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Abstract We give the first examples of groups which admit a tame combing with linear
radial tameness function with respect to any choice of finite presentation, but which are not
minimally almost convex on a standard generating set. Namely, we explicitly construct such
combings for Thompson’s group F and the Baumslag—Solitar groups BS(1, p) with p > 3.
In order to make this construction for Thompson’s group F, we significantly expand the
understanding of the Cayley complex of this group with respect to the standard finite pre-
sentation. In particular we describe a quasigeodesic set of normal forms and combinatorially
classify the arrangements of 2-cells adjacent to edges that do not lie on normal form paths.

1 Introduction

This paper has two goals: to study the relationships between the hierarchies of convexity
conditions and tame combing conditions on a Cayley complex corresponding to a given
group, and to significantly expand the understanding of the Cayley complex of Thompson’s

S. Cleary acknowledges support from National Science Foundation grant DMS-0811002.
J. Taback acknowledges support from National Science Foundation grant DMS-0604645. M. Stein and
J. Taback acknowledge support from a Bowdoin College Faculty Research Award.

S. Cleary

Department of Mathematics, The City College of New York, The City University of New York,
New York, NY 10031, USA

e-mail: cleary @sci.ccny.cuny.edu

S. Hermiller
Department of Mathematics, University of Nebraska, Lincoln, NE 68588, USA
e-mail: smh@math.unl.edu

M. Stein
Department of Mathematics, Trinity College, Hartford, CT 06106, USA
e-mail: melanie.stein@trincoll.edu

J. Taback (B<))

Department of Mathematics, Bowdoin College, Brunswick, ME 04011, USA
e-mail: jtaback @bowdoin.edu

@ Springer



880 S. Cleary et al.

group F with respect to the standard finite presentation with two generators and two relators.

Several notions of almost convexity for groups have been developed in geometric group
theory, from the most restrictive property defined by Cannon [4] to the weakest notion of
minimal almost convexity introduced by Kapovich [12]. For a group G with finite generating
set A, almost convexity conditions for different classes of functions measure, in terms of the
given function, how close balls in the Cayley graph for (G, A) are to being convex sets (see
Sect. 2.1 for the formal definition). Results of Thiel [18] and Elder and Hermiller [6], respec-
tively, show that Cannon’s almost convexity and minimal almost convexity, respectively, are
not quasi-isometry invariants.

Mihalik and Tschantz [13] introduced the notion of a tame 1-combing of a 2-complex,
and in particular of the Cayley complex of a group presentation, in the context of studying
properties of 3-manifolds. Hermiller and Meier [10] refined the definition of tame combing to
differentiate between types of tameness functions, analogous to almost convexity conditions.
For a group G with finite presentation P, intuitively the radial tameness function measures
the relationship, for any loop, between the size of the ball in the Cayley complex containing
the loop and the size of the ball needed to contain a disk filling in that loop (see Sect. 2.2
for the formal definition). Hermiller and Meier [10] showed that the advantage of studying
balls in a Cayley complex from the viewpoint of tame combings and radial tameness func-
tions is that the classes of tame combable groups are, up to Lipschitz equivalence of radial
tameness functions (for example, linear functions or exponential functions), invariant under
quasi-isometry, and hence under change of presentation. In the same paper they also showed
that groups which are almost convex with respect to several classes of functions are contained
in the quasi-isometry invariant class of groups admitting a 1-combing with a linear radial
tameness function. In Sect. 2.3, we give a more complete discussion of the hierarchies of
almost convexity conditions and tame combing functions, and their interconnections.

In seeking to further understand the correspondence between these two hierarchies, we
use geometric information from the Cayley complex to construct tame 1-combings with
linear tameness functions for two groups: Thompson’s group F and the solvable Baums-
lag—Solitar group BS(1, p) for p > 3. Belk and Bux [1] showed that Thompson’s group F
is not minimally almost convex with respect to the standard finite generating set. Elder
and Hermiller [6] showed that the groups BS(1, p) for p > 7 are also not minimally
almost convex with respect to their usual generating set; moreover, Miller and Shapiro
[14] showed shown that the group BS(1, p) does not satisfy Cannon’s almost convex-
ity condition for any generating set. Combining these then provides the first examples of
groups which admit a combing with a linear radial tameness function (with respect to any
choice of finite presentation), but which are not minimally almost convex on a particu-
lar finite generating set. These also provide the first examples of groups which admit a
combing with a linear radial tameness function but which do not satisfy Cannon’s almost
convexity condition with respect to every finite presentation. In the case of Thompson’s
group F, our proof also gives significant new insight into the Cayley complex of this
group.

Despite the prevalence of F in geometric group theory, a detailed understanding of the
Cayley complex for the standard finite presentation

—1 —1 —1 -2 2
(x0, x1][x0x; ", xy x1x0], [X0X, ", X “x1x5])

has been elusive. In an intricate analysis, Guba [9] showed that Thompson’s group F has a
quadratic isoperimetric function, but it is as yet unknown if Thompson’s group is automatic,
nor even if it is asynchronously combable. The tame 1-combing we construct for F utilizes
the nested traversal paths defined by Cleary and Taback in [5]. We show that these paths
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Tame combing and almost convexity conditions 881

yield a set of quasigeodesic normal forms for the group. Extending these paths to a tame
1-combing of the Cayley 2-complex X for the presentation above then requires a careful,
detailed classification of the edges and 2-cells of X. In particular we analyze which edges
do not lie on these normal form paths and for each such edge, we characterize which 2-cells
of X adjacent to that edge have the property that their other boundary edges lie “closer” to
the identity vertex €. Our analysis and measure of closeness to the identity use combinatorial
properties computed from the group elements labeling the vertices adjacent to that edge.

The paper is organized as follows. In Sect. 2, we provide an overview of the devel-
opment of the notions of convexity and combings for groups, and the relations between
them. In Sect. 3, we provide a brief introduction to Thompson’s group F, and define the
set of normal forms which will be used in the construction of the tame 1-combing. We also
show that this set of normal forms satisfies a quasigeodesic property. In Sect. 4, we con-
struct the 1-combing of F, and in Sect. 5 we show that this combing satisfies a linear radial
tameness function, as stated in Theorem 5.4. In Sect. 6 we show that G = BS(1, p) with
p > 3 has a 1-combing which satisfies a linear radial tameness function, proving Theo-
rem 6.1. Finally, Sect. 7 is devoted to the proof of Theorem 7.1, verifying that although
G = BS(1, p) with p > 8 and the standard presentation admits a 1-combing with a linear
radial tameness function, this tameness function must have a multiplicative constant greater
than 1.

2 Convexity and combings for groups
2.1 Almost convexity conditions on Cayley graphs

For a group G with a finite inverse-closed generating set A, we let I' (G, A) denote the Cayley
graph of G withrespect to A, and let d4 denote the word metric with respect to this generating
set. The pair (G, A) satisfies the almost convexity condition AC s for afunction f : N — R
if there is an r9 € N such that for every two points a, b in the sphere S(r) (centered at the
identity) with d4 (a, b) < 2 and every natural number r > rg, there is a path inside the ball
B(r) from a to b of length no more than f(r).

Every group satisfies the almost convexity condition AC s for the function f (r) = 2r, as
two points in the ball of radius r can always be connected by a path of length 2r which remains
inside B(r), simply by going to the identity and returning outward. Thus the weakest nontrivial
almost convexity condition for a pair (G, A) is AC s for the function f(r) = 2r — 1. Kapo-
vich [12] and Riley [17] have shown that this minimal almost convexity condition (MAC)
implies finite presentation of the group and the existence of an algorithm for constructing the
Cayley graph.

At the other end of the spectrum, (G, A) is almost convex (AC) in the sense of Can-
non [4] if it satisfies ACy for a constant function f. Between the constant function and
f(r) = 2r — 1, there are a number of other possible functions which give rise to a range
of almost convexity conditions. For example, Poénaru [15,16] studied the property AC s for
sublinear functions f.

2.2 Tame combings of Cayley complexes
Let G = (A | R) be a finitely presented group, with A an inverse-closed generating set. Let

X denote the Cayley complex corresponding to this presentation, with 0- and 1-skeletons
XY= Gand X! = I'(G, A); thatis, X! is the Cayley graph with respect to this presentation.
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882 S. Cleary et al.

In order to have a notion of a ball centered at the identity € in the 2-complex X, the notion
of distance between the vertices of a Cayley graph is extended to a notion of level on the
entire complex. The following definition is equivalent to that in [10].

Definition 2.1 (1) If g is a vertex in X 0. the level lev(g) is defined to be the word length
14 (g) with respect to the generating set A.
2) IfxeX I'_ X9 then x is in the interior of some edge with vertices g, h € X 0. Then let

lev(g) + lev(h) n 1
2 4

(3) Ifx € X — X', then x is in the interior of some 2-cell with vertices g1, g2, ..., &n along
the boundary, and

lev(x) :=

1 I ol 11
v 1= 1Y@ + ev(gzr)l+ +lev(ga) T

where if R = {ry,r, ..., ri} is the set of relators, and for each 1 < i < k, n; is the
number of letters in the relator r;, then ¢ := 4nyny - - -ny + 1.

Intuitively, a 0-combing of a group G with generating set A is a choice of path in the
Cayley graph I'(G, A) from the identity € to each group element. To obtain a 1-combing for
(G, (A | R)), a 0-combing is extended continuously through the 1-skeleton of the Cayley
complex. Viewing the ball of radius ¢ in X as the set of points of level at most ¢, a radial
tameness function p : Q@ — R, for a 1-combing ensures that once a combing path leaves
the ball of radius p(g), it never returns to the ball of radius g.

Definition 2.2 The pair (G, (A | R)) satisfies the tame combing condition 7C, for a
function p : Q — Ry if there is a continuous function W : X I'x0,11 - X satisfy-
ing:

(1) Forallx € X', W(x,0) =€ and W(x, 1) = x,
2) w(X"x%x[0,1) < X', and
(3) ForallxeX' 0<s<r<1,andg € Q,iflev(¥(x,s)) > p(q), thenlev(¥(x, 1)) >q.

The function W is a 1-combing of X, and p is a radial tameness function for V.

A continuous function ¥ : X9 x [0, 1] — X! with W(x,0) = € and ¥(x, 1) = x for
all x € X0 is called a 0-combing for the pair (G, A). The restriction of a 1-combing to the
vertices of X is a 0-combing.

In [10], Hermiller and Meier show that the condition 7'C, is quasi-isometry invariant, and
thus is independent of the choice of presentation for the group, up to Lipschitz equivalence
on the radial tameness functions. Hence it makes sense to define the class of groups admitting
a tame 1-combing with a linear radial tameness function, and also classes with polynomial
and exponential radial tameness functions.

2.3 Hierarchies of convexity and combing functions

A pair (G, (A | R)) may satisty a variety of almost convexity and tame combing conditions.
In Fig. 1, we illustrate what is known about the relevant relationships between the different
classes of almost convexity functions, and the different classes of possible radial tameness
functions which arise from tame 1-combings. In particular, all descending vertical arrows in
Fig. 1 follow immediately from the definitions.

@ Springer



Tame combing and almost convexity conditions 883

Hierarchy of almost Hierarchy of radial
convexity conditions tameness functions

(10]

Almost convex with f(n) =C | I

Poenaru almost convex with f(n) bublmear %

=
/ |

Minimally almost convex with f(n) =2n—1 |

I’LLIII sive

Fig. 1 The relationships between the hierarchies of convexity conditions and degrees of radial tameness
functions for a pair (G, (A | R)). A slash across an arrow indicates that it is known that there exists a coun-
terexample to the implication in that direction. Numbers in brackets are bibliographic references; the two
instances marked by a x are established in this paper. The tameness properties contained in double boxes are
independent of the choice of the finite presentation for G

These two chains of conditions are tied together at the base by the results of Hermiller
and Meier [10] which show that a pair (G, A) is almost convex if and only if there is a set of
defining relations R such that the pair (G, (A | R)) admits a 1-combing satisfying the radial
tameness function p(g) = q.

In Theorem D of [10], Hermiller and Meier showed that the property AC s with f sub-
linear, together with a linear isodiametric function (a combination of properties motivated
by work of Poénaru in [15]), imply the existence of a 1-combing with a linear radial tame-
ness function. For a pair (G, A) satisfying ACy for any function f : N — R, such that
f(n) < n —2 for all n, it follows from Riley [17, Equation 3.2] and induction that for all
n > 2ryp + 2, we have Diam(n) < n + D, where D = Diam(2rg + 2) is a constant. Hence
the property AC s with f sublinear implies a linear isodiametric function, and so this extra
assumption was redundant. As a consequence, it follows that AC ¢ with f sublinear implies
the condition 7'C), with p linear.

Tantalizing questions to consider, given these results, involve the potential connections
between weaker notions of almost convexity and radial tameness functions. As yet, there are
few examples known, other than for groups satisfying the condition AC s with f sublinear,
of groups with 1-combings admitting restricted tameness functions.

In this paper the results of Theorems 5.4 and 6.1 show that the quasi-isometry indepen-
dent class T Clipear of groups with a 1-combing satisfying a linear radial tameness function
contains groups which are not even minimally almost convex for some particular generating
set, giving the diagonal non-implication in Fig. 1. However, this leaves open the question
of whether every group in 7 Cjipear, and in particular whether F' and BS(1, p) with p > 3,
might have some generating set with respect to which it is minimally almost convex.

@ Springer



884 S. Cleary et al.

Other intriguing questions involve the possibility of upward implications in either of the
two hierarchies. In Theorem 7.1 we show the vertical non-implication for tameness functions
drawn in Fig. 1. For almost convexity, Elder and Hermiller [6] have exhibited a pair (G, A)
which is minimally almost convex but does not satisfy the condition AC y with f sublinear.
It is still an open question whether there can be a pair (G, A) satisfying the Poénaru AC ¢
condition with f sublinear that does not also satisfy Cannon’s AC property.

3 An introduction to Thompson’s group F

We present a brief introduction to Thompson’s group F and refer the reader to [3] for a more
detailed discussion, with historical background. In addition, in Sect. 3.1 we define a the set
of normal forms for F' which will be used in our construction of a 1-combing.

Thompson’s group F' has a standard infinite presentation:

(xk, k> leflxjxi =xjq1 if i < j).

The elements x( and x| are sufficient to generate the entire group, since powers of x( conju-
gate x to x; for i > 2. Only two relators are required for a presentation with the generating
set A := {xo, x1}, resulting in the finite presentation for F:

-1 —1 —1 -2 2
(x0, x11[x0x; ", xo  x1x0], [X0X| 5 X “X1X5])-

This is the most commonly used finite generating set and presentation for Thompson’s group
F, and in this paper we will build the 1-combing for F using the Cayley complex for this
presentation.

