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1. Introduction

In this article we consider extensions of the notion of a graph automatic group, in-
troduced by Kharlampovich, Khoussainov and Miasnikov in [1], replacing the regular
languages in their definition by more powerful language classes. Primarily we focus on
the classes of context-free, counter, indexed and context-sensitive languages. We find that
replacing regular languages with (quasi-realtime) counter languages preserves many of
the desirable properties that graph automatic groups enjoy, including a polynomial time
algorithm to compute normal forms. We prove that a finitely generated group is deter-
ministic context-sensitive-graph automatic (with quasigeodesic normal form as defined
below) precisely when its word problem is deterministic context-sensitive. It follows that
the class of such groups is very large, and encompasses, for example, groups with un-
solvable conjugacy problem, the Grigorchuk group, and Thompson’s group V' and all of
its subgroups, which include Thompson’s groups F' and T. We present several examples
of counter-graph automatic groups, including the non-solvable Baumslag—Solitar groups,
which we show to be 3-counter-graph automatic. In [2] the authors and Sharif Younes
prove that Thompson’s group F' is counter-graph automatic.

Several authors have considered generalized versions of automatic groups using dif-
ferent automata in place of finite state machines: Bridson and Gilman introduced a
geometric version of asynchronously automatic groups using indexed languages [3];
Baumslag, Shapiro and Short defined a class based on parallel computations by push-
down automata [4]; and Cho considered a version with counter languages in his PhD
thesis [5]. Recent work of Brittenham and Hermiller [6] introduces the class of autostack-
able groups which also generalize the notion of automaticity.

The article is organized as follows. In Section 2 we define the key notions of counter
languages and C-graph automatic groups used in the paper. In Section 3 we give a
polynomial time algorithm which computes normal forms in counter-graph automatic
groups, and in Section 4 we examine the consequences of permitting context-sensitive
languages in the definition of C-graph automatic groups. In Section 5 we consider closure
properties of C-graph automatic groups, and in Section 6 we give examples of groups
with counter-graph automatic structures.

2. Background and definitions

2.1. Languages and automata

For standard definitions of finite state, pushdown, nested stack, and linear bounded
automata (accepting regular, context-free, indexed and context-sensitive languages, re-
spectively) see, for example, [7]. We begin by defining the particular types of counter

automata we will use.
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2.1.1. Counter automata
There are many variants of counter automata and languages in the literature, see for
example [8-16]. In this article we define a counter automaton as follows.

Definition 1 (k-counter). A counter automaton can be defined with a variety of attributes:

1. A blind deterministic k-counter automaton is a deterministic finite state automaton
augmented with a finite number of integer counters: these are all initialized to zero,
and can be incremented and decremented during operation, but not read; the au-
tomaton accepts a word exactly if it reaches an accepting state with the counters all
returned to zero.!

2. A non-blind deterministic k-counter automaton is a deterministic finite state au-
tomaton augmented with a finite number of integer counters: these are all initialized
to zero, and can be incremented, decremented, compared to zero and set to zero
during operation; the automaton accepts a word exactly if it reaches an accepting
state with the counters all returned to zero.

3. A (blind or non-blind) k-counter automaton is non-deterministic if from each state
there can be multiple transitions labeled by the same input letter, and transitions
that read no input letter, labeled by €.? Following Book and Ginsburg [8] we require
these automata to run in quasi-realtime, meaning there is a bound on the number of
consecutive € transitions allowed.

Define .%} to be the class of languages accepted by a non-blind non-deterministic
k-counter automata running in quasi-realtime, and %} to be the class of languages ac-
cepted by a blind non-deterministic k-counter automata running in quasi-realtime.

It is well known ([18], see also [7, Theorem 7.9]) that a non-blind non-deterministic
k-counter automata with k > 2 and no time restriction can simulate a Turing machine,
and so the class of languages accepted by such automata coincides with the recursively
enumerable languages. Book and Ginsburg [8] prove that imposing the quasi-realtime
requirement, the languages 6, .} form a strict hierarchy:

Theorem 1. (See Book and Ginsburg [8].) The language classes 6;,.%; satisfy the follow-
ing inclusions:

61T A CC T S CE (1)
In this article all counter automata are assumed to run in quasi-realtime.

! These are called Z*-automata in [11,16,17].
2 These are called multi-stack-counter automata in [8].
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Lemma 2. If L € .}, then there is a constant F so that on reading a word of length n
the absolute value of any counter is at most Fn.

Proof. Let M be the non-deterministic k-counter automaton accepting L, and suppose
the maximum amount any counter is changed by any transition is m. On input u =
u1 ... u, consider all paths in M labeled equie; ...e,_1une, where e; is a string of ¢
transitions, which by assumption has length at most some bound D. Then each subpath
e; can change the value of a counter by at most Dm, and so the entire path can change
a counter by at most Dm(n + 1) + nm < 3Dmn, so set F =3Dm. O

Corollary 3. The classes 6,-%% are strictly contained in the class of non-deterministic
context-sensitive languages.

