs is a conjugacy class of
elements of order 2. If t = 0 or t3 = 0, then the corresponding signature
would be dihedral, since trace 0 corresponds to an element of order 2.
However, we showed in Section 4 that a dihedral signature will not be a
PSLy(p) signature.

Rewriting t3 + t2 = 4 as t2 — 4 = t2 we see that t3 —4 € FT, and thus
to corresponds to a conjugacy class of hyperbolic elements. Similarly ¢3
corresponds to a conjugacy class of hyperbolic elements. We know that
C; is not a conjugacy class of parabolic elements, since parabolic elements
have trace 2, and this case reduces to case 2.

Thus all ramification types with three conjugacy classes of elliptic ele-
ments can be realized. We now show that they must be PSLs(p)-ramifica-
tion types.

Case 4. Suppose C; and Cs represent conjugacy classes of parabolic elements, with
corresponding trace triple (£2, +2, +t3), including the case t3 = £2. Choose initial
traces (2, 2, £t3).

Up to conjugacy in PGLs(p) let ({ 1) be a representative of C; and let (L 9) be
a representative of C;. Multiplying, we get the matrix (1% 1) with ¢t3 = w + 2.
Solving for w, we get a realization of the trace triple. We first show that any
ramification type corresponding to this trace triple must be a PS Ly (p)-ramification
type.

Suppose this ramification type (Ci,Cs,C3) can be realized. Since C; and Cs
are conjugacy classes of parabolic elements with different fixed points, (Cy,Ca,Cs)



2266 MURAD OZAYDIN, CHARLOTTE SIMMONS, AND JENNIFER TABACK

cannot be contained in a Borel or a Cartan subgroup of PSLa(p). It is easily
checked that it does not generate a polyhedral subgroup. It cannot generate a
dihedral subgroup since its corresponding signature is of the form (p,p, *), which
cannot be a dihedral signature. We then conclude that it must generate PSLa(p).

We now decide which ramification types corresponding to the trace triple (2, 2, t3)
can be realized. The above argument shows that if it can be realized, then it is a
PSLy(p)-ramification type.

(1) Suppose t3 = £2, so Cs is also a conjugacy class of parabolic elements. We
choose t3 = —2 and check that (3 1) and (§ 7?) both belong to Cs. From
Lemma 3.5 it follows that C; and Cs3 represent the same conjugacy class iff
—4 and thus —1 € F*. So if —1 € F*, any realizable ramification type is
of the form (Cy,Cq,C1). If —1 ¢ FT, then the only realizable ramification
type has exactly two identical conjugacy classes of parabolic elements.

(2) Choose an initial trace t3 # +2 and t3 # 0, so C3 is not a conjugacy class
of parabolic elements. Solving for w, we see that w = t3 — 2. The matrices

(t31*

_t2

1) and (§ ~'372) are conjugate, thus both in C. If we had chosen
as the initial trace, we would have ((1) tsfﬂ) as the representative of

C>. Since both of these matrices belong to the conjugacy class Cso, we apply

Lemma 3.5 to say that they are conjugate iff o) =

—(t3—2) —t3—2 +
- cFT.

We now determine the type of C3. Multiply =2=2 by (t3 — 2)2 to see

ty3—2

that 4 —t2 = (—1)(t3 — 4) € F*. It then follows that

if -1 € F,, then ¢3 —4 € F', which means that Cs is a conjugacy class
of hyperbolic elements, or

if -1 ¢ F,, then t3 —4 ¢ F', which means that Cs is a conjugacy class
of elliptic elements.

We now consider whether or not C; and Cy represent the same conjugacy

class of parabolic elements of PSLs(p). Conjugate (

10

2 9) to the matrix

(5 ) to see that it is conjugate to (1) iff —w = —t3+2 € FF, by
Lemma 3.5. If we had chosen —t3 as an initial trace for C3, we would have
the condition t5 + 2 € FT.

(a)

(b)

Suppose that C; and Cs represent the same conjugacy class of elements

of PSLy(p). We know that %:22 € F* by trace considerations in Cs.

Since C; = C» we know that the matrices (} 1) and (} £%372) are
conjugate. By Lemma 3.5 we must have t3 +2 € FT.
o If —t3 +2 € Ft it follows from Lemma 3.1 that t3 +2 € F* and
we can only realize ramification types of the form (Cy,Cy,Cs).
o If —t3+2 ¢ FT, then it follows from Lemma 3.1 that t3+2 ¢ FT
and we can only realize ramification types of the form (Cy,Cs,C3).
In these cases we cannot realize both ramification types corresponding
to the trace triple (+2, £2, +t3) as P.SLy(p)-ramification types. In the
remaining cases all ramification types are PS Ly (p)-ramification types.
If C; and Cy are distinct conjugacy classes, then we have given a real-
ization of the ramification type, which is a P.SLs(p)-ramification type

by the argument above.
0

(3) Suppose that t3 = 0 and consider the matrix (_12 1), which is conjugate

to (

§2). This matrix is conjugate to (3 1) iff 2 € F*. In this case, C;

and Cy represent the same conjugacy class of parabolic elements, and the
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ramification type (Cy,Cs,C3) is not realizable. If 2 ¢ F+, then the ramifica-
tion type (C1,C1,Cs) is not realizable. Note that this does not rule out any
PSLo(p)-signatures, only certain ramification types. (I
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