With respect to the infinite presentation given above, each element w € F can be written
in normal form as

__Jr.n Fi . —SI —§2 _—S]
w_xilxiz...xikxj, "'sz le

withr;, 5 > 0,0 <i; <ip--- <ifand 0 < j; < jo--- < jj. Furthermore, we require that
when both x; and xfl occur, so does X; 4. or xl.jrll, as discussed by Brown and Geoghegan [2].
We will use the term infinite normal form to mean this normal form, and write w = w,w),
where w), is the maximal subword of this normal form with positive exponents, and w,, is
the maximal subword with negative exponents.

Elements of F' can be viewed combinatorially as pairs of finite binary rooted trees, each
with the same number of edges and vertices, called tree pair diagrams. Let T be a finite
rooted binary tree. We define a caret of T to be a vertex of the tree together with two down-
ward oriented edges, which we refer to as the left and right edges of the caret. The right
(respectively left) child of a caret ¢ is defined to be a caret which is attached to the right (resp.
left) edge of c. If a caret ¢ does not have a right (resp. left) child, we call the right (resp. left)
leaf of ¢ exposed. The caret itself is exposed if both of its leaves are also leaves of the tree;
that is, the caret has no children.

For a given tree T, let N(T) denote the number of carets in 7. We number the carets from
1 through N (7)) in infix order. The infix ordering is carried out by numbering the left descen-
dants (the left child and all descendants of the left child) of a caret ¢ before numbering c,
and the right descendants of ¢ afterward. We use the infix numbers as names for the carets,
and the statement p < ¢ for two carets p and ¢ simply expresses the relationship between
their infix numbers. In a tree pair diagram (7, S), we refer to the pair of carets with infix
number p, one in each tree, as the caret pair p.

@ Springer



Tame combing and almost convexity conditions 885

The left (resp. right) side of a binary rooted tree T consists of the left (resp. right) edge of
the root caret, together with the left (resp. right) side of the subtree consisting of all left (resp.
right) descendants of the root caret. A caret in a tree T is said to be a right (resp. left) caret if
one of its edges lies on the right (resp. left) side of 7. The root caret can be considered either
left or right. All other carets are called interior carets. We also number the leaves of the tree
T from left to right, from O through N (7).

An element w € F is represented by an equivalence class of tree pair diagrams, among
which there is a unique reduced tree pair diagram. We say that a pair of trees is unreduced
if, when the leaves are numbered from O through N (T'), there is a caret in both trees with
two exposed leaves bearing the same leaf numbers. If so, we remove that pair of carets,
and renumber the carets in both trees. Repeating this process until there are no such pairs
produces the unique reduced tree pair diagram representing w.

The equivalence of these two interpretations of Thompson’s group F is given using the
infinite normal form for elements with respect to the standard infinite presentation, and the
concept of leaf exponent. In a single tree 7 whose leaves are numbered from left to right
beginning with 0, the leaf exponent Er (k) of leaf number £ is defined to be the integral length
of the longest path of left edges from leaf k which does not reach the right side of the tree.

Given the reduced tree pair diagram (7', S) representing w € F, compute the leaf expo-
nents Er (k) for all leaves k in T, numbered 0 through n = N(T) = N(S). The negative
part of the infinite normal form for w is then x,,_ET(")x;_EIT(n_]) . -xl_ET(l)xO_ET(O). We
compute the exponents Eg(k) for the leaves of the tree S and thus obtain the positive part of
the infinite normal form as x(f S(O)x]ES M xEs™ Many of these exponents will be 0, and
after deleting these, we can index the remaining terms to correspond to the infinite normal
form given above, following [3] (see Fig. 2). As a result of this process, we often denote the
unique reduced tree pair diagram for w by w = (T_(w), T+ (w)), since the first tree in the
pair determines the terms in the infinite normal form with negative exponents, and the second
tree determines those terms with positive exponents. We refer to 7_ (w) as the negative tree
in the pair, and 7 (w) as the positive tree.

Group multiplication is defined as follows when multiplying two elements represented by
tree pair diagrams. Let w = (7, Ty) and z = (S—, S4+). To form the product wz, we take
unreduced representatives of both elements, (", 71 ) and (S”, S/, ), respectively, in which
S, = T’ . The product is then represented by the (possibly unreduced) pair of trees (S”_, T} ).
If the fewest possible carets are added to the tree pairs for g and & in order to make ', = T',
and yet the pair (§”, T{) is unreduced, we say that a caret must be removed to reduce the
tree pair diagram for wz.

Given any w = (T_(w), T4 (w)) in F, let N(w) := N(T-(w)) = N(T4+(w)) denote the
number of carets in either tree of a reduced tree pair diagram representing w. For any natural
number k, let Ry (respectively Lj) denote the tree with k right (respectively left) carets, and
no other carets; if k = 0, Ry (or L) denotes the empty tree. For w = w,w,, where as above
w), and wy, are the positive and negative subwords of the infinite normal form, the tree pair
diagram (Ry ), T4 (w)) represents w,(w), and (7_(w), Ry(y)) represents w,. However,
one of these tree pair diagrams may not be reduced. If the last k carets of 7_ (w) (respectively

o AN

Fig. 2 The reduced tree pair diagrams representing (respectively) x ! and xfl
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886 S. Cleary et al.

T (w)) are all right carets, then at least k — 1 of them must be removed in order to produce
the reduced tree pair diagram for w,, (respectively w),). The inverse of w is represented by
the reduced tree pair diagram w™!' = (T (w), T_ (w)).

Foraword y € A* = {x(jfl, xlil}*, let [(y) denote the number of letters in the word y,
and for an element w € F, let /4 (w) be the length of the shortest word over the generating
set A = {x(j)'El , xlil } that represents w. Following the notation of Horak et al. [11], the length
[4(w) can be described in terms of the reduced tree pair diagram (7_ (w), T (w)) for w,
with carets numbered in infix order. First, we say that caret number p in a tree 7 has type N
if caret p + 1 is an interior caret which lies in the right subtree of p.

Definition 3.1 Caret pair p in the reduced tree pair diagram (7_(w), T (w)) is a penalty
caret pair if either

(1) Caret p has type N in either 7_(w) or T (w), and is not a left caret in either tree, or
(2) Caret p is a right caret in both 7_(w) and 74 (w) and caret p is neither the final caret
in the tree pair diagram, nor a left caret in either tree.

Using this notation, the following proposition is proved in [11].

Proposition 3.2 For w = (T—(w), Ty (w)), the length [4(w) = lso(w) + 2p(w), where
loo (W) is the total number of carets in both trees of the reduced tree pair diagram which are
not right carets, and p(w) is the number of penalty caret pairs.

It then follows that N (w) is a good estimate for the /4 (w). Lemma 3.3 makes this relation-
ship precise and is used in the proof that the tameness function of the combing we construct
below is linear.

Lemma 3.3 Forw e F, N(w) —2 < [s(w) < 4N (w).

Proof Proposition 3.2 shows that each caret pair in the reduced tree pair diagram for w con-
tributes 0, 1, 2, 3 or 4 to /4 (w), and the upper bound on /4 (w) follows immediately. The caret
pair can contribute either 0, 1, or 2 to /o (w), and can contribute another 2 if it is a penalty
pair. In order for a caret pair to contribute zero to the word length of the element, both carets
must be on the right side of the tree in order to not contribute to /o (w), and either one is
the root (in which case the pair is not a penalty pair because the root is also a left caret), or
the pair is the last caret pair. So at most two caret pairs do not contribute anything to /4 (w),
which yields the lower bound on /4 (w). m]

Finally, we include here a lemma which will be used in Sect. 4 and describes a family of
words in F which are always nontrivial.

Lemma 3.4 Letw € F, and suppose w = ajay - - - ap where for each i, either a; or afl isin

Xoo = {x0, x1, X2, ...}. In addition, suppose that for each i, if a; = x;H, then ajy1 = xrﬁll
+1 .

orx;_|.Thenw # lin F.

Proof We prove the lemma by induction on k. The base case k = 1 is trivial. Suppose
w = ajas - - - ak, and the indices of the generators satisfy the hypothesis of the lemma, and
let i be the smallest index appearing in w. We will show that if w = 1, then we can obtain
a shorter word satisfying the conditions on indices which is also 1 in F, contradicting the
inductive hypothesis.

Utilizing the representation of elements of F' as piecewise linear homeomorphisms of the
unit interval (see [3] for details), xijEl has a breakpoint at 1 — (1/ 2)i, and the right derivative
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Tame combing and almost convexity conditions 887

is 2F! at that breakpoint, butx " has supportin [1 — (1/2)4, 11 c [1 — (1/2)!, 1] for j > i.

It follows that the net exponent of all generators xl.jEl occurring in w must be zero. We can

write w = xf Tw le 2wy, xe”“rl where for each j, w; is a nontrivial word in generators

of the form x; for/ > i and €; € {1, —1}, except possibly €| and €, 1 which may be zero.

Note that if either €] or €,,41 are zero, then necessarily m > 2, and if both are zero, then

m > 3. In any case, m > 1, and for some pair of indices r and s, €, = 1 and ¢, = —1.

Case I: If for some j,e; = —1 and €41 = 1, then let w} be the word obtained from w;
1

. . . — € €] .
by increasing the index of each generator by 1. Then w/i = X; lex,- = xi’wjxij+ in F.

Furtherrnore as i is the minimal index in the word w, we know that w; begins and ends

with x = w1 ends in x (or does not existif j = 1), and wj4 begins in x (or does

j+l

1+2’
not exist if j = m), and so replacmg x "wix
satisfying the hypotheses of the lemma.

Case 2: If no such index j exists, and neither €| nor €,,4 is zero, then w begins with x; and

ends with x;l. Therefore, since w = 1 in F, xlflwxi = 1 as well, and if w’ is the word of
1

by w produces a word of length k—2

length k — 2 obtained from w by deleting the first and last letters, then w’ = x;” wx; = 1in
F, and w’ satisfies the hypotheses of the lemma.

Case 3: If no such index j exists, and €; = 0, then m > 2 and e, = 1. Let wﬁ be the word
wi with the index of each generator increased by one. Then since w] ends in xil2 and w»
begins in xl +1, then replacing w1 x; by x;w] results in a word of the same length which still
satisfies the hypotheses. Either this new word satisfies the conditions of Case 2, or else it
does not end in x; ' Butif not, then €,,11 = 0, and one can do a similar substitution at that
end to obtain a new word ending in xi_] and beginning in x; which satisfies the conditions
of Case 2. Applying the argument in Case 2 to this new word yields a word of length k — 2
satisfying the hypotheses of the lemma. O

3.1 Nested traversal normal forms

In general, there are many minimal length representatives of elements of F with respect to
the standard finite generating set, and Fordham [8] described effective methods for finding
all such minimal length representatives. Cleary and Taback [5] described a straightforward
procedure which canonically produces a minimal length element (with respect to the gener-
ating set A = {x Oil lil}) for a purely positive or purely negative element in F'; that is, an
element w whose infinite normal form w,w, satisfies w = w, (hence contains only terms
with positive exponents) or w = w, (hence contains only terms with negative exponents).
They call these paths nested traversal paths due to their construction. The combing paths
used below will be built from concatenating and then freely reducing these nested traversal
paths.

Let w € F be a strictly negative element; that is, w = w,, and w is represented by a
reduced tree pair diagram of the form (7_(w), Ryw)), where Ry is a tree consisting
only of N (T_(w)) right carets. To construct the nested traversal path corresponding to w, we
proceed as follows. We number the carets of the tree 7_ (w) in infix order, beginning with 1.
We proceed through the carets in infix order, adding generators xg, x, ! and xl_1 to the right
end of the nested traversal path at each step according to the following rules.

(1) If the infix number of the caret is 1, add nothing to the nested traversal path.
(2) [Ifthe caretis aleft caret with infix number greater than 1, add x,, ! to the nested traversal
path.
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(3) If the caret is an interior caret, let T be the right subtree of the caret. If T is nonempty,
add x; lyTxoxfl to the nested traversal path, where y7 is the nested traversal path
obtained by following these rules for the carets of 7.

(4) If the caret is an interior caret and the right subtree of T is empty, then add x,° ! to the
nested traversal path.

(5) If the caret is a right non-root caret, and its right subtree 7 contains an interior caret,
add x;, lyTxo to the nested traversal path, where yr is as above.

(6) If the caret is a right non-root caret, and its right subtree 7' contains no interior carets,
then add nothing to the nested traversal path.

It is proved in [5] that this method produces a minimal length word representing a negative
element w, of F, with respect to the generating set {xo, x1}. We denote this nested traversal
path for w, by n(w,). For a reduced tree pair diagram, the situation in rule (6) above never
arises. Including it allows one to extend the algorithm to tree pair diagrams obtained by
appending only right carets to both the last leaf in the tree 7_ (w) and to the last leaf of Ry ()
without changing the word produced by the algorithm.

We define the nested traversal normal form n(w) of an element w € F as follows. Let
w = w,w, be the infinite normal form for w. Then the element w;l, represented by the
(not necessarily reduced) tree pair diagram (7 (w), Ry w)), is strictly negative, and so has a
nested traversal path formed according to the above rules, which is not affected by the possible
reduction of the diagram, according to rule (6) of the procedure above. Hence we can define
the nested traversal normal form for w, to be n(w,) = (n(w;l))’l. It follows from the
nested traversal construction that the words n(w) and n(wj) are freely reduced, considered
separately. However, their concatenation n(w,)n(w,) may not be, so we define n(w), the
nested traversal normal form for w, to be the result of freely reducing the word n(w,)n(w,).
Note that n(w) is not necessarily a minimal length word representing the element w.

Cleary and Taback show in the proof of Theorem 6.1 of [5] that along a strictly negative
nested traversal normal form n(w,) = ajas . .. ay, the number of carets in the tree pair dia-
grams corresponding to the prefixes ajas ...a; fori € {1, 2, ..., n} never decreases, that
is, N(ajaz ---a;) < N(ajaz - --aj+1). This follows from the construction of the paths: the
multiplication (ajaz . . . a;) - a;+1 never causes a reduction of carets. We prove below that the
same holds for the general nested traversal normal form 7 (w). Our proof of the tameness of
the O-combing given by the nested traversal normal forms uses this property combined with
the relationship between /4 (w) and N (w) described in Lemma 3.3.

Theorem 3.5 For w € F, if n(w) = ajaz ...ap, then N(ajaz---a;—1) < N(ajaz---a;)
foralll <i < p.