Proof. A k-counter automaton can be simulated by a Turing machine, with each counter
value stored on the tape. On input of length n, the amount of tape required to store the
values of all counters is kF'n by Lemma 2. The containment is strict by Theorem 1. O

In drawing k-counter automata (see examples in Section 6) we label transitions by
the input letter to be read, with subscript a k-tuple from the following alphabet:

e +,— to increase/decrease a counter by 1;

e +m,—m to increase/decrease a counter by m € N;
e =, to compare a counter to zero;

e | to set a counter to zero.

For example, in a non-blind 4-counter automaton the label 1, | _3 means if the second
counter is not 0, read input letter 1, add 1 to the first counter, set the second counter
to 0, make no change to the third counter, and subtract 3 from the last counter; if the
second counter was 0 then the transition is not followed.

2.2. Closure properties of formal language classes

We briefly outline some closure properties of the formal language classes we consider
below.

Definition 2 (Homomorphism of languages). Let A, X be finite alphabets. For each A € A
let 7y € X* be a finite word, and let L C A*. Then ¢ : L — X* defined by ¢(A\1 ... A\g) =
T, ---Tx, for A; € L is a homomorphism of formal languages. If ry, is not the empty
word for any A; then ¢ is an e-free homomorphism.

A class C of formal languages is closed under (e-free) homomorphism if L € C is a
language in the finite alphabet A and ¢ : A* — X* is any homomorphism, then ¢(L) € C.
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The class C is closed under inverse homomorphism if for any L C X*, where X' is any
finite alphabet, and any homomorphism ¢ : A* — X* if L € C then ¢1(L) € C.

Closure of a formal language class C under finite intersection varies widely with C. The
class of regular languages, for example, is closed under finite intersection, but the class
of context-free languages is not, although the intersection of a context-free language and
a regular language is again context-free. In her thesis, Brough introduces the following
class of languages.

Definition 3 (Poly-context-free). (See [19].) A language L C X* is k-context-free if it
is the intersection of at most k context-free languages, and poly-context-free if it is the
intersection of some finite number of context-free languages.

By design, the class of poly-context-free languages is closed under taking finite inter-
section, and intersection with regular languages.

The following lemma describes the closure of the class of counter languages under
intersection.

Lemma 4. The intersection of a k-counter language with a regular language is k-counter,
and the intersection of k- and l-counter languages is a (k + l)-counter language.

Proof. Let M and N be counter automata with k and [ counters, respectively. Define a
(k + 1)-counter automaton with states S x T" where S are the states of M and T are the
states of N, as follows. Put a transition from (s,t) to (s',t') labeled by Ax if

+ there is a transition from s to s' in M labeled A\, . 4.)s
« there is a transition from ¢ to ¢’ in N labeled Ay, and

® X:('rla"'axkay17"'7yl)

s Y1)

where z;,y; are counter instructions.

If I = 0 then N is simply a finite state automaton and we recover the first statement.
Note that the resulting automaton is blind and/or deterministic if and only if both M
and N are. O

A linear bounded automaton is a Turing machine with memory linearly bounded by
the size of the input, that is, there is a constant F so that on input a word of length n,
the number of squares on the tape that can be used is En. See, for example, [7]. In this
article a language is (deterministic) context-sensitive if it is the set of strings accepted
by a (deterministic) linear bounded automaton. With this definition a context-sensitive
language can contain the empty string. See [7, pp. 225-226] and [20] for a discussion of
this.
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Lemma 5. The classes of regular, counter, and poly-context-free languages are closed
under homomorphism, inverse homomorphism, intersection with regular languages, and
finite intersection.

The class of context-sensitive languages is closed under e-free homomorphism, inverse
homomorphism, intersection with regular languages, and finite intersection.

Proof. See Chapter 11 of [7] for the cases of regular and context-sensitive languages,
[19] for poly-context-free languages, and [21] for counter languages. O

2.8. C-graph automatic groups

Let G be a group with symmetric generating set X, and A a finite set of symbols. In
general we do not assume that X is finite. The number of symbols (letters) in a word
u € A* is denoted |u|4.

Definition 4 (Quasigeodesic normal form). A normal form for (G, X, A) is a set of words
L C A* in bijection with G. A normal form L is quasigeodesic if there is a constant D
so that for each u € L, |ujx < D(JJul|x + 1) where |Ju||x is the length of a geodesic in
X* for the group element represented by u.

The ||u||x +1 in the definition allows for normal forms where the identity of the group
is represented by a nonempty string of length at most D. We denote the image of u € L
under the bijection with G by a.

Next we define the convolution of strings, which will be needed throughout the paper.

