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A note on convexity properties of Thompson’s group F

Matthew Horak, Melanie Stein and Jennifer Taback

(Communicated by Martin R. Bridson)

Abstract. We prove that Thompson’s group F is not minimally almost convex with respect
to any generating set which is a subset of the standard infinite generating set for F and
which contains x;. We use this to show that F is not almost convex with respect to any
generating set which is a subset of the standard infinite generating set, generalizing results
in [4].

1 Introduction

Convexity properties of a group G with respect to a finite generating set S yield in-
formation about the configuration of spheres within the Cayley graph I'(G, S) of G
with respect to S. A finitely generated group G is almost convex(k), or AC(k) with
respect to a finite generating set X if there is a constant L(k) satisfying the following
property. For every positive integer n, any two elements x and y in the ball B(n) of
radius n with dy (x, y) < k can be connected by a path of length L(k) which lies com-
pletely within this ball. J. Cannon, who introduced this property in [2], proved that
if a group G is AC(2) with respect to a generating set X then it is also 4C(k) for all
k = 2 with respect to that generating set. Thus if (G, X) is AC(2), it is called almost
convex with respect to that generating set. C. Thiel showed that almost convexity is
generating set dependent [6].

Clearly, any two points in B(n) can always be connected by a path of length 2n. A
weaker convexity condition is minimal almost convexity, which asks whether any two
points in B(n) at distance two can be connected by a path of length at most 2n — 1
lying within this ball. A group G is said to be minimally almost convex with respect
to a finite generating set X if the Cayley graph I'(G, X) has this property. If G is not
minimally almost convex with respect to a finite generating set X, then I'(G, X') con-
tains isometrically embedded loops of arbitrarily large circumference. I. Kapovich
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proved in [5] that any group which is minimally almost convex is also finitely pre-
sented.

J. Meier posed a conjecture relating these two notions of convexity. Namely, he
conjectured that if a finitely generated group G is not minimally almost convex with
respect to one finite generating set, then it cannot be almost convex with respect
to any finite generating set. We prove the following special case of this conjecture.
Suppose X and Y are two finite generating sets for a group G. Then G can be viewed
as a metric space using the word length metric with respect to either generating set;
we write (G, X) for G viewed as a metric space using length with respect to X. The
identity map on G is a quasi-isometry between (G, X) and (G, Y). We prove this con-
jecture in the case that this quasi-isometry is a coarse isometry, that is, has multi-
plicative constant equal to one, in Theorem 3.1:

Theorem 3.1. Let [ : (G, Xg) — (H,Xy) be a C-coarse-isometry. If (G, X¢) is not
minimally almost convex, then (H, Xy) is not almost convex.

Convexity properties have been studied for Thompson’s group F with respect to
various generating sets. This group can be viewed either as a finitely or infinitely pre-
sented group, using the two standard presentations:

ek = 0] x7 xx = 0 if i < )

or, as it is clear that xy and x| are sufficient to generate the entire group, since powers
of x(y conjugate x; to x; for i > 2,

{x0, X1 | [xoxl_l,xo_lxlxo], [xoxl_l,xo_lexg}).

Thompson’s group F is shown to be not almost convex with respect to
X1 = {x0,x} in [3] and not minimally almost convex with respect to X; in [1], and
not almost convex with respect to the generating sets X, = {xo,x1,...,x,} in [4]. In
this note we extend these results in the following:

Theorem 4.2. Let X = {xo,x1,X;,,Xiy,...,X; }, where 1 < iy < --- < ij, be a generating
set for F. Then F is not minimally almost convex with respect to X.

We then apply Theorem 3.1 to prove:

Theorem 4.4. Let X be any subset of the standard infinite generating set for F which
includes xy. Then F is not almost convex with respect to X.

2 Computing word length in Thompson’s group F

In this section we summarize the method for computing word length of elements of F'
with respect to the generating sets X,, = {x¢, x1, ..., X, } which was introduced in [4],
and refer the reader to that paper for complete details.
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We follow standard terminology when describing elements of F as tree pair dia-
grams, that is, pairs of finite binary rooted trees comprised of carets. If a caret ¢ has
no children, we call ¢ an exposed caret. If a caret ¢ has a right (respectively left) child,
we call the subtree rooted at that child the right (respectively left) subtree of caret c.
Define the level of a caret inductively as follows. The root caret is defined to be at
level 1, and the child of a level k caret has level k + 1, for k > 1. We number the
carets of each tree in infix order from 1 through n. Each element g € F can be repre-
sented by an equivalence class of tree pair diagrams, among which there is a unique
reduced tree pair diagram. We say that a pair of trees is unreduced if there are ex-
posed carets in both trees with the same infix numbers. Such pairs of carets are
removed until the tree pair diagram is reduced. This procedure produces the unique
reduced tree pair diagram representing g. When we write g = (7', S), we are assuming
that this is the unique reduced tree pair diagram representing g € F.