Proof We first claim that for any u € F and generatora € {xgt1 , xlil }, carets cannot be both
added and removed in the process of multiplying ua. We check one case of this for the reader,
in which @ = x; and the right child of the root caret in 7_(«) exists and has an exposed
left leaf labeled n. In this case it is necessary to add a single caret to leaf n of both 7_(u)
and T (u), which has exposed leaves numbered n and n + 1. Before reduction of carets,
we obtain a possibly unreduced tree pair diagram (7, T{) in which leaves n and n + 1 of
T’ no longer form a caret. Any exposed caret with leaves numbered greater than n + 1 in
(T—(u), Ty (u)) has its leaf labels increased by 1 in (7", T_(_). Thus if a caret pair is exposed
in (T’, T7), it would have been exposed in (T_(u), T (u)). However, (T_(u), Ty (1)) was
reduced, and hence (T, T}) is reduced as well, and so equals (T_(ux1), Ty (ux1)). Other
cases are checked similarly.
Note that N (uza) and N (u) can be related in one of the following three ways. Either
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N(ua) > N (u) if carets must be added in order to perform the multiplication, or
N(ua) = N (u) if no carets must be added in order to perform the multiplication and no
carets must be removed in order to reduce the resulting tree pair diagram, or

e N(ua) < N(u) if no carets must be added in order to perform the multiplication, but
carets must be removed to reduce the resulting tree pair diagram.

We remark that in any case, N (u#a) and N (u) differ by at most 1 when a = xoil and by
at most 2 when a = xlil. In addition to the possible change in the number of carets, the
resulting trees are rearranged slightly, in very constrained ways.

We will first prove the theorem in the case where a; = x]il. Observe that for any u € F,
either

e T (uxp) has one more interior caret than 77 (u), both 7_ (ux1) and 7_ (u) have the same
number of interior carets, and N (ux;) > N (u), or

e T_(uxp) has one fewer interior caret than 7_ (u), both T (ux;) and T (#) have the same
number of interior carets, and N (ux;) < N(u).

To see this, note that if carets must be added in order to perform the multiplication ux; that
is, if either the root of 7_ (u) does not have a right child, or this root does have a right child
but this child does not have a left child, then 7T, («x) has one more interior caret than does
T4 (u). In that case, T_(ux) is the tree T_ (u) with one or two right carets added to the last
leaf, and the number of interior carets in the negative tree is preserved. Also as noted above,
no carets can be removed, and hence N (ux1) > N (u). On the other hand, if no carets are
added in performing the multiplication uxy, then N(ux;) < N(u). Moreover, during the
multiplication process, the left child of the right child of the root of 7_ () is an interior caret,
but in the tree 7_ (ux), either this caret has been removed in the multiplication process, or
the caret with this same number is a right caret, and hence either way, the number of interior
carets in 7_ (ux1) is strictly less than that of 7_ (u). If carets are removed, they must be the
final one or two carets of the tree pair, and these must be right carets in the tree 7 (1), so the
number of interior carets in the positive tree is left unchanged. Similarly, one can verify that
either

o T_ (uxfl) has one more interior caret than 7_ (1), both T+(uxf1) and T (u) have the
same number of interior carets, and N(uxl_]) > N(u), or

o T, (uxfl) has one fewer interior caret than 7 (u), both T_ (ux 1) and 7_(u) have the
same number of interior carets, and N (ux;” 1) < N(u).

Furthermore, if a = xgd, then T_(ua) and T_(u) have the same number of interior carets,
as do T4 (ua) and Ty (u).

Now in the (possibly not freely reduced) word n(w,)n(w,), all occurrences of x| precede
all occurrences of xfl. Furthermore, if 7_ (w) has r interior carets and 7 (w) has s interior
carets, then by construction, n(w,)n(w,) has precisely s occurrences of x| followed by r
occurrences of x;” ! Thus in any prefix of n(w), ifa; = )c]lLl it is always true that the number
of interior carets in the tree pair diagram corresponding to aja; - - - a; is one more than the
number of interior carets in the tree pair diagram corresponding to ajas - - - a;—1.

Hence, it follows from the previous observations that if ux; is a prefix of n(w), then
T4 (ux) has one more interior caret than 7 (1), and N (ux1) > N (u). Similarly, if uxfl is
a prefix of n(w,), then 7_ (n(wp)uxl_l) has one more interior caret than 7 (n(w,)u), and
N(n(w,,)uxl_l) > N(n(wp)u), which proves the theorem in the case a; = xlil.

In addition, we can conclude from this analysis a few more facts about the relation-
ship between the reduced word n(w) and the potentially longer word n(w)n(w;), which

@ Springer



890 S. Cleary et al.

we note here for use again later. In particular, n(w) = wjwz, where n(w,) = wix; and
n(wy) = x;"wy for some n > 0, and if w; and w; are both nonempty words, then either
wi ends in x; or wy begins with x~ 1, but not both. Moreover, for any prefix aj - - - a; of
w1, T_(aj - - -a;) contains no interior carets.

To prove the theorem for the cases where a; = xoi , we repeatedly refer to the following
six facts, each of which can be deduced by carefully following the process of multiplying by
a generator.

1

(1) N(uxy 1) < N (u) if and only if the first caret of 7'y (u) is exposed, and the first two
right carets of 7_ (u) have no left children.

(2) N(uxo) < N(u) if and only if the last caret of T () is exposed, and the last two left
carets of 7_ (u) have no right children.

3 If N(uxal) > N (u), then the root caret of 7_ (uxal) has a left child.

(4) If N(uxo) > N(u), then the root caret of 7_(ux() has a right child.

b)) If N(uxl_]) > N (u), then the second right caret of 7_ (uxl_]) has a left child, so in
particular the root caret has a right child.

(6) If N(uxy) > N(u), then the root caret of 7_ (ux) has a right child.

We proceed by induction to prove the theorem. Clearly N(a;) > N(€), so now assume
that N(ay ---ax) > N(aj---ai—y) forall k < i.

Case 1: a;j = xo.

Eithera;_| = xo,a;_1 = xl_l ,or a;_; = x1. But then, since by the inductive hypothesis
N(ay---aj—1) > N(ay---aj_2), facts 4, 5, and 6 show that the root caret of 7_(a; - - - a;_1)
always has a right child. Hence, fact 2 above implies that N(a; ---a;) > N(a; - --a;j—1).
Case 2: a; = xo_l.

Ifa,_| = xal ora;_| = xfl, then since by the inductive hypothesis N(aj - --a;j_1) >
N(ay ---aj—»), facts 3 and 5 above show that either the root caret or the second right caret of
T_(a; - --aj—1) has aleft child. Hence, in these cases fact 1 above implies that N (aj - - - a;) >
N(aj ---aj—1). So we must check the one remaining possibility, that a;_1 = x;. We claim
that for a;_| = xy, either the root caret of 7_(ay - - - a; _) has a left child, or the first caret of
Ty(ay ---aj—1) is not exposed, which will again imply by fact 1 above that N(a;y - --a;) >
N(aj ---aj—1). To verity the claim, first note that since the letter x; cannot occur in n(w;),
the word aj - - - a; is a prefix of wy, and so neither 7_(ay - - - aj—2) nor T_(aj - - -a;—1) con-
tain any interior carets. Now if the root caret of 7_(aj ---a;_2) has a left child, then so
does the root caret of 7_(aj - --a;—1). On the other hand, if 7_(a; - - - a;—2) consists only
of right carets, then T (a; - - - a;—1) is obtained by hanging a caret from the second leaf of
Ty (a1 ---aj—2), so that in this case, the first caret of 7'y (a - - - a;—1) is not exposed. m|

In addition, we remark that the nested traversal forms, which are certainly not in general
geodesics, are at least quasigeodesics. To see this, it is helpful to first make some preliminary
observations about nested traversal paths for strictly negative words, each of which can be
deduced from the algorithm for the construction of nested traversal paths.

Observation 3.6 (1) A word ay - - - a,, where a; € {xg, xo_1 , xl_]}for each i, is a nested
traversal path if and only if the word satisfies the following three conditions:

(a) The word is freely reduced.
(b) The exponent sum of xq in any prefix ay - - - ay for 1 < k < n is not positive.
(c) If ax = agy1 = xo for some k, then aj = xo fork < j < n.

Hence, any prefix of a nested traversal path is again a nested traversal path.
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(2) Let ay - --ay, be a nested traversal path with reduced tree pair diagram (T—, R;) for
some . Then the first caret of T_ is exposed if and only if a; = x, Uand the exponent
sum of xo in every nonempty prefix aj - - - ay, is strictly negative. Note that the final caret
of T_, always a right caret, is never exposed.

3) Ifai---ay is a nested traversal path with reduced tree pair diagram (T—, R;) for some
[, the numbers labeling the exposed carets of T— can be algorithmically determined as
Jollows. Caret 2 is exposed if ay = xfl, and not ifa; = xal. So by reading through the
prefix ay, it can be determined whether or not caret 2 is exposed. Inductively, suppose
that by reading through a prefix ay - - - ax, you have decided whether or not carets 2
through j are exposed. Then for caret j + 1, if

xo then move on to ay4> to make a decision about caret j + 1.

)cl_1 and ay = xo, then move on to ay4> to make a decision about caret j+1.
ag+1 = xal then caret j + 1 is not exposed.

xfl and ay = xal, then caret j + 1 is exposed.

xfl and ay = xfl, then caret j + 1 is not exposed.

In the latter three cases, then move on to ay42 to make a decision about whether caret
Jj + 2 is exposed.

With this observation in hand, we are ready to prove that nested traversal normal forms are
quasigeodesics. Recall that for a group G with finite generating set A, a word y is a (A, ¢)-
quasigeodesic for constants A > 1 and ¢ > 0 if the unit speed path p : [0,/(y)] = T'(G, A)
labeled by y satisfies %|s —tl—c <da(p(s), p(t)) < Als —t|+cforall s, t € [0,[(y)].

Theorem 3.7 For every w € F the nested traversal normal form n(w) is a (A, ¢)-quasigeo-
desic with . = 6 and ¢ = 0.

Proof Letw € F.From facts noted in the proof of Theorem 3.5, we can write n(wp)n(w,) =
ww{}x&”wz and n(w) = wywz = ay ---a, for some n > 0 and each g; € {xgtl,xlil}. It
follows from the formula for length in Proposition 3.2 that each pair of carets in 7_ (w) and
T+ (w), other than the first pair and the last pair, contribute some nonzero number between
one and 4 to /4 (w). However, each such caret pair contributes at most 6 to /(n(w)), so the
length contribution to the normal form is at most 6 times the contribution to length in the
Cayley graph. The first and last caret pairs are a slightly special case, since together they
may contribute 0, 1, or 2 to both /4 (w) and /(n(w)). However, one checks that if there is no
contribution to /4 (w) from these carets, then the first caret in both trees is the root caret, and
so the contribution to /(n(w)) from these carets will be zero as well. Thus we obtain

[a(w) < I(n(w)) = 61a(w)

for any nested traversal normal form n(w).

We now show that these inequalities hold for an arbitrary subword of n(w). So suppose
u=aj---ajyi, withl <i <i+k <r.If ajy is a letter of wy, then since w1x6’ = n(wp)
is a geodesic, then 4 (u) < [(n(u)) < 6l4(u). The same argument, using the fact that n(w,,)
is a geodesic, holds in the case where ¢; is a letter in wy.

Now assume a; - - - a; is aprefix of wy and a; ¢ - - - a is a suffix of wy. Let uy be the suffix
of w; starting with a;, and let u; be the prefix of w, ending with a;y;; then u = uju,. We
prove below that for the subword u, n(u ) = u1x and n(u,) = xo_suz forsome 0 < s < n.
This then implies that n(u) = uu;, and therefore u is a nested traversal normal form, and
la(u) < 1(m(u)) < 6la(u).

@ Springer



892 S. Cleary et al.

Since xo_"uz and xo_"ul_l are prefixes of n(w,) and n(w;l) respectively, they are also
nested traversal paths according to the first part of Observation 3.6. Let (77, Ry) denote the
reduced tree pair diagram for x;"u and let (T”, R;) be the reduced tree pair for x;° "ul_l.
There is a two step process to transform the pair of trees (77, T”) into the reduced tree pair
diagram for u = uju;. In the first step, if the numbers k and [/ of carets in each of these trees
are not equal, we add a string of |k — /| right carets to the final leaf of the smaller tree. The
second step consists of reducing the resulting tree pair. Note that by construction, the final
caret of both 7’ and T” cannot be exposed, and so any carets added in the first step will not
be removed in the second step. Each time a caret is removed, there is a corresponding change
to the pair of nested traversal paths, which we track below; at the end of this process, we
obtain the nested traversal paths for u,, and u,,.

If caret 1 is exposed in both trees, it must be that n > 0, so removing this caret pair corre-
sponds algebraically to canceling the central xox,, ! pair to obtain the word u x;, 71x0_ ("_l)uz.

Note that both x, =Dy, and X ("_l)ufl are both again nested traversal paths. Now
repeat, and eventually reach a point where caret 1 is not exposed in one of 7_(x; “uz)
and T—(x, sul_l), for some 0 < s < n. Note that if s = 0, caret 1 cannot be exposed in both
trees. Hence this process must successfully terminate.

Next we check for possible reduction of caret pairs numbered greater than 1. Part 3
of Observation 3.6 shows that caret 2 can only be exposed in both trees T_(x, *u2) and
T_ (xo_sul_l) if s = 0 and both ul_l and uy start with the letter xl_l; however, u; is a prefix
of the word w; and u; is a suffix of wy, and the word wjw, is freely reduced. For caret
pairs numbered between 3 and min{k, [} — (n — s), the algebraic criteria from part (3) of
Observation 3.6 by which we check for exposure of these carets only depends upon letters
in the words u> and ul_l which, as noted above, are prefixes of the words w» and wl_l,
respectively. Since the tree pair diagram for wjw; is reduced, then none of these carets can
be removed. Carets numbered above min{k, [} — (n — s) were added in the first step, and
hence also cannot be removed.

Hence, n(up)n(u,) = ulxgxo_suz, so n(u) = ujus, and the inequalities follow. Thus
nested traversal normal forms are (6,0)-quasigeodesics. O

4 Constructing the combing of F

In this section, we construct a 1-combing of the group F with respect to the presentation
| -1 =2 2.
(x0, x1l[x0x; ", xy x1x0l, [xox; ", Xy “x1x01);

in Sect. 5 we will show that this combing satisfies a linear radial tameness function. Let X
be the Cayley complex for this presentation.