Definition 5 (Convolution). (See Definition 2.3 of [1].) Let A be a finite set of symbols,
¢ a symbol not in A, and let Lq,..., L be a finite set of languages over A. Put A, =
AU {o}. Define the convolution of a tuple (wy,...,wg) € L1 X ... X Lj to be the string
®(wy, ..., wy) of length max |w;| 4 over the alphabet (A,)* as follows. The ith symbol of
the string is

A1
Ak
where )\; is the ith letter of w; if ¢ < |w;|4 and ¢ otherwise. Then
S(L1, - L) = {@(wr,..,wp) | w; € L},

As an example, if w; = aa, ws = bbb and w3 = a then
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When L; = A* for all i the definition in [1] is recovered.
We begin with the definition of an automatic group, as introduced in [22].

Definition 6 (Automatic group). (See [22].) Let (G, X) be a group and symmetric finite
generating set. We say that (G, X) is automatic if there is a regular normal form L C X*
such that for each x € X the language

L, = {®(u,v) ‘ u,v € L, =¢ ﬂm}
is regular.

We remark that the usual definition of an automatic group requires a regular language
L to be in surjection with G, rather that in bijection. Theorem 2.5.1 of [22] tells us that
if a group has an automatic structure then there is an alternate automatic structure with
a unique normal form word for each group element. Hence there is no loss of generality
in requiring a normal form to be in bijection with the group.

Kharlampovich, Khoussainov and Miasnikov extended this definition in [1] by allowing
the language of normal forms to be defined over a finite alphabet other than a generating
set for the group.

Definition 7 (Graph automatic group). (See [1].) Let (G, X) be a group and symmetric
generating set, and A a finite set of symbols. We say that (G, X, A) is graph automatic
if there is a regular normal form L C A* such that for each x € X the language

L, = {®(u,v) | u,v € L,7 =¢ uz}
is regular.

Note that unlike [1] we do not insist that the generating set X be finite; again our
definition of a normal form requires a bijection between the group elements and the
language of normal forms.

A useful first example to consider is the Heisenberg group (Example 6.6 of [1]), which
is not automatic as it has a cubic Dehn function, but is graph automatic. To prove the
latter statement, matrices are represented as the convolution of three binary integers.

The class of graph automatic groups includes the following groups which are known
not to be automatic: the solvable Baumslag—Solitar groups, class 2 nilpotent groups,
and non-finitely presented groups [1]. It also includes groups with unsolvable conjugacy
problem [23]. Tt is not known if groups of intermediate growth belong to this class.
Miasnikov and Savchuk [24] have shown that certain graphs of intermediate growth are
graph automatic; see [1] for the definition of automatic structures on objects other than
groups.

In this article we further extend the notion of a graph automatic group by replacing
regular languages with other formal language classes.
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Definition 8 (C-graph automatic group). Let B and C be formal language classes, (G, X)
a group and symmetric generating set, and A a finite set of symbols.

1. We say that (G, X, A) is (B, C)-graph automatic if there is a normal form L C A* in
the language class B, such that for each x € X the language

Ly = {®(u,v) ! u,v € L,7 =¢ uz}

is in the class C.
2. If B =C then we say that (G, X, A) is C-graph automatic.
3. If B=C and A = X then we say that (G, X) is C-automatic.

For each z € X let M, denote the automaton which accepts the language L,.

In general we will restrict our attention to C-graph automatic groups, where C is one of
the following language classes: context-free; indexed; context-sensitive; poly-context-free;
and (quasi-realtime) counter. As checking membership in L, includes verifying that each
of u,v in ®(u,v) lie in L, the complexity of the class C is in general greater than or equal
to that of B. Precisely:

Lemma 6. If C is closed under homomorphism, then a (B,C)-graph automatic group is
C-graph automatic.

Proof. Define a homomorphism from ®(L, L) to L by a map that sends (i;) to A\; and
(0) to € for all A\; € A and Ay € A,. Then the language L is the image of L, under this
A1

homomorphism restricted to L,, soisin C. O

Corollary 7. If B and C are each one of the classes of regular, poly-context-free, quasi-
realtime counter, or context-sensitive languages, then a (B,C)-graph automatic group is
C-graph automatic.

Proof. Since each class is contained within the class of context-sensitive languages, if C
is context-sensitive then the result follows. Otherwise C is closed under homomorphism
and the lemma applies. O

Definition 8 extends naturally to the context of biautomatic groups.

Definition 9 (C-graph biautomatic group). Let C be a formal language class, (G, X) a
group and symmetric finite generating set, and A a finite set of symbols. We say that
(G, X, A) is C-graph biautomatic if there is a normal form L C A* in the language
class C, such that for each x € X the languages {®(u,v) | u,v € L,7 =¢ uz} and
{®&(u,v) | u,v € L,9 =¢ xu} are in the class C. If A = X we say that (G, X) is
C-biautomatic.
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Miasnikov and Suni¢ [23] show that the classes of graph automatic and graph biauto-
matic groups are distinct. In Section 4 we show that when C denotes the class of deter-
ministic-context-sensitive languages, the classes of C-graph automatic and C-biautomatic
groups coincide. In addition, there are deterministic context-sensitive-biautomatic groups
with unsolvable conjugacy problem, in contrast to the cases of biautomatic and graph
biautomatic groups.