Let T be a finite rooted binary tree. We often use the infix numbers of the carets as
labels for the carets. A caret is said to be a right (resp. left) caret if one of its sides lies
on the right (resp. left) side of 7. The root caret can be considered either left or right.
All other carets are called interior carets. The generator X, in the presentations above
is represented by a tree pair diagram (7}, S,), where S, consists of a string of n + 1
right carets, in which the final right caret also has a single exposed left child, and the
tree 7, is simply a string of n + 2 right carets.

To multiply two elements g = (T3, 7>) and & = (S},S;) of F we add carets to
create unreduced representatives for the two elements, g = (77, T;) and h = (S{, S})
in which S} = T/. The product gh is then given by the (possibly unreduced) tree pair
diagram (S}, T5).

Our formula for the word length of an element g € F with respect to the generating
set X, = {x0,x1,...,x,} has two components. The first we call /,,(g), as it is the
word length of g with respect to the standard infinite generating set {x; |7 > 0} for F.
This quantity is simply the number of carets in the unique reduced tree pair diagram
representing g which are not right carets. The second component in the word length
formula is twice what we term the penalty weight p,(g) of the element. This non-
negative quantity is determined by the combinatorial relationships between a set of
distinguished caret pairs in the tree pair diagram for g. We will need a consequence
of the following theorem, which computes /,(g):

Theorem 2.1 ([4, Theorem 3.3]). For every g € F, the word length of g with respect to
the generating set X, = {xo,X1,...,X,} is given by the formula

Ix,(9) = l(9) = 1 (9) + 2pu(g)

where 1, (g) is the number of carets in the reduced tree pair diagram for g which are not
right carets, and p,(g) is the penalty weight of g.

In particular, since p,(g) = 0 it is always the case that /,(g) = [, (g).
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3 Coarse isometries and convexity

Recall that a map f between two metric spaces G and H is a quasi-isometry if there
are positive constants K and C so that for every pair of points g1, ¢, € G,

2 do(01,2) = € < du(f(00). f(02)) < Kdo(g1,62) + .

If the constant K can be chosen to be 1, we call f a C-coarse isometry. Given a
group G and a finite generating set X, G can be regarded as a metric space using
the word length metric, namely, dy(g,h) = min{n|gh™' = wjay ... 0, 0 € X}. We
denote G, viewed as a metric space in this way, by (G, X). Equivalently, one can
view the Cayley graph I'(G, X) as a metric space by declaring each edge to have
length 1. Recall that for any finitely generated group G with finite generating sets X'
and Y, the identity map between (G, X) as (G, Y) is a quasi-isometry. In general, it is
unknown to what extent quasi-isometries preserve convexity properties, but in the
special case of a coarse-isometry, we obtain the following:

Theorem 3.1. Let [ : (G, Xg) — (H,Xy) be a C-coarse-isometry. If (G, Xg) is not
minimally almost convex, then (H, Xy) is not almost convex.

Proof. Let g be any coarse inverse for f, which is easily seen to be a coarse isometry
as well. Without loss of generality, we may assume that g is also a C-coarse isometry.

Suppose that (H,Xy) is almost convex. Then for each n > 2, there is an al-
most convexity constant K(n). Fix M >3C+1, and let K = K(2M + C). Let
n>K+ M+ KC.

Since (G, X¢) is not minimally almost convex, we can find x, y € B(n) < I'(G, X¢)
with dg(x, y) = 2 so that the shortest path from x to y which remains in B(n) has
length 2n. Since we can always construct a path of this length passing through the
identity, let y be such a path containing the identity.

Consider the closed loop # obtained by concatenating y with the path of length two
between x and y. Let z denote the point in B(n + 1) at distance one from x and y.
Choose a and b on y, with @ on the subpath of y from x to the identity, and b be-
tween y and the identity, so that dg(a, Id) = dg(b, Id) and dg(a,z) = dg(b,z) = M.
Let #, be the subpath of y containing «, b and the identity, and #, is the remaining
subpath of 7.

Consider f(a) and f(b), elements of the Cayley graph I'(H, Xy). We know that
dy(f(a), f(b)) <2M + C. Since we are assuming that (H, Xy) is almost convex,
there must be a path & from f(a) to f(b) whose length is at most K, and which re-
mains in the ball B(D), where D = max{dy(f(a),id),dy(f(b),id)} < dg(a,id) + C.

Consider the image of ¢ under g, the coarse inverse to f. Since

length(i7,) = 2n — 2M +2 > 2(K + KC + M) — 2M +2 > 2K + 2KC

and

length(g(¢)) < K + KC,
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we see that length(g(¢)) < length(z,). We now show that this path stays in B(n), con-
tradicting the fact that any path from x to y in B(n) has length 2x.