We first construct a 0-combing of F with respectto A = {x¢, x; } by defining a continuous
function ¥ : X° x [0,1] —> X! where, forany w € F, the restriction ¥ : {w} x [0, 1] — X!
is labeled by the nested traversal normal form 7n(w) for w. We call this 0-combing ¥ the
nested traversal 0-combing.

Now we must extend this O-combing to a 1-combing. All edges in the Cayley graph fall
into one of two categories, “good” and “bad”. The good edges consist of those edges where
the combing path to one endpoint contains the other endpoint, and thus points along that
edge are combed through the 1-skeleton. The bad edges include all of those edges where
this is not the case, and thus the points along the edge in question must be combed through
the 2-skeleton. To make this more formal, we introduce some notation. For each w € F, let
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W, be the 0-combing path in X I from the identity to w (labeled by n(w)), and let ¥, I be
the inverse path from w to the identity. Recall that each directed edge in the Cayley graph
X! = I(F, {xo, x1}) is labeled either by the generator x( or the generator x;. We formalize
the notion of good and bad edges in the following definition.

Definition 4.1 If the set of endpoints of an edge e is of the form {w, wxg ! }, we denote the
edge as eg(w), and if the set of endpoints of an edge e is of the form {w, wxl_1 }, we denote
the edge as ej (w).

Moreover, for the edge e, (w), where a € {0, 1}, if the loop y, = Wye, (w)\IJ ol is

homotopic to the trivial loop in the Cayley graph, we call the edge e, (w) a good edge and
if not, we call the edge e, (w) a bad edge.

Theorem 4.2 describes conditions on the Cayley complex which allow us to extend the
nested traversal 0-combing to a 1-combing.

Theorem 4.2 Let B be the set of bad edges in the Cayley complex X with respect to the
nested traversal 0-combing. Suppose that

(1) there is a partial ordering of B with the property that for any edge e € B, the set of
edges { f € B|f < e} is finite, and

(2) there is a function c from B to the set of 2-cells of X, so that for every e € B the edge
e is on the boundary of c(e), and whenever f € B is another edge on the boundary of
c(e), then f < e.

Then the nested traversal 0-combing W : X° x [0, 11 — X' can be extended to a 1-combing
WX x[0,1] - X2

Proof We remark that the hypotheses of the theorem imply that the mapping from bad edges
to 2-cells is injective. Let G be the set of good edges. We extend the 0-combing in two stages.
First, extend W : X0 x [0,1] - X'to W : (X°UG) x [0, 1] — X' using the homotopies
for the good edges. Next, note that the partial ordering on B is well-founded, and so we may
apply Noetherian induction to define W on bad edges as follows. Suppose we have already
extended the combing to W : (X° UG U S) x [0, 1] — X2, where S := {¢/ € Ble' < ¢}
for a particular edge e. Since c(e) is a 2-cell, there is a homotopy from e, through c(e), to
the remainder of the boundary dc(e) excluding the interior /nt (e) of e, which fixes the end-
points of e. More specifically, let ® : e x [0, 1] — c(e) satisfy: for each point p in the edge
e,0(p,0) € dc(e) \ Int(e) and O(p, 1) = p; the image O (e x {0}) = dc(e) \ Int(e); and
for the endpoints g and % of e and for all t € [0, 1], ®(g,t) = g and ®(h, t) = h. Since all
edges in dc(e) \ Int(e) are in GU S, the combing ¥ : (X°UGU S) x [0, 1] — X? provides
combing paths from the identity to each of the points of dc(e) \ Int(e). Reparametrize these
paths and concatenate them with the paths from the homotopy ® to define the homotopy
W e x [0, 1] — X. This yields a homotopy W : (X° UG U S U {e}) x [0, 1] — X?. Then,
by induction, the 0-combing extends to a I-combing W : X! x [0, 1] — X2. O

The remainder of this section is devoted to establishing the hypotheses of Theorem 4.2.
4.1 Identifying the good edges

The goal of this section is to identify the good edges in I'(F, A = {x¢, x1}). This is accom-
plished in the following theorem.

@ Springer



894 S. Cleary et al.

Theorem 4.3 Let w € F have reduced tree pair diagram (T—(w), Ty (w)). If any one of the
following four conditions holds, then the edge e,(w), with a € {0, 1}, is a good edge:

(1) The index a = 0.

(2) The tree T_(w) has at most two right carets.

(3) The tree T_(w) has at least three right carets, no carets need be removed to reduce the
tree pair diagram for wxl_l, and all carets following the third right caret in T—(w), if
any, are right carets.

(4) The tree T_(w) has at least three right carets but no interior carets, caret n must be
removed to reduce the tree pair diagram for wx, U and caret n is the first exposed caret
in Ty (w).

We prove this theorem in two lemmas, considering separately the cases ep(w) and e (w).
To prove each lemma, we simply compare the nested traversal forms for the two endpoints
of the edge in each situation in the hypotheses of Theorem 4.3.

Lemma 4.4 Let w € F. Then ep(w) is a good edge.

Proof Letz = wxy ' We compare 7(w) and 77(z), and show that either n(z) = n(w)x, Uor
n(w) = n(z)xo, and so it follows immediately that eg(w) is a good edge.

As usual, let w = (T_(w), T+-(w)) and z = (T_(z), T+(z)) denote reduced tree pair
diagrams. The tree pair diagram (S—, S ) for x;, is given in Fig. 2.

Suppose first that 7_ (w) has only one right caret, the root caret. The left subtree of the
root caret must then be nonempty; let A(w) be this subtree, and let y4 be the substring of
n(wy) consisting of all generators corresponding to carets in A(w). Then n(w,) = yax, I
In multiplying z = wx, ! a caret is appended to the rightmost leaf of each of the trees
for w, and the tree A(w) is appended to the leftmost leaf of the trees S and S, for x; I
Then z = (T—(z), T+(z)) where T_(z) consists of a root caret with a left child whose left
subtree is A(w), and T4 (z) is T4 (w) with a single caret appended to its rightmost leaf. This
pair is reduced, so no caret is removed in performing this product. The tree 7_(z) has a left
caret between the subtree A(w) and the root, so 1(z,) = yAxofz‘ Since Ty (z) is just Ty (w)
with a single caret appended to its rightmost leaf, n(w;l) = n(z;l). Hence in this case,
n(zp)n(zn) = n(wp))/Axo_2 = n(wp)n(w,,)xo_l. Therefore, if n(w) does not end in xq, then
n(z) = n(w)xo_]‘ However, if n(w) does end in xg, then n(z)xg = n(w).

For the remainder of this proof suppose that 7_ (w) has at least two right carets. Let A(w)
be the left subtree of the root caret, let B(w) denote the left subtree of the right child of the
root caret, and let E(w) denote the right subtree of the right child of the root. Let y4, y3,
and yg denote the subwords of 7n(w,) corresponding to the carets of these subtrees; note
that any of these trees can be the empty tree, and if so, the corresponding subword will be
empty. Define y; := 1 if the tree A(w) is the empty tree ¢ with no carets, and y, := x; Lif
A(w) # 0, so that y, is the contribution of the root caret of 7_(w) to the nested traversal
normal form 7 (w,). The nested traversal normal form for w is then

n(wp)yavrve if E(w) = Ry for some k > 0

wp)n(wy,) = — -
n( p)’?( n) n(wp)J/A)/r)/Bx()lVEXO if E(w) # Ry for all k.

In this case no carets need to be added to the tree pair for w in order to perform the mul-
tiplication wx(;l; the trees A(w), B(w), and E(w) must be appended to leaves 0, 1, and 2,
respectively of the trees S_ and S.
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A caret must be removed from the product wx, !'to obtain the reduced tree pair diagram if
and only if the trees A(w) and B(w) are both empty, and caret 1 in the tree 7 (w) is exposed.
In this case, T (z) is the tree Ty (w) with the first caret removed. Note that caret 1 of T (w)
contributed nothing to the nested traversal normal form n(w;l), and that caret 2 of T (w)
must also be a left caret, and so contributed x ', The latter caret is caret 1 of T, (z). Hence
n(w;l) =X, ! n(z;l). Analyzing the negative trees, we note that the tree 7_(z) is the tree
with a single left caret, namely the root caret, having a right subtree given by E(w), and so
n(zp) = ye. If E(w) = Rg for some k > 0, then n(w) = n(z)xp. On the other hand, if
E(w) # Ry for any k, then since E(w) is the right subtree of the root of 7_(z), this subtree
gives a nonempty contribution to the nested traversal path, and hence 1(z,) cannot end with
the letter xo_l. Thus when freely reducing the word n(w,)n(w,) = n(zp)xoxo_ln(zn)xo,
only one xoxo_1 is removed, and n(w) = n(z)xo.

Finally, suppose that no carets need to be removed in the multiplication wx, ! Then
T1(z) = T+ (w) and z, = wy. Therefore n(z,)n(zn) = n(wp)VAVrVBXO_IVE- If E(w) =
Ry, then n(z,)n(z,) = n(wp)n(wn)xal, and so either n(z) = n(w)xal, when n(w) does
not end in xo, or else n(z)xo = n(w). On the other hand if E(w) # Ry, then n(wp)n(w,) =
1(zp)n(zn)xo. Since 1(z,) cannot end in xal, n(w) = n(z)xg. O

Next, we turn to edges of the form e (w). For such an edge, the case where 7_ (w) has at
least three right carets is by far the most complicated, so before stating the desired lemma,
we establish some useful notation for that case.

Notation 4.5 For any w = (T_(w), T+ (w)) € F such that 7_(w) has at least three right
carets:

e Let A(w) denote the left subtree of the root caret, B(w) denote the left subtree of the right
child of the root, and C(w) and D(w) denote the left and right subtrees, respectively, of
the third right caret of 7_ (w).

e Define N(w) := N(T-(w)) = N(T+(w)) (as above), and Np(w) := N(D(w)) and
Nyg(w) := N(A(w)).

e Define j(w) to be the number of the first exposed caret of 7'y (w).

To understand the good edges, and later the definition of the partial order on the edges,
one must first understand explicitly how the tree pair diagram for w may change when w
is multiplied by x;” ! To form the product wx;” Lir T (w) contains at least 3 right carets,
then no carets must be added to the trees of the reduced pair diagram for w, but the sub-
trees A(w), B(w), C(w), and D(w) are appended to the leaves numbered 0, 1, 2, and 3,
respectively, of the trees in the reduced tree pair diagram for xfl , which is given in Fig. 2.

Continuing the case that T_ (w) contains at least three right carets, let 7’ be the negative
tree of the intermediate step in the multiplication, w)cfl before any carets are removed to
reduce the tree pair diagram. The carets of 7_(w) and T’ with the same number have the
same type (left, right or interior) in both trees, with the exception of the caret numbered
Na(w) + 1+ Ng(w) + 1, which is a right caret in 7_(w) and an interior caret in 7’ . This
is the only caret that can be exposed in 7" but not in 7_(w), and hence the only caret that
might be removed if T’ is not reduced. As a consequence, a caret must be removed in the

multiplication wx, lif and only if the following property holds:
) : B(w) =0, C(w) =0, and T4 (w) has an exposed caret at caret number N (w) + 2.

We are now ready to describe edges of the form e (w) that are good edges.
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Lemma 4.6 Let w € F. Then ej(w) is a good edge if any of the following are satisfied:

(1) T_(w) has at most two right carets.

(2) T_(w) has three or more right carets, property (%) is not satisfied and D(w) = Ry for
some k > 0.

(3) T_(w) has three or more right carets but no interior carets, property () holds and the
number n of the caret that cancels satisfies n = Nao(w) + 2 = j(w), so caret n is the
first exposed caret in Ty (w).

Proof Letu = wx| ! Again we compare n(w) with (u), and we claim that when w satisfies
either of the first two conditions of the hypothesis, then 1 () = n(w)xl_] . If w satisfies the
third condition, then n(w) = n(u)x;. So in all cases it follows immediately that the edge
e1(w) is good. We proceed by cases according to which hypothesis is satisfied. The first two
are straightforward, but for the third we separate into subcases.
Case 1. T_(w) has fewer than three right carets. Suppose first that 7_ (w) has only one right
caret, and A(w) is the left subtree of this root caret. In multiplying u = wx ! two right
carets are appended to the rightmost leaf of each of the trees for w, and A(w) is appended
to the leftmost leaf of the trees for x| ! but no carets are removed. The two appended right
carets in 7 (1) contribute nothing to n(u;l), so n(u,) = n(wp). The root caret of T_ (u)
has left subtree A(w), and the right child of the root has left subtree consisting of a sin-
gle interior caret which contributes x;l to the nested traversal normal form 7(u,). Then
1@ p)n(un) = n(w,)(n(wy)x; "), so it follows that 1(u) = n(w)x;'. The proof in the case
that 7_ (w) has two right carets is similar.

For the remainder of the proof, assume that 7_(w) has at least three right carets. Let
YA, Vr» VB, Y, and yp be the subwords of the nested traversal normal form n(w,) corre-

sponding to the carets of A(w), the root, B(w), C(w), and D(w), respectively. In this case
the nested traversal normal form for w is then

N(Wp)YAYr VB if C(w)=¢ and D(w)= Ry for some k>0

n(wp)yAyryBxO_l YC X0 if C(w)#¥ and D(w)= R}, for some k>0
U(wp)ﬂ(wn): -2 2 : —

n(wp)y,qyrygxo YDX{) if C(w)=§ and D(w)# Ry, for all k>0

n(wp)yAvryBXy 'vexy ' ypxg  if C(w)#0 and D(w)# Ry for all k=0.
Case 2. No carets must be removed to create the reduced tree pair diagram for u = wxl_l,
and D(w) = Ry for some k > 0. It follows immediately that 7 (w) = T4 (u) and hence
n(wp,) = n(up). From the discussion of 7_(w) and 77 = T_(u) above, only caret number
N4 (w)+2+ Np(w) makes a different contribution to the respective nested traversal normal
forms, yielding:

n(wp)yayryex; " if C(w)=0 and D(w) = Ry for some k>0

n(up)n i) = [ r)(w,,))/AyryBx(;]y(;xoxf1 if C(w) # ¢ and D(w) = Ry, for some k >0.

Comparing these words with the corresponding words n(w,)n(w,) given above yields
@) = nw)x; .
Case 3. Caret n is removed when we form the product wx, ! (equivalently, property ()
holds), j(w) = n, and T_(w) has no interior carets. From (%), this caret necessarily has
caret number n = Ng(w) + 2. As T_(w) has no interior carets in Case 3, we must have
A(w) = L,_7, the tree with n — 2 left carets, where n — 2 > 0 and D(w) = Ry for some
k > 0. Then n(w,) = x, =2 When caret n is removed to form the tree pair diagram for
u, we see that 7_(u) then has n — 1 left carets including the root and k + 1 right non-root

(n=2)

carets, and so n(u,) = x;, as well.
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Note that N(w) > Na(w) + 3 = n + 1, and so caret n of T4 (w) is neither the first nor
the last caret of this tree. Then this is an interior caret of 7 (w) which is an exposed caret, in
particular it has an empty right subtree. This caret will contribute x,” " to the nested traversal
normal form n(w;l). The tree T (u) is the tree T (w) with caret n removed.