In the proof of [1, Lemma 8.2] is the following observation that graph automatic
groups naturally possess a quasigeodesic normal form. For completeness we include a
proof of this observation.

Lemma 8. If (G, X, A) is graph automatic with respect to the regular normal form L,
then L is a quasigeodesic normal form.

Proof. Let C be an integer that is at least the length of the normal form for the identity,
and at least the number of states in any of the finite state automata M,, where z € X.

Let w = wy ... w, be a geodesic where w; € X, and let u; be the normal form word
for the prefix wy...w; of w, for i = 0,...,n, with ug representing the identity. By
assumption ug has length at most C.

Assume for induction that the length of u;_; is at most Ci.

The automaton M,,, accepts the string labeled ®(u;—_1, ;). If u; has length more than
C(i+ 1) then we have

et = () () () (o) - ()

where m < Ci and n > C(i+ 1), so n —m > C which is more than the number of states

in M,,,. If we apply the pumping lemma for regular languages to the suffix of ®(u;_1,u;)
<

Ot ), we see that M, accepts infinitely many normal form expressions

beginning with (
for u;, contradicting the uniqueness of the normal form. O

Note that when we generalize to C-graph automatic groups, the lemma is no longer
true — in Section 6 we give an example of a quasi-realtime 3-counter-graph automatic
structure for the Baumslag—Solitar groups BS(m,n) with non-quasigeodesic normal
form.

Note that when proving a triple (G, X, A) is C-graph automatic, the following obser-
vation shows that it suffices to check that just one of L, or L,-: lies in the class C for
each x € X.

Lemma 9. If C is closed under e-free homomorphism, then L, € C if and only if L,— € C.

Proof. The homomorphism that replaces each (’A\;) by (’A\’;‘) for all A\; € A, in L, yields
the language L,—1. O
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2.4. Remarks on the definition of graph automatic groups

In [1] the authors implicitly assume that the normal form for the identity element
is always the empty string — see, for example, the proof of Theorem 10.8 in [1]. In
generalizing their definition and results, we realized this was a subtle issue. The definition
of an automatic structure for a group (G, X) asserts the existence of a bijection (or
surjection) from L C X* to G, together with a finite collection of regular languages
which have finite descriptions either in terms of regular expressions, finite state automata,
regular grammars or otherwise. In this definition there is no explicit information about
the bijection from L to G, in particular the normal form word for the identity is not fixed
by this. In Theorem 2.3.10 in [22], an algorithm is given that computes the normal form
of any word in an automatic group, necessarily written in terms of the group generators,
which runs in quadratic time. At the end of the proof of Theorem 2.3.10, it is explained
how this algorithm can be used (in constant time) to find the normal form word for the
identity, thus making this algorithm constructive. Hence in the case of automatic groups,
the definition alone is enough to construct the bijection from L to G.

In the case of a graph automatic or C-graph automatic group (G, X, A), many anal-
ogous results are not constructive unless one knows at least one pair ¢ € L C A* and
p € G with § =¢ p. Hence this assumption is often included in the statement of the
theorems in this paper.

We have modified the original definition of a graph automatic group by removing
the requirement that G be finitely generated. In the case of C-graph automatic groups,
this allows us to capture groups such as F,, (see Section 6). Since A is finite, G must be
countable. We were not able to find an example of a countably infinitely generated graph
automatic group, so our evidence justifying this modification is perhaps less convincing.
We add the hypothesis that G is finitely generated in several statements below on counter
and context-sensitive-graph automatic groups.

Finally we remark that we know of no examples of C-graph automatic groups which
we can prove not to be graph automatic. This paper (and the examples we present
in Section 6 and in [2]) grew out of an attempt to decide whether examples such as
non-solvable Baumslag—Solitar groups and R. Thompson’s group F' are graph automatic
or not.

3. Counter-graph automatic implies polynomial time algorithm to compute normal
forms

In this section we extend the results of Epstein et al. [22, Theorem 2.3.10] and Khar-
lampovich et al. [1, Theorem 8.1] to show that for any finitely generated .#j-graph
automatic group there is an algorithm to compute normal forms for group elements that
runs in polynomial time. Recall that ., denotes the class of languages accepted by
a non-deterministic, quasi-realtime, non-blind k-counter automaton; this class includes
languages accepted by blind and/or deterministic k-counter languages.
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Theorem 10. Let (G, X) be a group and finite symmetric generating set, and A a finite set
of symbols so that (G, X, A) is S-graph automatic with quasigeodesic normal form L.
Moreover, assume we are given p € X* and q € L with p =g q. Then there is an
algorithm that on input a word w = x1 ... x, € X*, computes u € L with u =g w, which
runs in time O(n?k+2).