The maximum distance of any point on ¢ from the identity in H is D. Thus the
maximum distance of any point on ¢g(&) from the identity of G is

D+2C<dg(a,id)+3C=n—M+1+3C.

Since M > 3C + 1, it follows that g(&) < Bg(n).

By concatenating the portion of 7, from x to a, g(£), and the portion of #, from b
to y, we obtain a path from x to y which remains inside of B(n) and has length less
than 2n, a contradiction since (G, X¢) is not minimally almost convex. []

4 Convexity results

The main goal of this section is to show that F' is not almost convex with respect to
any generating set which is a subset of the standard infinite generating set; we note
that in order for a subset of the standard infinite generating set to generate F, it
must contain xj.

We begin with the following:

Theorem 4.1. Let X,, = {x¢,x1,...,X,} be a generating set for F withn = 2. Then F is
not minimally almost convex with respect to X,.

Proof. We prove this by providing, for any k > 0, a pair of group elements g = g
and h = hy satisfying 1,(g) = 1,(h) = 2k +2 and [,(h~'g) = 2, so that any path y
from ¢ to A that lies entirely within the ball of radius 2k + 2 must have length at least
4k + 4.

Let g = gn = xF X ixg® = x,x¥ g% and h=h, = gx;'x; ! = x{‘“xo_(kH).
The tree pair diagrams for these elements are given in Figure 1. In the tree pair dia-
grams (7_,T,) for g and (H_, H,) for h, we observe that /,,(g) = [, (h) = 2k + 2.
Furthermore, /., (g9x;') = 2K + 3. Recall that /,(a) > I,,(a) for all a € F is a con-
sequence of Theorem 2.1, and since we have provided words above of length 2k + 2
for both g and A, it follows that ,(g) = 1,(h) = 2k + 2, and I,(gx; ') = 2K + 3.

T
nt3
Tho 2

Figure 1. The tree pair diagrams representing the elements g and / used in the proof of
Theorem 4.1.
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Suppose there is a path y from g to 4 which lies within the ball of radius 2k + 2.
In 7_, the caret r, it is a right caret at level n 4+ 2. Our argument relies on noting
the level of this caret at successive vertices along the path j.

In order for the path y to terminate at /, there is a point at which the pair of carets
numbered r,,, in each tree must be removed as part of a reduction along y. This re-
quires caret r,,, from 7_ to be an interior caret at the point of reduction. Given the
effect of multiplication by each generator on the tree pair diagram, we observe that
the generators in X, cannot move any right caret off the right side of the left tree in a
tree pair diagram unless its level is between 1 and n. Hence, there is a smallest non-
trivial prefix y, of y so that in gy, = f the caret r,., in the left tree for f is a right
caret at level n + 1.

Let (S_,S,) be the tree pair diagram for f = gy, which is constructed from the
tree pair diagram (7_, T,) for g by altering these trees according to multiplication
by each generator of y,, but without performing any possible reductions. During
this process, the carets in 7, remain unchanged, though additional carets may be
added to T, to form S, . Hence, S contains 7', as a subtree, and the tree pair dia-
gram (S_, S ) may be unreduced.

We first show that the tree pair diagram (S_, S ) constructed in this way must be
unreduced, and that when the reduction is accomplished, some of the original carets
from T, will be removed from S... If this was not the case, then in S_ there would be
at least k + 1 carets with smaller infix numbers than r,; which were not right carets,
and thus counted towards /., (f). Additionally, in S, there would also be k + 1 inte-
rior carets with infix numbers less than r,.,, and caret r,,, itself is also an interior
caret. This implies that /., (f) > 2k + 3, contradicting the fact that f € B(2k + 2).
Thus there must be some reduction of the carets of 7', viewed as a subtree of S,
in order to obtain the reduced tree pair diagram for gy, = f.

We now consider which carets of 7', , viewed as a subtree of S, might be removed
to reduce the tree pair diagram; in order for a caret to be reduced after multiplication
by a particular generator, it must be exposed. The only exposed carets of 7', itself are
carets 2 and r,.;. Since caret r,, is a right caret in S_, and not the final right caret,
it is not exposed in S_. Therefore, it must be that in reducing (S_, S, ), the original
caret 2 from the infix ordering on 7', must be removed. We claim that in S_, caret 2
must be in the right subtree of caret 1. If, in forming S, no carets were added to ei-
ther leaf of caret 2, then caret 2 is exposed in S, , and hence it is exposed in S_, which
implies that caret 2 is in the right subtree of caret 1 in S_. If, on the other hand, carets
were added to the leaves of caret 2 in forming S, then they must all be removed in
(S_, S;) before caret 2 is removed. But this means that in S_, once these carets are
removed, caret 2 is again exposed, and once again, caret 2 must be in the right sub-
tree of caret 1 in S_.