For 1 < j < N(w), let C; denote caret j of the tree 7 (w). Caret C| contributes nothing
to the nested traversal normal form n(w;l). Whenever 2 < j < n — 1, the unexposed
caret C; is either an interior caret or a right caret, and in both cases C; has a nonempty
right subtree containing the interior caret C,. Hence each of these carets C; adds x;, "o

n(w;l) before the subword x,” ! corresponding to caret C,, and also adds either xox,” Uor X0
to n(w;]) after this subword. Then n(w;]) =X ("72)x1_ '8 for some word g, and hence
_ - —(n—2 _
n(wp)n(wa) = (B~ x1xy ™) g "), s0 n(w) = 1y
To analyze the nested traversal normal forms n(u;l) and n(u) further, we now divide into
four subcases, as follows.

Case 3a. Suppose A(w) = (. Then it follows that n = 2, and the tree T (1) is T4 (w) with
caret n = 2 removed. Hence n(u) = 87!, and so n(w) = n(u)x;.

Case 3b. Suppose A(w) # O, caret n is the left child of its parent caret in T+ (w), and
N(w) = n + 1. Then it follows that all other carets of T (w) are right carets, or else a caret
with infix number less than 7 would be the first exposed caretin 7 (w). Thus n(wp)n(w,) =
xo_("_z)x1x6'_2x0_("_2). The tree T4 (u) contains only right carets, and so 7(u ) is trivial,
and hence n(up)n(u,) = x, =2 Therefore the nested traversal normal form for w is
—(n-2

n(w) = xg "7 x; = (w)x; and so n(w) = n(w)x;.

Case 3c. Suppose that A(w) # 0, caret n is the left child of its parent caret in T (w), and
N(w) > n + 1. Caret C,4 is the parent of caret C, in this case. If C,4 is an interior caret
of T} (w), then C,1 is an interior caret contained in the right subtree of carets C; for all
2 < j <n—1,andsoin the tree T (1), these carets C; also contain an interior caret in their
right subtrees. If instead Cj, 1 is a right caret, then C; is aright caret forall 1 < j <n — 1.
Note that the final caret N (7T_ (w)) of T— (w) is exposed, and the tree pair (7 (w), T+ (w)) is
reduced, so caret number N (7T (w)) > n + 1 of T4 (w) is not exposed. Then the left subtree
of the latter caret contains an interior caret C; of Ty (w) with i > n, and hence this interior
caret is contained in the right subtrees of all of the carets C; with2 < j < n—1. Then for both
types of parent caret the nested traversal path for u 7! is the same as that for w;l except that
—(n—2)

0 E)

P
the xfl subword corresponding to caret n is removed. Then n(u ) n(u,) = ,Bflx(')'*zx
and so once again n(w) = n(u)xi.

Case 3d. Suppose that A(w) # 0, and caret n is the right child of its parent in Ty (w).
Since n > 3, N(T+-(w)) > n + 1, and caret C, is the first exposed caret in 7 (w), then
caret C,—1 must be an interior caret in 7 (w), which is contained in the right subtree of

each C; with 2 < j < n — 2. Then the nested traversal path for u 1'is the same as that

—1 1

p

C, is replaced with the word xl_1 corresponding to the caret C,_; of T4 (u). In this case
_ _ - —(n=2 —

n(wp)n(w,) = (& 'xixg xixg )y "), (where B = xox; o), and n(up)n(us) =

(a’1x1x3_3)(x0_("_2)). Therefore, n(w) = a~x1xy 'x1 = n(u)x. |

p

for w}," except that the x; " x;” 1xoxl_l subword of n(w;l) corresponding to carets C,_1 and

Lemmas 4.4 and 4.6 complete the proof of Theorem 4.3. In the next sections, we will most
frequently apply the contrapositive of Theorem 4.3, rewritten below following Notation 4.5.

@ Springer



898 S. Cleary et al.

Corollary 4.7 Let w € F. If e,(w) is a bad edge, then a = 1, the tree T—(w) has at least
three right carets, and either

(1) D(w) # Rnpw)
(2) D(w) = Rnyw), A(w) = L, ), property () holds, and 2 < j(w) < Na(w), or
(3) D(w) = Ryp(w), A(w) # Ly, w), and property (%) holds.

Proof From Theorem 4.3 parts (1) and (2) we know that @ = 1 and 7_ (w) contains at least
3 right carets.

If no caret is removed in the multiplication wx;” ! (that is, if property () fails), then Part
(3) of Theorem 4.3 shows that we must have D(w) # Ry, (w)-

If a caret is removed in the multiplication wxfl, then property (f) holds, Additionally, if
we are not in either of the cases (1) or (3) of this corollary, then we have D(w) = Ry, (w)
and A(w) = Ly, ). In this case, 7_(w) has no interior carets, so B(w) = @ and the caret
that is canceled in the multiplication is caret number N4 (w) + 2, which must be exposed in
T4 (w). It follows from part (4) of Theorem 4.3 that this caret is not the first exposed caret
in Ty (w), and so j(w) < N4(w) + 2. However, two consecutive carets cannot be exposed,
and we conclude that j(w) < N4 (w). Furthermore, if j(w) = 1, then caret 1 would be
exposed in both 7_(w) and T (w) and the tree pair diagram would not be reduced. Hence,
2 < j(w) < N4 (w), and case (2) of the corollary holds. |

4.2 Defining a partial order on the bad edges

We now define a partial order on the set of all bad edges e (w) as required for Theorem 4.2.
This partial order is based on numerical measures related to the tree pair diagram for w. These
include N (w), as well as N4 (w) and Np(w), the number of carets in the subtrees A(w) and
D(w) defined in Notation 4.5 above. To order the edges e; (w) and e (w’) where the values
N4 and Np are the same for both elements, we first need to construct, for each fixed number k,
several different partial orderings of the set of all rooted binary trees with k carets. Before
explaining these posets, we first need some additional combinatorial information associated
to a rooted binary tree.

Definition 4.8 Let T be a rooted, binary tree.

e We order the right carets of T in infix order, and call them ry, rp, r3, ..., i, where ry is
the root caret of 7. Let T; be the (possibly empty) left subtree of caret ;. Let s, (T) := i,
where i is the smallest index with 0 < i < k satisfying the property that for every
i <t <k, the subtree 7; is empty.

e Similarly, we call the left carets of T, in infix order, /,,,, [;;,—1, . . ., [1, where [ is the root
caret of 7', and let S; be the (possibly empty) right subtree of caret /;. Then let s;(T') := i,
where i is the smallest index , 0 < i < m, such that S; is empty for every i <t < m.

e LetCo(T) := N(T) — (k — s,(T)) where k is the number of right carets in T'; that is,
C,(T) is the number of carets in 7 up to and including caret ry (r).

o Let Ci(T) := N(T) — (m — s5;(T)) where m is the number of left carets in 7T'; that is,
Ci(T) is the number of carets in T after, and including, caret Iy, (7).

‘We remark that the simple condition of whether a tree consists either only of right carets or
only of left carets, which was critical in recognizing bad edges in Corollary 4.7, simply trans-
lates into whether s, or s; equals zero. More precisely, the condition s, (7)) = 0 (respectively
s(T) > 0) is equivalent to T = Ry r) (respectively T # Ry (r)). Similarly, the condition
51(T) = 0 (respectively s5;(T) > 0) is equivalent to T = L7y (respectively T # Ly(T)).
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In order to sort, rather than simply recognize, the bad edges, however, we need to keep track
of the numerical values s, and s;.

Consider the set of rooted binary trees with k carets. We define the right poset of rooted
binary trees with k carets which will be used to order edges ej (w) where Np(w) = k. For
each tree D with k carets with s, (D) > 0, we define the tree f (D) as follows:

e If s.(D) is odd, and T7, the left subtree of the root caret of D, is empty, f (D) is the tree
formed by rotating D to the left at caret r;. That is, if g is the element of F with tree pair
diagram (D, Ry) where Ry is the tree consisting of k right carets, then gx,’ ! has (possibly
unreduced) tree pair diagram (f (D), Rg).

e Ifs,(D) is odd, and 77 is not empty, f (D) is the tree formed by rotating D to the right
at caret 1. That is, if g is the element of F with tree pair diagram (D, Ry), then gxo has
tree pair diagram (f (D), Ry).

e Ifs,(D)iseven, and T», the left subtree of the right child of the root caret of D, is empty,
f (D) is the tree formed by rotating D to the left at caret r. If g is the element of F with
tree pair diagram (D, Ry), then gx° ! has tree pair diagram (f (D), Ry).

e If s, (D) iseven, and 7> is not empty, f (D) is the tree formed by rotating D to the right
at caret rp. If g is the element of F with tree pair diagram (D, Ry), then gx; has tree pair
diagram (f (D), Ry).

Now declare f(D) <, D for every D. We claim that the transitive closure of this order is
a well-founded partial order, with unique minimal element Ry, the tree with k right carets.
To see this, notice that C, (D) = 0 if and only if D = R;. Now C,(f(D)) < C,(D), and if
C,(f(D)) = C,(D), then s, (D) and s, (f (D)) have different parities. So if f*(D) = D for
some positive integer n, this implies that there is a word xSE] xlil e xoilxlil (where possibly
the first and/or last generators are absent) which is trivial in F, contradicting Lemma 3.4.

Since there are only a finite number of trees with k carets, C, (f™ (D)) < C,(D) for some
m, and hence C,(f"(D)) = 0 for some n. Hence, we see that this is a partial order with a
unique minimal tree Ry, which is less than all other trees in the poset. We denote the order
in this poset by <.

We now define the left posets of rooted binary trees with k carets, which will be used to
sort bad edges e (w) for which N4 (w) = k. Using the method given above, we could have
constructed a poset using s;, S;, and C; instead of s,, T;, and C,, replacing the words “rotate
left “ by “rotate right” and vice-versa. This yields a dual poset, where the minimal element is
the tree Lj consisting of only left carets. We denote relationships in this order by A| <; Aj.

However, in some cases we will need a modification of this left poset in order to sort our
edges, depending on anindex 1 < j < k. For any natural numbers k > 3and2 < j <k —1,
let B (k) be a tree consisting of k carets, none of which are interior, so that the root caret has
infix number j + 1. Note that By_;(k) = L, the tree consisting of k left carets. In the left
poset with order relation <;, there is a unique path from each tree to the minimal element
Bi—1(k) = Ly, and hence there also is a unique (undirected) path from each tree to B (k). For
each 2 < j <k —2, we form a new poset, reordering the trees by declaring A <l] Ay if Ay
is on the unique path from A; to B (k). For each such j, the new poset now has least element
Bj(k), and whereas Ly = By_1(k) <; Bx—2(k) <; --- <; Bj11(k) <; Bj(k), exactly the
reverse holds in <], namely B;(k) <] Bj+1(k) <] -+ <] Bx—a(k) <] Bx—i(k) = Ly If
j =1,k —1ork, we use the original poset, and declare <lj =<;. Thus we have constructed
only k — 2 distinct posets in all, for each k > 3. In the trivial cases k = 1 and k = 2, simply
declare <‘l’=<l forany 1 < j <«k.
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To summarize: for each natural number £k > 3, we have defined k — 1 distinct partial
orderings of the set of rooted binary trees with k carets. There is a unique right poset which
has as minimal element R, which will be used to sort bad edges e; (w) with Np(w) = k;
there is a family of k — 2 distinct left posets which have, respectively, the trees B (k) for
2 < j < k—1asunique minimal elements, which will be used to sort edges with N4 (w) = k
and j(w) = j.

The following notation, based on the quantities introduced in Notation 4.5 and Defini-
tion 4.8, will simplify the description of the ordering.

Notation 4.9 Let e (w) be a bad edge, for an element w = (T_(w), Ty (w)) € F.

Let s, (w) := s, (D(w)).

Let s;(w) := s;1(A(w)).

Let C, (w) := C,(D(w)).

Let Cj(w) := Ci(A(w)).

Let n(w) be the infix number of the right caret of 7_ (w) whose left subtree is not empty,
but whose right subtree is either empty or consists only of right carets. If no such caret
exists, 7_ (w) consists only of right carets, and we set n(w) = 0 (see Fig. 3).

In the following definition, we define a set of comparisons between certain pairs of bad
edges. We then prove that the transitive closure of this set of order relationships is a partial
order. Some details of this partial order (particularly the fourth set of comparisons) may
seem mysterious at this point, but they are exactly the relationships needed for the cell map
from the set of bad edges into the 2-cells which is defined in the next section to satisfy the
hypotheses of Theorem 4.2.

Definition 4.10 Let ¢ (w) and e (z) be bad edges. We say e1(z) < ej(w) in the following
situations:

(1) N@) < Nw).
(2) N(z) = Nw), T4+(z) = T4+ (w), both s, (w) > 0 and s,(z) > 0, and either:

(@) Np(z) < Np(w) and n(z) = n(w), or
(b) Np(z) = Np(w),n(z) < n(w), and D(z) <, D(w).

() N@)=Nw), T+(2) = Tr(w), s,(2) = sr(w) = 0, and either:

(@) Na(2) < Na(w)and n(z) < n(w) or _
(b) Na(w) = Na(z),n(z) = n(w), and A(z) </ A(w) for j = jw) = j(z) <
NA(w).

Fig. 3 In the example of the pair
of trees (T—(w), T+ (w)) given in
this figure, the subtree D(w)
(resp. A(w)) has four right (resp.
left) carets. We compute the
following quantities:

N(w) =15, Np(w) =

7, Np(w) =35, s,(w) =

2,5 (w) = 1, Cy (w)
5,Cr(w) =2, n(w)
Jw)=3

13 and
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4) N(z) = N(w), T (z) = T4 (w), exactly one of the pair {s,(w), s,(z)} is zero, and
either:

(@) s:(z) =0,s.(w) =1o0r2,and n(z) < n(w), or
®) sr(2) =1, 5 (w) =0,n(z) = n(w), and Na(z) < Na(w).

Lemma 4.11 The transitive closure of the set of order relationships defined above is a partial
order satisfying the property that for all bad edges e, the set of bad edges less than e with
respect to this partial order is finite.