Proof. We will give an algorithm that on input w = 122 --- 2z, € X* computes u € L
where % =g pw, which runs in time O(r?**2). Running this algorithm on input p~! gives
a word p € L so that i =¢ e. The final algorithm is obtained with ¢ = p and p = e.
Since p~! has a fixed length, applying the algorithm to compute i takes constant time.

For each x € X let M, be the non-deterministic k-counter automaton accepting the
language {®(u,v) | u,v € L, =¢ ux} in quasi-realtime. We begin with an enumeration
of constants which appear in this argument.

Let C be the quasigeodesic normal form constant for L.
Let D be the maximum number of states in any M.
Let F be the maximum over all M, of the in-degree or out-degree of any vertex.

= W=

Let F' be the maximum over all M, of the constant in Lemma 2; so on input of

length n, the maximum absolute value of any counter in any machine M, is F'n.

5. Let K — 1 be the maximum number of consecutive € edges that can be read in any
M,.

6. Let P = |p|x be the length of the word p € X*.

Note that we require finitely many generators to guarantee the existence of the constants
D,FE and F.

For each i € [1,n], let u; € L be the string such that @; =¢ pz;...x;, and set
ug = ¢, 80 Uy =g p. Assume for induction that we have computed and stored u; in time
O(i%F). Since ug = q is constant length, the claim is true for i = 0. We find u;y; in time
O((i + 1)%k+1) as follows.

Write u; = k1...6s € L with k; € A, and note that since @, =¢ pzi...z; we
have s < C(P +i+1). Let M = M, ,
accepting ®(u;, wit1)-

Define a configuration of M to be a pair (7,c) where 7 is a state of M and ¢ € Z*

be the non-deterministic k-counter automaton

represents the value of each counter. If 7 is the start state for M, then (79, 0) is the
start configuration where 0 = (0,...,0). Let (7, c), denote a configuration of M which
is obtained by reading an input string of the form

K1 K1 Ri+1 Ks

o) oy o ) s
where o; € A and [ < s, that is, the length of the string of symbols in the top coordinate
is strictly longer than then length of the string of symbols in the bottom coordinate.
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If y is a k-array of counter instructions and c is a k-tuple of counters, the nota-
tion y(c) means the k-tuple of counter values after y is applied to c. If w is a finite
path in M let [w], denote the path with all the counter instructions collected together
asy.

We now build a directed graph G with vertices and edges defined recursively as follows.
Vertices will be grouped together in sets .S;, and edges in sets Tj. The set S; will consist
of all configurations that can be obtained from the start configuration by following a
path in M which contains exactly j edges not labeled by €. For j < s, S; is the set of
configurations of M that can be obtained by reading

(7))

The set Sy consists of the configuration (79, 0), together with all configurations that
can be reached by reading a path labeled ¥ from the start state in M. Recall that the
number of consecutive ¢ transitions is bounded, so the set Sy can be constructed by

where o; € A,.

searching a bounded number of paths. Precisely, we must check at most

K-1

> EF=0(EX)

k=1

paths.
Given S; with j < s, we construct Sj;1 together with the set T4 € S; X Sj41 x Ao
of directed edges as follows.

1. Initially set Sj41 = Tj41 = 0.

2. For each (7,¢) € S; and each path from 7 to 7/ in M labeled [("F")e"]y with
o € A and y a k-array of counter instructions, add (7/,y(c)) to Sj+1, and add
((Ta C)a (7-/7 Y(C))7 U) to Tj+1'

3. For each (7,¢) € S; and each path from 7 to 7/ in M labeled [(™)e"]y, add
(7",y(c))o to Sj41, and add ((7,¢), (7', y(c))s,©) to Tji1.

4. For each (7,c), € S; and each path from 7 to 7/ in M labeled [("*)e"]y, add

<&
(7", y(€))o to Sji1, and add (7, ¢)s, (7', ¥(€))s, ©) t0 Tjy1.

Since the number of consecutive € transitions in M is at most K—1, thatis, 0 < r < K—1,
the counter instructions y above are bounded.

Any configuration appearing in S; and 7; is one that can be reached by reading
®(K1 ... kyj,v) for some v € A7. It follows that the set Sy = S),,|, contains all possible
configurations of M that can be reached by reading any string ®(u;,v) where v € A. If



M. Elder, J. Taback / Journal of Algebra 413 (2014) 289-319 301

S, does not contain a configuration (7,,0) or (74, 0), where 7, is an accept state of M,
continue to construct sets S;y1 and Tj4; with j > s as follows.

1. Remove all elements of S of the form (7, ¢)s. A path to such a configuration cannot
be extended to an accept configuration.
2. Set j =s.
3. While S; does not contain a configuration (7,,0) where 7, is an accept state of M:
(a) For each (7,c) € S; and each path from 7 to 7/ in M labeled [¢" ([ )]y with
o € A and y a k-array of counter instructions, add (7/,y(c)) to S;11, and add

((T7 C)7 (T/a Y(c))v U) to 1}—}-1-
(b) Increment j by 1.