The fact that caret 2 is in the right subtree of caret 1 in S_ provides a lower bound
on I,(h~'f) as follows. To form the tree pair diagram for 4#~'f, consider the un-
reduced tree pair diagram (S_,S,). If = (H_, H,), to form this product we con-
sider these trees in the order S_ S, H, H_, and add carets to each pair to ensure
that the middle trees are identical. Thus we must at least add the string of right carets
P4y ... Fuil, Fuy3, With caret r, o the left child of r,, 3, from S, to both trees in the
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diagram (H,, H_) in order to perform this multiplication. Since in S_, caret 2 must
be removed before caret 1, but in H_ the reverse is true, caret 1 cannot be removed
to reduce the product 4~!f. Hence, because of their configuration in H_, the
entire string of carets 1,2,...,k,r are not removed to reduce the product /~'f.
Also, as we remarked above, caret r,.» is not removed through reduction in
this product. Hence we obtain the following lower bound on the word length of
WY L) = (W) = 2(k+ 1) + 1 = 2k + 3.

Let y, be the subpath of y from f = gy, to h. Since L,(h~'f) > 2k + 3, it follows
that |y,| > 2k + 3. But traversing y, in reverse, followed by x;! and then x, ! yields
another path from f to A, so similarly |y,| +2 > 2k + 3, and hence |y,| = 2k + 1.
This implies that |y| = |yo| + |y| =4k +4. O

In the proof above, both g and / are be represented by words of length 2k + 2

involving only the generators x;',xi', and xF!, namely, g = x,x{*'x;* and

h= x{‘“ (kD) . Hence, the above result can be extended to any generating set
for F wh1ch is a finite subset of the standard infinite generating set containing X

and Xx;.

Theorem 4.2. Let X = {xo,x1, X\, Xy, ..., X; }, where 1 < iy < --- < ij, be a generating
set for F. Then F is not minimally almost convex with respect to X.

Proof. The identity map on G is a quasi-isometry between the metric spaces (G, X)
and (G,X;), where X; = {xo,x1,x2,X3...,%;}. Since X = X;, we remark that
dX,./_ (a,b) < dy(a,b) for any a,b e F. In particular, dxi/_(a,ld) < dx(a,Id) for any
aekF.

Assume that (F,X) is minimally almost convex. It is proven in Theorem 4.1

that (F,X;) is not minimally almost convex. Let h= hye = xkH1 0_<k+1) and

g=gi= x{‘ lxk+,,+1x0’ be the group elements used in the proof of Theorem 4.1.
It is clear that 2k +2 = dy, (h id) = dx(h,id) and 2k + 2 = dx, (g,id) = dx(g,id);
if there was a shorter expres51on for either g or A with respect to X, then there
would be one with respect to X; as well. In addition, it is clear that since
g~ 'h=x;lixp! = xg'x; !, we have dy, (9,h) = dx(g,h) = 2.
Since (F X) is assumed to be mlnlmally almost convex, there is a path y of length
at most 4k + 3 connecting g and 4 which lies within the ball of radius 2k + 2 relative

to X. Since each group element a along this path satisfies
dX,./ (a, ld) < dx(a, ld) <2k + 2,

this contradicts the assumption that (F, X ) is not minimally almost convex. Thus we
conclude that (F, X') cannot be m1n1mally almost convex. []

To show that F' is not almost convex with respect to arbitrary finite subsets of the
infinite generating set containing xp, we show first that word length with respect to
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one of these arbitrary generating sets differs from word length with respect to some
generating set containing x; only by an additive constant.

Lemma 4.3. Let X = {xo, x;,Xi,,...,X;,} be a generating set for F, and form a new
) ; [

generating set Y = {Xo, X1, Xi,—i 1, Xis—ir+1, - - Xi—i+1}. Then (F,X) and (F,Y) are

coarsely isometric.

Proof. Let g € F, and suppose g = a1 . . . &, Where cxkil € Y. Then

il =iy =1y =it il —— i1
g=x3 (x5 "gx) )X, =X) o0 ...Omxy

where o, = xéf“ ozkx(’)‘fl. Now in the cases where oy = x&r', we have @, = oy, and in
the cases where o = x;*' with / > 1, then % = x,f_lil_] € X. Hence

Ix(g9) <Iy(g) +2(i1 — 1).

Similarly, one sees that /y(g) < Ix(g) + 2(i1 — 1). Hence,
Ix(9) =2(h = 1) <Iy(9) S Ix(9)+2(0 = 1). O

Finally, we apply Theorem 3.1 to F with the two generating sets X and Y of the pre-
ceding theorem to obtain:

Theorem 4.4. Let X be any subset of the standard infinite generating set for F which
includes xy. Then F is not almost convex with respect to X.
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