Proof In order to show this is a partial order, we must show that for every set of bad edges
satisfying e1 (w1) > ej(wp) > --- > ej(wy), wi # wy. Suppose ej (wy) > ej(wy) > -+ >
e1(wy). If N(w;) is not constant for all i, then N(w,) < N(wj), and so w; # w,. So we
may assume N = N(w;) for 1 < i < n. Next we observe that if s.(w;) > 0 for every
1 <i < n, then for each i either Np(w;+1) < Np(w;), or else Np(w;+1) = Np(w;) and
D(wiy1) <1 D(w;), so wy # w,. Similarly, if s, (w;) = 0 for every i, either Na(w;4+1) <
Na(wi), or else Na(wi1) = Na(w;) and A(w;y1) <] A(w;) for j = j(w;) = j(wit1),
so wy # wy. Therefore, if w; = w, the value of the variable s, must change twice in
the sequence of edges between a strictly positive value and 0. Thus there must be indices
for which the value of s, increases from O to a (strictly) positive number and for which
the value decreases from positive to 0. In particular, there must be some index i for which
sr(D(w;)) = 1or2,s,(D(wit1)) = 0, and n(w;+1) < n(w;). But since for every index
Jj we have n(w;41) < n(w;), then n(w,) < n(w;), and hence wy; # w,. Finally, since
the subset of all edges ej (w) with a fixed value of N (w) is finite, the finiteness condition is
satisfied and this partial order is well-founded. O

4.3 The mapping from the set of bad edges to the set of 2-cells in the Cayley complex

In this section we define a mapping ¢ from the set of bad edges to the set of 2-cells in the
Cayley complex. We will set up the map c so that the bad edge e; (w) is on the boundary of
the cell c(e; (w)).

In order to specify this mapping, we will first define notation for 2-cells in the Cayley
complex with a specified basepoint and orientation. For each vertex w and edge ej (w) in the
Cayley complex, there are eight 2-cells containing this edge in their boundaries. For four of
these 2-cells, there are 10 edges on the boundary; these are the 2-cells labeled Rr]lLl (w) and
RI lﬂ (w) in Fig. 4. For the other four 2-cells whose boundaries contain e (w), there are 14
boundary edges; these are the 2-cells labeled eril (w) and Rl;El (w) in Fig. 5.

In each of these 2-cells, in addition to e; (w) the boundary contains three other edges of the
form e (v) for some v € F, and none of the e; edges in the boundary of a particular 2-cell are
adjacent. The edge e (w) will be referred to as the top e; edge in these eight 2-cells. The e
edges closest to w and wx ! are the left and right side edges e (z;) and e (z,), respectively,
and the last e edge is the bottom edge e (zp).-

For a bad edge e (w), the 2-cell c¢(ej (w)) must be chosen from among these eight cells.
The map will be defined so that z;, can be represented by a (not necessarily reduced) tree
pair diagram (T (zp,), T/ (z})), where the negative trees 7_ (w) and T (zp,) differ by a single
rotation at a particular caret, and the positive trees satisfy 74 (w) = T_(_ (zp). The notation
Ra,jlEl (w) (where R stands for relator,) has been motivated by this. The lettera =l ora =r
depends on whether the rotation needed to transform 7_(w) to T’ (z;) takes place at a left
or right caret of 7_ (w). The superscript &1 takes into account the direction of this rotation,
and the subscript n specifies at which caret the rotation takes place. More specifically, in the
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w w
Praad > < —z > > < <
Rri(w . -1 v
x1) 1(w) ) Rrit(w) )
L L < < 2l > > < < Z
i) i) Zp T Zo Zo ) Zp X1 X "
w w
a0 T Y ;om0 om0 o v o 20
< <t < £ = 2r < < £
m P , =1, o~
T, Rl](w) ATL Tly Rll (lU) vZI1
< < > Zl < < < » » Z
20 2, X1 20 20 To 2, X1 Z0 T0

Fig. 4 The four 2-cells eril (w) and Rl?:] (w) with boundary consisting of 10 edges including e (w).

In each rectangle, the vertices w, z;, zr, and z;, are labeled
w

) 0 ) l T Zo Zo

w

o) xo o) l T xo o

Zl e » 2
Rra(w) \ Rry'(w) A
L1, ALl X1 2 X1
> > > < < < K > > < < < Zr
To ) o Zp T1 Zo Zo Zo ) To 2p L1 ) xTo
w
) ZTo o) l I i) o) )
Zlo—<4¢o—<¢o—<¢o——¢—eoPp—op—op 92
ng(w)
g AT
zo EEIED ) o
w
) ) l T o) i)
—<t—o—<+——0———<}—o o0
-1
Y Rl (w) Y1,
zl <+ —<¢ o <o < b —o P —o ) Zr
) ZTo o 2p Tl Zo ) )

Fig. 5 The four 2-cells RréH(w) and ng:l(w) with boundary consisting of 14 edges including e (w).

In each rectangle, the vertices w, z;, zr, and z;, are labeled

case of a rotation at a left caret, n = 1 means this caret is the left child of the root of 7_(w),
while n = 2 means rotation is at the left child of the left child of the root. In the case of a
rotation at a right caret, if caret m is the right child of the right child of the root of 7_(w),
then n = 1 means rotating at the right child of caret m, and n = 2 means rotating at the right

child of the right child of caret m.

Rewriting the result of Corollary 4.7 using the quantities in Notation 4.9, we have that the
bad edge e (w) satisfies either s, (w) > 0 or else property () holds and either s;(w) > 0 or
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Tame combing and almost convexity conditions 903

2 < j(w) < N4 (w). It will be useful to re-organize these cases for the definition of the map
¢, as follows.

Corollary 4.12 Let w € F. If eq(w) is a bad edge, then a = 1, the tree T—(w) has at least
3 right carets, and either

1) sr(w) >0,
2) sr(w) =0, s1(w) € {0, 1}, property () holds, N4 (w) > 2, and either

@) 2 < j(w) < Na(w) — 1 and A(w) = Bjuw)(Na(w)),
(b) j(w) = Na(w) and A(w) = By, w)—1(Na(w)), or
(©) 2 < j(w) < Na(w)—2and A(w) = B;(Na(w)) with j(w)+1 < i < Na(w)—1,

or
3) sp(w) = 0,s5;(w) > 0O, property () holds, and the conditions of case (2) are not
satisfied.

The proof of this corollary follows directly from Corollary 4.7, using the fact that when
sj(w) =0then A = Ly, (w) = Bn,w)—1(Na(w)), and is left to the reader.
Using these cases, we will choose c(e1 (w)) to accomplish the following:

o Ifs.(w) > 0, then D(w) is not the minimal element Ry, () relative to <,; in this case
c(e1(w)) is chosen so that either N(zp) < N(w), or N(zp) = N(w), Np(zp) = Np(w)
and D(zp) <, D(w) (see part (1) of the definition below).

o If 5.(w) = 0, but A(w) is not the minimal tree relative to < , c(er(w)) is cho-
sen (in parts (2c) and (3) of the definition below) so that either N(z5) < N(w), or
N(zp) = N(w), Na(zp) = Na(w) and Azp) <] A(w).

e Finally, if both A(w) and D(w) are minimal, then c(ej(w)) is chosen (in parts (2a) and
(2b) of the definition below) so that caret j(w) is removed in moving around the 2-cell
from w to zp, S0 N(zp) < N(w).

jw)
l

Definition 4.13 We define a map ¢ from the set of bad edges to the set of 2-cells in several
cases. Consider a bad edge e¢j(w), and let k = N4 (w). Let T} be the left subtree of the root
of D(w), and let 7> be the left subtree of the right child of the root of D(w). Similarly, let S}
be the right subtree of the root caret of A(w), and let S, be the right subtree of the left child
of the root caret of A(w).

(1) Ifs,(w) > 0and:

If s, (w) is odd, and T} is empty, let c(e1(w)) := Rri(w).
If s, (w) is odd, and T} is not empty, let c(ej(w)) := Rr]_l (w).
If s, (w) is even, and T3 is empty, let c(e1(w)) := Rry(w).
If s, (w) is even, and T3 is not empty, let c(ej(w)) := Rr2_1 (w).

2) Ifs,(w)=0,sw) e {0, 1}, property () holds, k > 2, and:
(a) If2 < j(w)<k—1and A(w) = Bj)(k), then let c(e;(w)) := Rlr(w).
(b) If j(w) =k and A(w) = By_1(k), then let c(ej(w)) := Rl (w).
© If2 < j(w) < k—2and A(w) = Bj(k) for j(w)+1 <i < k—1, let
cler(w)) == Rl (w).

3) Ifs-(w)=0,s(A) > 0, property (¥) holds, the conditions of case (2) are not satisfied,
and:

e If s;(w) is odd, and S is empty, then let c(ej(w)) := Rl (w).
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904 S. Cleary et al.

e If s;(w) is odd, and S is not empty, let c(eq (w)) := Rll_1 (w).
e Ifs;(w) is even, and S, is empty, let c(ej (w)) := Rl (w).
e If s;(w) is even, and S7 is not empty, let c(ej(w)) := Rl;l (w).

See Figs. 6 and 8 for examples of bad edges and their corresponding two cells. Figures 7
and 9 show the tree pair diagrams corresponding to the elements w and z, where e;(zp) is
the edge across the two-cell from the bad edge e (w).

In the following theorem, we verify that the map defined above and the partial order on
the set of bad edges satisfy the hypothesis of Theorem 4.2. In addition, we prove another

Fig. 6 The 2-cell corresponding w=z! x:;?
— — bl
to the bad edge e (x5 1x3 2), l
—1_-1
where zj, = x5 x3 To 70 T To
> > 4——<—
-1
oY cler(w)) = Rry - (w) Yo,
2l > > < < Zr
Zo Zo 2b T Zo
Fig. 7 The left (negative) trees
from the pair diagrams
corresponding to w = x5_1x3_2
and zp = xglx;l. Notice that
these two trees differ by a
rotation at the root caret of the
subtree D(w)
_ —1,_.-2
W = TOL1L2T4Tq IO
Zo Zo l | Zo Zo
< < > >
er(w)
Y cler(w)) = Ry ' (w) \E
/
er(w')
< < < <— > > >
o o zo A o zo Ty

w' = zor1T2T47°

cler(w)) = Rhi(w)
Zo x

<
<

Z0
>

A

w//

Fig. 8 The 2-cells corresponding to the bad edges e (w) and e (w'), for w = x0x1x2X4xflx62 and w’ =
x0x1x2x4x63. The edge across the bottom 2-cell from e (w’) is eq (w”) where w” = x0x1x3x62
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£ 9 o0

Fig. 9 The tree pair diagrams corresponding to w = xx|X2X4%| XO ,w' = x0x1x2x4x0 ,and w” =

XQX]1X3Xy 2 which are labeled in Fig. 8

fact which will be used later in showing that the combing satisfies a linear radial tameness
function.

Theorem 4.14 [fe;(w) is a bad edge, then all other vertices z on the boundary of c(e1(w))
have N(z) < N(w). Furthermore, every edge of the form e1(z) along the boundary is either
a good edge, or precedes ej(w) in the ordering of the bad edges.

Proof Letej(zp) be the bottom e edge in the 2-cell (e (w)), and e (z;) (respectively e (z,))
be the left (respectively right) side e edges. The first statement in the theorem is a conse-
quence of the following observation. The tree 7_ (w) has enough carets in the left subtree of
the root caret, and in both subtrees of the right child of the root caret to ensure that as we
read around c(ej (w)) to the left, starting from w, terminating at z;, and form the successive
products, no carets ever need to be added to the tree pair diagrams in order to perform these
multiplications. The same holds for the path from wx;” ! around to the right ending at zx,” !
Since N(wxl_l) < N(w), it follows that for each vertex z of c(ej(w)), N(z) < N(w). In
addition, if N(z) = N(w), then T4 (z) = T4 (w).

To prove the second statement of the theorem, we proceed by cases according to the size
of s,-(w). In each case we show that e1 (z) < ej(w), orelse e1(z) is a good edge. We consider
separately the three subcases of e (z) for z € {zp, 7/, z+}.

Case I: s,(w) > 0. In this case c(e;(w)) = erl for n € {1,2}. Also, note that n(w) =
N(w) — Np(w) + Cr(w).

(a) z = z;. In this case either:

e N(z7) < N(w) (and e1(z;7) < ej(w) by (1) of Definition 4.10 if e;(z;) is a bad
edge), or

e N(z;) = N(w),s,(z;) > 0, Np(z;) < Np(w) and n(z;) = n(w) (and e;(z;) <
e1(w) by (2a) of Definition 4.10 if e (z;) is a bad edge), or

e N(z7) = N(w) and s,(z) = 0. But one checks that if s, (z) = 0, then c(ej(w)) =
an_l ,n € {1,2},and s, (w) = n. But since no carets are ever added in moving from
zlxl_l to z7, e1(z7) is a good edge.

(b) z = z,. Ifitis not the case that N(z,) < N(w), then it is easily checked through the
definition of erl(w) that T_(z;) and T_(z,) differ only in the configuration of the
carets in the left subtree of the root. Therefore, the argument for e;(z;) goes through
exactly, replacing z; by z.

(¢) z = zp. In this case either:

e N(zp) < N(w) (and e1(zp) < ej(w) by (1) of Definition 4.10 if e (zp) is a bad
edge), or
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e N(zp) = N(w) and s,(zp) > 0, in which case Np(zp) = Np(w), and D(zp) <,
D(w). Then C,(zp) < C,(w), which implies that n(zp) < n(w), (and e;(zp) <
e1(w) by (2b) of Definition 4.10 if e; (zp) is a bad edge), or

e N(zp) = N(w) and s,(zp) = 0. However, this can happen only when s,.(w) = n
forn € {1,2}, cle;(w)) = an’l(u}), and n(zp) < (ny) (and ej(zp) < e1(w) by
(4a) of Definition 4.10 if e (zp) is a bad edge).

Case 2: s,(w) = 0. In this case, c(e; (w)) = RIE! for n € {0, 1}. Also, note that n(w) =
Na(w) + 1.

(a) z = z;. Inthis case, Ng(z;) < Na(w). Now either:

e N(z7) < N(w) (and e1(z;) < ej(w) by (1) of Definition 4.10 if ej(z;) is a bad
edge), or

e N(z7) = N(w) and s,(z;) = 0, and hence n(z) < n(w) (and e1(z;) < ej(w) by
(3a) of Definition 4.10 if e (z;) is a bad edge), or

e N(z;) = N(w) and s,(z7) > 0. However, this only occurs if c(ej(w)) = Rlzil(w),
andthens,(z;) = landn(z;) = n(w) (and e (z;) < e1(w) by (4b) of Definition4.10
if e1(z7) is a bad edge).