Since L is a quasigeodesic normal form for G and @31 =¢ pr1...2z;11, the length of
u;41 is bounded by C(P + i+ 2). It follows that S; will contain an accept configuration
for some j < C(P + i+ 2), at which point the loop stops.

The time to construct and store the sets S;11 and Tj4; is computed as follows. For
each configuration in S; we check at most EX paths of length at most K in M, where
K — 1 is the maximum number of consecutive € edges that can be read, and F is the
maximum out-degree. So to compute and store Sj;1 and Tji; takes time O(|S;|EX).

Let m € N be the minimal value so that s < m < C(P + 4+ 2) and S,, contains an
accept configuration (7,,0) or (74,0) (in which case m = s). As G is a directed graph,
there is a directed labeled path e; ... e,, where e; € T; from (79,0) to (74, 0) or (7,4, 0)s,,
which can be found by backtracking through G, scanning edges in T}; for m > j > 0. The
time required to run this backtracking process is at most O(U}n=1 |T51).

The time required to construct and store the sets S;1 and 71 for 0 < j < m is
O(Z;.n:_ol |S;|EX). Tt follows that the total time complexity for the algorithm is

O<i T | +EKmi:1 |Sj> = O<§(|Tj| +EK|Sj_1)> = 0(5: |Tj|>

Jj=1 7=0 j=1

since |S;_1| < |Tj].

To complete the proof we compute Z;nzl |T;|. If (1,c) € S; then 7 can be one of
D states in M, and each counter has absolute value at most Fj (so has value ¢ with
—Fj < ¢ < F}), so the number of possible configurations is D(2Fj + 1)¥. We also have
configurations of the form (7,¢)., so |S;| < 2D(2Fj + 1)*.

AsT; C Sj_1 x S; x A, we have

IT;| <2D(2F(j — 1) +1)" - 2D(2Fj + 1)* - (|A] + 1) < Xj2*

where X = X(D, F, k,|A|) is a fixed constant. We also have m < C(P+i+2) =Y
where Y =Y (C, P) is a fixed constant. Thus
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Z |TJ| S ZX]2k _ XZij S XZka: _ Xm2k+1 § X(Yi)2k+1 _ Zi2k+1
=1 =1

Jj=1 Jj=1

where Z = XY?+1 = Z(C, D, F, P, k,|A|) is a fixed constant.
To compute wu,, which is the normal form for pw, we repeat this procedure for i € [1,n]
so the total time complexity is Y1 | Zi?k+1 < Zn2k+2. g

4. Context-sensitive-graph automatic groups

Recall that a linear bounded automaton is a Turing machine together with a constant
D so that on input a word w of length n, the number of squares on the tape used for
any operation involving w is Dn. The read-head of the Turing machine is a pointer to
a particular square of the tape. A move of the Turing machine can involve reading the
letter at the position of the read-head, writing to this position, or moving the read-head
one square to the left or right. A letter written on the tape can be marked by overwriting
it with an annotated version of the letter — for example the letter a can be replaced
by a.

A language is context-sensitive if it is accepted by a linear bounded automaton, and
deterministic context-sensitive, or DCS, if the linear bounded automaton is deterministic.
Note that here we allow content-sensitive languages to include the empty string — in
some usages context-sensitive languages are defined without this, in particular when
defined via a grammar in which the right-hand sides of production rules are required
to have positive length. Note also that is it not known if the class of deterministic and
non-deterministic linear space languages are distinct.

Shapiro [20] and Lakin and Thomas [25,26] consider groups with context-sensitive
word problem. Shapiro showed that any finitely generated subgroup of an automatic
group has DCS word problem, and Lakin and Thomas proved several closure proper-
ties.

In this section we consider the class of DCS-graph automatic groups. We show that
if a finitely generated group G has a DCS-graph automatic structure with quasigeodesic
normal form, then its word problem in solvable in deterministic linear space. We also
prove that if a finitely generated group G has deterministic linear space word problem
then it has a DCS-biautomatic structure (with no symbol alphabet needed) with geodesic
normal form language.

We start with a simple subroutine to enumerate strings over an ordered alphabet in
Shortlex order. Recall that for a finite totally ordered finite set A, the Shortlex order
on A* is defined as follows: for u,v € A*, u <gr, v if

. ‘U|A < ‘U|A, or
o |ula = |v|a, u=pAu/,v=p\jv with \; < \; and p,u’,v" € A*.
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Algorithm 1 (Shortlex subroutine). Let X be a finite totally ordered set, #, $ two symbols
not in X, and 0g,0, € X suchthat $ < og <o <o, foralloc € X. Letv =v;...v, € I*,
and assume #v$ is written on the tape of a linear bounded automaton. Then the next
string in Shortlex order can be found and overwritten on the tape using space k + 2 as
follows.

1. Move the read-head to the last letter of v (before the $ symbol), and set a boolean
variable done to be false.
2. While not done:

(a) If the letter at the read-head position is o,, move the read-head one position to
the left.

(b) If the read-head points to #, the contents of the tape must be #c*$. In this
case overwrite the tape by #Ungl (consuming the $ symbol) and set done to be
true.

(c) Else the letter at the read-head position is v; € X' with v; < o,.. The contents
of tape are #v; ...v;_1v;0% '$. Let v} € X be such that v; < v} and o < v}
implies o < v;. In this case overwrite the tape by #wv .. .vi,lvfag_ifﬁ and set
done to be true.

Note that the subroutine writes either #v’$ or #v” to the tape, where |v'|x = |v|s
and |v”|s = |v|s + 1. If one ignores the #,$ symbols then the algorithm on input v
returns the next string in Shortlex order in X*.

Proposition 11. Let G be a group with finite symmetric generating set X. If (G, X) has
DCS word problem then (G, X) is DCS-biautomatic, with normal form the set of Shortlex
geodesics over X.

Proof. Assume the word problem algorithm for (G, X) runs as follows. On input u € X*
written on a one-ended tape, the algorithm returns yes if u is trivial and no otherwise,
and returns a blank tape, using at most D|u| space.

Fix an order on the generators with zy the smallest and x, the largest, and let L be
the set of Shortlex geodesic words for G with respect to this order. By Definition 9 we
must show that L and the languages {®(u,v) | u,v € L,v = zu} and {®(u,v) | u,v € L,
v =ux} for each z € X are DCS. Let $ be a symbol not in X, and set § < xo.

Define a deterministic linear bounded automaton to accept L as follows. Assume that
%, #,$ are distinct symbols not in X. On input u € X* of length n:

1. Write %u#($)"™! on the tape and set done to be false.
2. While not done:
(a) Set v to be the word on the tape between # and the first $ symbol.
(b) Scan the tape to check if u and v are identical as strings. If they are, accept u
and set done to be true.
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(c) Else write uv~! to the left of the % symbol. Call the word problem algorithm
on the one-ended tape to the left of the % symbol. If it returns yes, reject u and
set done to be true.?

(d) Else run the Shortlex subroutine (Algorithm 1) to overwrite v by the next word
in Shortlex order.

The algorithm runs as follows. To start we have v = . If u = v then the empty
string is accepted since it is the Shortlex geodesic for the identity. If not we overwrite v
with the next word in Shortlex order, and compare to u. We iterate the loop until either
the contents of the tape are %u#u$, or we find a word v that equals u in the group
and is shorter in Shortlex order. At any time the tape contains at most 4n + 3 letters,
and running the word problem algorithm takes space at most D|uv=!| < D(2n), so all
together the space required is 2Dn + 4n + 3.

The following algorithm accepts

{®(u,v) } u,v € Lyv = xu} (respectively {®(u,v) | u,v € L,v = xu})
for z € X: On input ®(u,v),

1. run the preceding algorithm on u to check if u € L;
2. run the preceding algorithm on v to check if v € L;

L (respectively, zuv=1). O

3. call the linear space word problem algorithm on uzv™
Note that there are subgroups of Fy X F5 with unsolvable conjugacy problem [27,28],
which by [20] have DCS word problem and therefore are DCS-biautomatic. It follows
that DCS-biautomatic does not imply solvable conjugacy problem, in contrast to the
graph biautomatic case [1, Theorem 8.5].
Next we show that DCS-graph automatic groups with quasigeodesic normal form have
deterministic linear space word problem.

Proposition 12. Let (G, X) be a group with finite symmetric generating set, and A a
finite set of symbols so that (G, X, A) is a DCS-graph automatic group with quasigeodesic
normal form L C A*. Additionally, suppose we are given p € X* and q € L with p =¢ q.
Then there is an algorithm that, on input a word w = z1...x, € X*, computes u € L
with @ =g w and runs in space O(n).

Proof. We first give the algorithm that on input w € X* computes u € L where @ =¢ pw.
Running this algorithm on input p~! gives a word u € L for the identity. The final

3 The contents of the tape after this step are %u#v($)" with |v|a +i=n + 1.



M. Elder, J. Taback / Journal of Algebra 413 (2014) 289-319 305

algorithm is obtained with ¢ = © and p = e. Since p~! has a fixed length the step to
compute u takes constant space.

For each z € X let L, be the DCS language {®(u,v) | u,v € L, 0 =¢ ux}. We begin
with an enumeration of constants which appear in this argument.

1. Let B be a constant so that for any x € X the space used by the linear bounded
automaton accepting L, on input of length n is Bn.

2. Let C be the quasigeodesic normal form constant for L.

3. Let P = |p|x be the length of the word p € X*.

Note that we require finitely many generators to guarantee the existence of the con-
stant B.