(b) z =z,.1f e1(z,) is a bad edge, then s, (w) = 0 implies that property (&) holds. In this
case, N(z;) < N(w) because a caret is removed when moving from w to wxl_l.
(¢) z = zp. Then either:

e In cases (2a) and (2b) of Definition 4.13, N(zp) < N(w), since caret j(w) is
removed in moving from z; to zlel (and e (zp) < e1(w) by (1) of Definition 4.10
if e1(zp) is a bad edge).

e In cases (2¢) and (3) of Definition 4.13, either N(z5) < N(w) (and e1(zp) < e1(w)
by (1) of Definition 4.10 if e;(zp) is a bad edge), or N(zp) = N(w), s,(zp) =
0. Na(zp) = Na(w), n(zp) = n(w), and A(z) <] A(w) (and e1(zp) < e1(w)
by (3b) of Definition 4.10 if e (zp) is a bad edge). O

Since all hypotheses of Theorem 4.2 have now been verified, Theorem 4.2 shows that the
nested traversal O-combing W extends to a 1-combing W : X! x [0, 1] — X.

5 The combing of F satisfies a linear radial tameness function

The fact that our combing W satisfies a linear radial tameness function will follow from
the fact that the number of carets in the tree pair diagrams representing the vertices along a
nested traversal normal form path never decreases, and from the close relationship between
word length over the alphabet A = {xoil , xlﬂ} and the number of carets. First, we extend
the concept of the number of carets in a tree pair diagram from F = X° to all of X.

Definition 5.1 For any x € X, we define Nyax (x) and Npin (x) by cases.

() Ifx e X9 thenx = g € F, and we let Nyax (x) = Nwmin(x) = N(g), the number of
carets in either tree of a reduced tree pair diagram for g.

2) Ifxe X! — X9 then x is on the interior of some edge, with vertices g, h € XO°. Then
define Nyax (x) = Max(N(g), N(h)), and Ny (x) = Min(N(g), N(h)).

(3) Ifx € X — X!, then x is in the interior of some 2-cell, with vertices 21,82, -, 8n
along the boundary. Then we define Nyax (x) = Max(N(g1), N(g2), ..., N(gn)), and
NwMin (x) = Min(N(g1), N(g2), ..., N(gn))-
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The following lemma proves that using this expanded notion of the number of carets of
x € X, the number of carets does not decrease along the combing paths defined by W.

Lemma 5.2 Foranyx € X'and0 <s <t < 1, wehave Nmax (W (x, ) < Nmax (W (x, 1)),
where WV is the 1-combing defined in Sect. 4.

Proof In the case where x € X 0. from Theorem 3.5 we know that along the nested tra-
versal normal form n(x) = ajay...a,, we have N(ayaz---a;) < N(ayaz---ajt1). For
x € X' — X0, if x is in the interior of a good edge the conclusion of this lemma follows
from the previous sentence. If x is in the interior of a bad edge e, then the inequality follows
from Noetherian induction and the fact that for y on any bad edge e and z on the complement
of the edge e in the closure of the 2-cell c¢(e), we have Nyax(z) < Nmax(y) as shown in
Theorem 4.14. O

The next lemma relates the level of x € X to the quantities Nyin (x) and Nypax (x). Recall
that when x € X°, the level of x and [ A(x), the word length of x with respect to A, are
identical. The lengths of the two relators in this presentation are 10 and 14, so the constant ¢
used in defining the level of a point in the interior of a 2-cell of the Cayley complex for this
presentation of F will be ¢ = 4(10)(14) + 1.

Lemma 5.3 For any x € X we have
Nuin (x) — 2 < lev(x) < 4Nmax (x) + 1
and additionally Nypax (x) — Nvin(x) < 9.
Proof When x € XY Lemma 3.3 gives N(x) —2 <z (x) < 4N (x). Therefore
Nmin(x) =2 =N(x) =2 <lev(x) =1a(x) < 4N (x) = 4Nmax (x) < 4NMax (x) + 1

for x € XO. If, on the other hand, x € X! — X, then x is in the interior of an edge, whose
endpoints are g, h € F. Now

lev(x) — lev(g) + lev(h) L 4N(g) +4N(h)

1
2 4~ 2

+ — <4Max(N(g), N(h)) + %

EN

1
= 4NMax (x) + Z < 4NMax (x) + 1.

But, on the other hand,
N+ NMh) 1

24 =
2 +4

1 1
Min(N(g), N(1)) =2+ 7 = Nyin(x) =2+ 7 = Nuin () — 2.

lev(x)

v

v

In summary, in this case, we have
1
NMin (x) — 2 < lev(x) < 4Nmax (x) + i 4Npax (x) + 1.

And finally, if x € X — X I x is in the interior of some 2-cell, with vertices 81,82, -, 8k
on its boundary, then

1 cedlevh) 11
lev(x) = ev(gr) + +eV()+—+—S
C

4(N(@g)+--+N(gr) 1 1
k 4 Tt

k 4 ¢
1 1 1 1
< 4Max(N(g1), ..., N(gk)) + I + o= 4 NMax (x) + 1 + o< 4 NMax (x) + 1.
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On the other hand,

N(g)+---N (N 1o
lev(r) > M8V p (gk)—2+ZZMln(N(gl),...,N(gk))—Z—}—Z+E

1 1
= Nmin(x) — 2+ 1 + - > NMin(x) — 2.
And so, in this case, we have
1 1
Nmin(x) — 2 < lev(x) < 4Nmax(x) + Z + Z < 4Nmax (x) + 1.

This establishes the first statement of the lemma. Now if x € X°, Nyax (x) = Nwmin(x). For
x e X' — X9 Nyax (x) — Nmin(x) < 2, since one either needs to add at most 1 caret (or
can cancel at most one caret) when multiplying by xoil, and one needs to add at most two
carets (or can cancel at most two carets) when multiplying by xftl. Now the relators in our
presentation of F have length either 10 or 14, and two vertices v and w on the boundary
of a relator can be at most seven edges apart. Furthermore, examining the relators, we see
that at most two of these seven edges correspond to multiplication by xli]. Therefore, for
x € X — X!, Npax(x) — Nyin(x) <2(2) +5 =09. ]

We are now able to prove that the combing W defined in Sect. 4 satisfies a linear radial
tameness function.

Theorem 5.4 Thompson’s group F is in T C, with p linear. More specifically, the Cay-
ley complex of the presentation F = (xq, X1 I[xoxl_l,xo_lxlxo], [xoxl_l,xo_lexg]) has a
1-combing admitting a radial tameness function of p(q) = 4q + 45.

Proof Let W : X! x [0,1] — X be the 1-combing of F constructed in the previ-
ous section. Suppose that x € X',0 < s <1t <1, and lev(W(x,s)) > 4g + 45. In
Lemma 5.3 we have shown that lev(W (x, 5)) < 4Npax (W (x, s)) + 1, which implies that
4NMax (W (x,5)) > 4g + 44, or NMax(W(x,s)) > g + 11. From Lemma 5.2 we have
Nviax (W (x, 1)) > Nmax (W (x, 5)), and so Nmax (W (x, 7)) > g + 11. The last statement in
Lemma 5.3 also shows that Nyjax (W (x, 1)) — Nmin (W (x, 1)) < 9, and so Nmin (W (x, 1)) >
g + 2. Using Lemma 5.3 once more, we obtain lev(W¥ (x, t)) > g. O

6 Linear tame combing for BS(1, p)

In this section we prove the following.

Theorem 6.1 For every natural number p > 3, the group BS(1, p) is in the class T C, with
p linear. Moreover, the Cayley complex for the presentation BS(1, p) = (a, t | tat~! = aP)
has a 1-combing admitting a radial tameness function of p(q) = 4(h + 2)q + [4(h + 2) +
11(h 4 4) where h = | 5 ].

Throughout this section, let p > 3, G = BS(1, p),h = | 5], and A = {a*!, 1*!}. Let
X denote the Cayley 2-complex associated with the presentation (a, t | tat~! = aP) of G.
Give the Cayley graph X' = I'(G, A) the path metric. For a word v over the alphabet A,
let [(v) denote the length of the word v, and let /1 (v) denote the length of a geodesic (with
respect to the path metric on I') representative of the element of G represented by v. Each
element of G has a particularly simple, not necessarily geodesic, normal form " a/ ¢ with
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m > 0 and s > 0. The combing we construct will be based on this set of normal forms. The
following lemma, which characterizes a set of geodesics for elements of G and relates them
to the normal forms above, is a direct consequence of Elder and Hermiller [6, Prop. 2.3].

Lemma 6.2 Let g be an arbitrary element of G. Then g is represented by a geodesic word w
satisfying one of the following.

(1) w = tkaiegl-11=1 o= lgimpS with 0 < s < m,0 < m, —m < k, |ij| < h for
—m <1 <k—1,lig| <h+1, and either 1 < |iy| or (k = —m and s = 0).

(2) w = tMal-mpgl-mip. gtk STMK With0 < m < s, —m < k, lif] < h for —m <
I <k—1,1<|ix| <h+1, and either 1 < |ix| ork = —m = 0.

Moreover, in each case, g also has a (not necessarily geodesic) representative of the form
t7"altS withm > 0,8 >0, and j =i_p + ipy1p + -+ ixp*™™ € Z.

The next two lemmas show that lower and upper bounds on the length of a geodesic rep-
resentative of t~"a’t* in the Cayley graph imply lower and upper bounds, respectively, on
the value of | j|.

Lemma 6.3 If0 <m <n,0<s <n,h+2 < B, and Ir(t~™a’ %) > Bn, then ljl >

p(hlﬁB—Z)n.

Proof We will prove the contrapositive; suppose that0 <m < n,0 <s <n,h+2 < B,

and |j| < p(ﬁB 2" Let w be a word in one of the forms (1)—(2) from Lemma 6.2 that is
a geodesic representative of the element of G that is also represented by =" a/t*. As w is a
geodesic, it follows that I @t "alt) is simply the length /(w) of the word w.

First note that if iy = 0, then j = 0 and either s = 0 or m = 0. In both of these instances,
we have Ip(r™a/t5) < n < Bn.

For the rest of the proof we suppose that |ix| > 1. In both cases (1)—(2), we have |j| =

1
licm + i1 p oo+ ik Pt < p TR PTD and hence Jix| pEt — | 2L, i p! T <
1
p(mez)” Since each |ij] < h for —m < [ < k — 1, then |Zl:7m ipttm <
k+m
l——m hpltm = p =L 2 pktm | where the last inequality uses the hypothesis that

p > 3. Plugging thls mto the previous inequality, and using the fact that |ix| > 1,
1 1
gives %karm < |l~k|pk+m _ %pk+m < p(m372)n. Then karmf(meZ)n

k+m — (45 B — 2)n < 0. Since 0 < m, this gives k < (;15B — 2)n.

< 3, and so
If w is of the form in (1) with £ > 0, then

. . 1
l(w)=2k+m+s+llfm|+---+|lk|<2(m3—2)"

+n+n+htk—1+m)+h+1

1 1
<2(h 5 )n—l—h((mB—Z)n—l—n) < Bn.

If w is of the form in (1) with £ < 0, then

l(wy=m+s+li_pl+---+lixl<n+n+hm—-1)+h+1<h+2)n+1.
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For w of the form in (2) with k > s — m, we have
lw)=2m+k+ Gk —s+m)+|i_pl+ -+ ikl
1
2 2 ——B -2 h k—1 h+1
<2n+ (h+2 )n-l- (m+ )+h+

1 1
<2{——B h ——B -2 Bn.
< (h+2 )n—i— (n+(h+2 )n)< n
And finally, for w of the form in (2) with k < s — m, we have

l(wy=m+s+i_p|l+---+lixl <n+n+htk—14+m)+h+1<2n+hs+1
<2n+hn+1=Mh+2)n+1.

Hence, in all possible cases, I (t"alt*) = I(w) < Bn + 1, and so this nonnegative integer
satisfies I (t~™a’t%) < Bn. O

Lemma 64 If0 <m < n,0<s <n,l < E, and |j| > pE”, then Ir(t ™alt%) >
(E — D)n.

Proof Suppose that0) <m <n,0<s <n,1 < E,and |j| > pE”. Let w be a word in one
of the forms (1)-(2) from Lemma 6.2 that is a geodesic representative of the element of G
also represented by r a5,

In both cases, we have p&" < |j| = iy + i—me1p + -+ + ix p¥*™|, and in particu-
lar we must have |ix| > 1. Using the fact that | Z;‘;lm ilpl+m| < %pk"'m (see the proof of
Lemma 6.3) and the inequality |ix| < h+ 1 yields p£" < %p“m +ig| pFT < (h+2) pFtm.
Since p > 3, this gives pE”_k_m <h+2<p,andso En —k —m < 0.Then (E — )n <
En—m <k.

Note that the inequality (E — 1)n < k implies that 0 < k. We again consider the length
of w in each case.

If w is of the form in (1), then

lw) =2k +m+s+lim|+-+lix] >2(E-Dn+0+0+ 1.
For w of the form (2) with k > s — m, we have
Ilwy=2m+k+k—-—s+m)+li_pyl+--+ix]| >0+ (E—-Dn+0+1.
And finally, for w in form (2) with k < s — m, we have k < s and hence
wy=m+s+i—pl+ - +ixg| >0+k+—k+1>E—-Dn+0+1.

Thus in all possible cases we have I (t "a/t*) = [(w) > (E — Dn. O

The Cayley complex X can be constructed using rectangles homeomorphic to [0, 1] x
[0, 1], with the top labeled a and oriented to the right, the bottom labeled a” and also oriented
to the right, and the left and right sides labeled ¢ and oriented upward. Gluing these rectan-
gles along commonly labeled and oriented sides, the Cayley complex X is homeomorphic
to the product R x T of the real line with a tree 7. The projection maps g : X — R and
nr : X — T are continuous, and we can write a point x € X uniquely as [7r(x), 77 (x)].

The vertices of T are the projections via rr of the vertices of X. Two vertices of X project
to the same vertex of 7' if and only if there is a path in X! labeled by a power of a between
the two vertices. Each edge of T can be considered as oriented upward with a label ¢, the
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projection under 7 of edges labeled by ¢ in the Cayley complex. Each vertex of T is the
initial vertex for p edges and the terminal vertex for one edge.

The projection 7 maps a vertex 1 "a/t* to the real number jp~. The points on a ver-
tical edge between vertices 1 ~"a/¢* and t~"a/+**! also all map under 7k to jp~", and the
projection mrr maps the horizontal edge from ¢ =" a/t* to t ~"a’ t*a homeomorphically to the
interval from jp~™ to jp~™ + p~ ",

On a rectangular ([0, 1] x [0, 1]) 2-cell, the top left and top right vertices have the form
Lip™™, z] and [jp~™ + p~™*%, z], respectively. Two points x = [jp~", nr(x)] and y =
[ip™ 4+ p~™*5 77 (y)] on the left and right sides of this 2-cell, respectively, determine a
horizontal line segment if 77 (x) = 77 (y) is a point on the unique edge in the tree 7 oriented
toward the vertex z. The projection g maps this horizontal line segment homeomorphically
to the interval from jp=™ to jp~™ + p~*% in R, and the projection 77 is constant on this
segment. Let 7’ be the initial vertex of the edge in 7 whose terminus is z, and let r be any
real number in the interval from jp~" to jp~™ + p~"*5. The two points [r, z’] and [r, z]
are on the bottom and top sides of this 2-cell, respectively, and they determine a vertical line
segment in the 2-cell which maps via 7 to r, and which maps via 77 homeomorphically to
the edge from 7’ to z.

It will frequently be useful to move from points in the interiors of 1-cells or 2-cells to
vertices in the Cayley complex. If y is a vertex in X, let y := y. If y is in the interior of a
1-cell in X labeled ¢ directed upward, then let y be the initial vertex of that edge. If y is in the
interior of a 1-cell in X labeled a directed rightward, then let y be the endpoint of that edge
whose image under 7 has the maximum absolute value. Finally if y is in the interior of a
2-cell, let y be the bottom (left or right) corner of that rectangular 2-cell whose image under
mrr has the maximum absolute value. In a 2-cell there are p + 3 vertices, so the difference in
levels of vertices in that cell is at most 7 + 2, resulting in a bound on the difference between
the level of the 2-cell and the level of any vertex in that cell, as well. Then in all cases, we
have y € XY and [lev(y) — lev(y)| < h + 3. We will call y the vertex associated to y.

More information on Cayley complexes for Baumslag—Solitar groups can be found in the
references by Epstein et al. [7] or Elder and Hermiller [6].

Next, we apply the lemmas above to prove Theorem 6.1.

Proof We first define a 1-combing W : X! x [0, 1] — X as follows. Let € denote the identity
vertex in X.

Let x be an arbitrary point in X!. Since T is a tree, there is a unique geodesic in 7' from
nr(€) to r(x). This geodesic first follows a (possibly empty) edge path in the direction
opposite to each edge orientation from 77 (€) down to a point z(x) (which we will call the
nadir of x), and then follows a (possibly empty) edge path in the same direction as each edge
orientation up to 7 (x). If z(x) # w7 (x) so that the upward portion is nonconstant, then the
nadir z(x) must be a vertex of 7. Let the path p, : [0, %] — T follow the geodesic from
7 (€) to z(x) with constant speed, and let the path g, : [%, 1] — T follow the geodesic from
z(x) to 7 (x) with constant speed (with respect to the path metric on T').

Define the path W : {x} x [0, 1] = X by W(x, u) = [0, px(u)] foru € [0, %], W(x,u) =
B — Hrrx), z(x)] for u € [§, 3], and W(x,u) = [7r(x), g+ )] for u € [3,1]. In
the first third of the interval this path goes directly downward, in the second third it travels
horizontally, and in the last third it goes directly upward in the Cayley complex X. Note
that some of these three component paths may be constant. We will refer to this path as the
DHU-path for x.

Continuity of the function ¥ : X! x [0, 1] — X defined by these DHU-paths follows from
the continuity of the two projection functions g and 7r7. For a vertex x € X" regarded as an
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element of G, the representative ¢ “MgitS of x from Lemma 6.2 satisfies z(x) = 77 (™),
and so the path W : {x} x [0, 1] — X' follows the edge path labeled by the word " a/t*
and remains in the 1-skeleton of X. Hence W is a 1-combing, which we will refer to as the
DHU-combing.

In order to show that the DHU-combing satisfies a linear radial tameness function, we
will show that for the constants B := 4(h + 2) and C := (h + 4)(B + 1), whenever
xeX 0<b<c<1,0< q € Q,lev(¥(x,b)) > Bg + C, and lev(¥ (x, ¢)) < g, we
have a contradiction.

To that end, fix apointx in X!, 0 < b <c<1,and0 < ¢q € Q. Let v := W(x, b), w :=
Y(x,c), o0 = W¥(x, %),andr = U(x, %),andassumethatlev(v) > Bg+C andlev(w) < q.
Case 1. Suppose that w € ¥ ({x} x [0, %]). Then both v and w are points on the downward
portion of the DHU-path for x, on the infinite ray labeled  ~*° going down from € in X. Now
t~™ is a geodesic in the Cayley graph for all m > 0, and so traveling along a downward path,
the level is a nondecreasing function. Then we have Bg + C < lev(v) < lev(w) < ¢. Hence
we obtain the required contradiction in this case.

Case II. Suppose that w € W ({x} x (%, %]) \ {o}. In this case the DHU-combing path for x
has a nontrivial horizontal component and w 1is in its image

If v e W({x} x [0, 1)), then let v/ := o and b’ := 3,0therw1se v e W({x} x [4,0) and
we let v/ = v and b’ = b. Again applying the fact that the level is a nondecreasing function
on a downward path from the identity €, we also have that v/ = ¥ (x, b’) with % <b <c
and Bq + C < lev(v) < lev(v’). Now the points v" and w are both on the horizontal portion
of the DHU-path for x, satisfying 77 (v') = 77 (w) = z(x) and |7g (V)| < |7r(W)|.

The geodesicin T from 7 (€) to w7 (x) may not have an upward component in Case II, and
so the nadir z(x) may not be a vertex of 7. This implies that the points v’ and w may not be in
X'.Let v’ and  be the vertices associated to v’ and w, respectively. Since 7 (V') = w7 (w) is
on the 1~ ray in T, the associated vertices project to a vertex 7y (1;’) =nar(w) =nar@t™")
for some integer m > 0 on this ray. The construction of the associated vertices implies that
v’ is represented by a word t~™a' and W is represented by a word t " a/ with 0 < m and
lilp™" = |rr(V)] < |7r(@)| = [jlp™™. '

We also have [lev(w) —lev(w)| < h+3,s0lr(t ™"a’) = Ip(w) =lev(w) < g+h+3 <
lgl+h+4.Definen := |g]+h+4. Thenlr(t ™a’) < nand as aconsequence 0 < m < n
as well. Similarly since |lev(6’) —lev(v))| < h + 3, we have

Ir(t™™a") = Ir(v') = lev()) > Bg + C — (h +3)
=B(lg]+h+4H+Blg—1l9))—h+4)B+C—(h+3)> Bn.

Now B > h + 2, and so we may apply Lemma 6.3 to t "', yielding the inequality |i| >
p(,llﬁsfz)n’

Combining the inequalities at the ends of the last two paragraphs together with the value
B = 4(h +2) gives | j| > p*". Lemma 6.4 applied to the word r—"a/ with E = 2 says that
Ir(t™"a’) > (E —1)n = n. However, from the previous paragraph we have I (r ""a/) < n,
a contradiction.
Case II1. Suppose that w € W ({x} x (%, 1) \ {r}. In this case the DHU-combing path for x
has a nontrivial upward component, and w is in its image.

As in Case II, define v := o and b’ :=  if v € W({x} x [0, 1)), and define v’ := v and
b :=bifve v({x}x [g,c)) Then v’ —\I/(x b)w1th L<p <o, Bg+ C <lev(v) <
lev(v'), and v’ is either on the horizontal or the upward portlon of the DHU-path for x.

The geodesic in T from 77 (1) to w7 (x) must have an upward component in case III, and
hence the nadir z(x) is a vertex of T. Then z(x) = 77 (¢t ~™) for some integer 0 < m.
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The DHU-path for x travels from v’ = W(x, b") to w = W(x, ¢) either via a nontrivial
upward path, or else through a horizontal and then nonconstant upward path. The DHU-paths
for v’ and w are reparameterizations of the portion of the DHU-path for x traveling from € to
each endpoint, and so they have the same nadir z(x) = z(v') = z(w) = 77 (™). Moreover,
we have |7r (v')| < |7r(w)|, and there is an upward path in T from 77 (v") to 7 (w).

Although the horizontal portion of the DHU-path for x must stay in the 1-skeleton of X
(since it projects to w7 (r~™)), the upward portion of the DHU-path for x may leave X',
and so v’ and w may not be in X!, Let v and i be the vertices associated to v’ and w,
respectively. It follows from the definition of associated vertices that these vertices satisfy
z(J’) = z(w) = (™M), IJTR(J’)I < |7r(w)]|, and there is there is a (possibly empty)
upward path in 7 from 77 (1;’) to 7w (W).

Using Lemma 6.2, the vertex w is represented by a word 1~ a/¢* and the vertex v’ is
represented by a word  ~"a’t". The relations between these associated vertices above imply
that0 < |i| < |jland 0 <r <.

The definition of associated vertices implies that |lev(w) — lev(w)| < & + 3, and hence
Ir(t™alt’) = Ip() = levW) < g+ h+3 < gl +h+4 = nasincaseIl. As a
consequence we have both0 <m <nand 0 < s < n as well.

Also, as in case II, the inequality IleV(J/) —lev(v')| < h + 3 implies that I (tMalt") =
Ir (1;’) = lev(z;’) > Bn. Combining inequalities from above, we also have r < n.

The rest of the proof in this case is similar to that in Case II. In particular, Lemma 6.3 applied
to+™ait" yields the inequality |i| > p(F2B=2" — 2 Combining this with the inequality
li] <1j| from above yields |j| > p?".In turn, using Lemma 6.4 with the word t~™alts and
E = 2 shows that I (t ™a/t*) > n, contradicting the inequality /1 (r""a’t*) < n found
above.

Having achieved a contradiction in each case, this shows that the DHU-combing for the
group BS(1, p) and generating set {a, 1}*! satisfies a radial tameness function p : Q — R
for the linear function p(g) = Bg + C with the constants B = 4(h + 2) and C = (h + 4)
(B +1). |

7 Coefficients in linear tame combings

In this section we show that the linear coefficient for a linear tame combing can be bounded
away from 1 for a specific generating set.

Theorem 7.1 For every natural number p > 8, the group G = BS(1, p) = (a,t | tat™! =
aP) with the generating set A = {a*', t+1} does not admit a 1-combing with radial tameness
Sunction of the form p(q) = q + C for any constant C.

Proof Let p > 8 and let X be the Cayley complex of the presentation (a, ¢ | tat~' = aP),
described in Sect. 6. Suppose to the contrary that ¥ : X! x [0,1] — X is a 1-combing
with radial tameness function p(q¢) = g + C. Replacing C by any larger constant results in
another radial tameness function satisfied by the 1-combing W, so we may assume that C is
a natural number larger than four.

Consider the word tCar~Cat€a='t=Ca~'. Since tCar=C = a”* in the group, this word
labels a loop in the Cayley graph X' based at the vertex corresponding to the identity € of
G.LetY C X! be the subcomplex of points on the vertices and edges along this loop. The
restriction W : Y x [0, 1] — X of the 1-combing then defines a homotopy from the identity
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vertex to the loop Y, and so the image W (Y x [0, 1]) is the image of a disk filling in the
loop Y.

Since the Cayley complex X is the product of the real line R with the tree T (described
in Sect. 6), this complex is aspherical. Then the image set W(Y x [0, 1]) must include all
of the points in the rectangle of points z € X with projections 0 < 7g(z) < p€ and 77 (z)
on the geodesic in T from 77 (1) to 77 (¢€); that is, the rectangle in X bounded by the loop
labeled tCar=Ca=P based at 1, including this boundary loop. (The image W (Y x [0, 1])
must also contain all of the points in the rectangle of X bounded by the loop t€ar=Ca~? ¢
based at a.) In particular, the vertex corresponding to the element g € G represented by the

word a"~ 2) = T , Wwhere h = ng as before, is in W (Y x [0, 1]). We obtain two estimates

for It (g) which, taken together, contradict our assumption that C > 4.

First, we observe that the points in the set ¥ all lie on the (geodesic) paths t€ar~Ca or
at€ar~C starting at 1, and so the levels of all of the points in Y are at most 2C + 2. Then the
level of every point in the image set W (Y x [0, 1]) must be at most p(2C + 2) = 3C + 2.
Hence Ir(g) = lev(g) <3C + 2.

On the other hand, note that (h - 2)% =h-2)+h—-Dp+-+Hh—-2)pc .

Thus the element g =¢ a= ) = T of G = BS(l, p) is also represented by the word
v = (aDp)C-1qh=24=(C=1 We claim that the word v is a geodesic. First note that
since g is a nontrivial power of the generator a, we have m = s = 0 in Lemma 6.2,
and the geodesic word w representing g provided by the lemma is in the form (2), w =
aota’lt---ta*t=* with 0 < k,|if] < hfor0 <l <k—1,and 1 < |ix] < h+ 1. We
will show that in fact the words v and w are the same. So far we have w =g v; that is,
avralty - ratk ik =5 (@D )C-1gh=2=(C=D and hence iy + iip+--+ ikpk =
h=2+"h—-=2)p~+---(h—2)pC L Ifk > C, then

Cc—1 k—1 Cc—1 k—1
lielp* < D=2 —ipp' |+ D —ip' | < D (p—2p' + D hp!
=0 1=C =0 1=C

k

pf—1
<(p-2 < pk.
p—1

Since 1 < |ig/|, this shows that we must have k < C — 1. If k < C — 2, then

k c-2

(h=2p < D = =2)p' |+ | D ~(h=2)p!
=0 I=k+1
< Z(p 2)p' + Z (h—2)p'

I=k+1

_1 B
<(p- 2>—<pc L
p—1

again resulting in a contradiction. Hence k = C — 1. Subtracting once more, we get

Cc-2 Cc-2
licci —(h=2)[pC < D (=2 —ipp'| = D (p—2)p' < p©,
=0 =0

and so ic—1 = h — 2. Using induction, theni; = h — 2 forall 0 </ < C — 1. Hence w and
v are the same word, and the word v is a geodesic.
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This gives us another way to compute the word length over A of g, since v is a geodesic
representative of g, andsolr(g) =[(v) = (h—=2)+ D(C—-1)+(h—-2)+C—1=hC -2.
Earlier in this proof we had I+ (g) < 3C + 2, which gives hC — 2 < 3C + 2. The hypothesis
that p > 8 gives h > 4, and so we have C < h% < 4, contradicting our choice of C. O
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