Let w = z1...2, € X* be the input word, and define wy = p, w; = pzx1...x; for
1€ [1,n],i € N, and let u; € L be such that @; =¢ w;. Note that ug = ¢, and for each ¢
the length of u; is at most C'(P + i+ 1). Let # be a symbol not in A. Define a total
order on the (finite) set A.

We compute the normal form word representing w as follows. Write w#ug# on the
tape, marking the first letter of w. This uses space at most n + 2 + C(P + 1). Assume
for induction that we have written w#u;# on the tape for i < n, and marked the letter
at position ¢ + 1 in w, using space at most D(n) =n+ 2+ (B +2)C(P +n + 1).

Find u;41 as follows.

1. Set done to be false.
2. Let v denote the string of symbols to the right of the last # on the tape. To begin
we have v = ¢.
3. While not done:
(a) Run the deterministic linear space algorithm that accepts L, , on ®(u;, v). Note
that the length of the input to this subroutine is at most C'(P + n + 1) since
L is quasigeodesic and wu;, u;11 represent words of geodesic length at most n. It
follows that the space needed for this step is at most BC'(P 4+ n + 1).
i. If the subroutine returns true, then we have found v = u; 1. Set done to be
true.
ii. Else run the Shortlex subroutine (Algorithm 1) to overwrite v by the next
word in Shortlex order.
If i+ 1 < n, rewrite the tape as w#u;+1# and mark the letter at position 7+ 2 of w.
If i + 1 = n, the word u,, is the required normal form word for w.

Since we know there is some string u; 1 of length at most C(P + i + 2) then this
algorithm must terminate. Moreover, the amount of space used on the tape to store
w#u;#v is bounded by n+2+2C (P +n+1), as the length of w## is n+2, and |u|, |v]
are at most C(P 4+ n+ 1). The space used to run the subroutine on ®(u;,v) is bounded
by BC(P +n+ 1), so in total the amount of space required is at most D(n). O
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Combining these two propositions we obtain the following.

Theorem 13. The following classes of groups coincide:

1. finitely generated DCS-graph automatic groups with quasigeodesic normal form;
2. finitely generated DCS-biautomatic groups with Shortlex geodesic normal form;
3. finitely generated groups with DCS word problem.

The class of such groups is very large — groups with DCS word problem include
all linear groups [29], logspace embeddable groups studied by the first author, Elston
and Ostheimer [30], and all finitely generated subgroups of automatic groups [20]. It
also includes the co-indexed and co-context free groups as described in [31-33]. These
groups have co-word problems accepted by non-deterministic pushdown or nested-stack
automata, which can be simulated by deterministic linear bounded automata since as
described in these articles, the non-determinism is confined to an initial guessing step.
It follows that the word problem for these groups is accepted by the same determin-
istic linear bounded automata. These classes include the Higman—Thompson groups,
Thompson’s group V', Houghton’s groups, and the Grigorchuk group.

Note that the number of configurations of a linear bounded automaton is exponential
in the length of the input string, so the time complexity of computing the normal form of
a word in a DCS-biautomatic group is at most exponential. The next example shows that
a polynomial time algorithm to compute normal forms of DCS-biautomatic structures
seems unlikely to exist.

Let G = Zy 1 Z%. By [30, Theorem 14] the word problem for G is in deterministic
logspace and therefore deterministic linear space, so it follows from Proposition 11 that
(G, X) is DCS-biautomatic with Shortlex geodesic normal form, where X is the standard
generating set. The bounded geodesic length problem (see [34,35]) for a group G with finite
generating set X is the following:

Problem 1 (Bounded geodesic length problem). On input an integer k and a string w € X*,
decide if the geodesic length of w is less than k.

Suppose one could prove that a DCS-graph automatic structure with quasigeodesic
normal form for a finitely generated group implied a polynomial time algorithm that
on input a string of generators computes the normal form. Then by Proposition 11 we
may assume the group has a DCS-biautomatic structure with normal form the set of
all Shortlex geodesics. Parry [36] proved that the bounded geodesic length problem for
72172 is NP-complete. So if such an algorithm could be constructed to run in polynomial
time, we would have P = NP.

A second example is the class of free metabelian groups — Svetla Vassileva has shown
they have normal forms (and hence word problem) computable in logspace [37], and
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Miasnikov et al. [35] proved the bounded geodesic length problem for these groups is
NP-complete.

5. Closure properties

In this section we show that under certain conditions C-graph automaticity is pre-
served under change of group generating set, direct and free product. Recall that by
Lemma 5 the following classes are closed under intersection with regular languages, fi-
nite intersection, e-free homomorphism, and inverse homomorphism: regular languages,
6k, Sk, poly-context free languages, context-sensitive languages. Moreover these classes
all contain the class of regular languages.

Lemma 14 (Change of generators). Let G be a group with two symmetric generating sets
X and Y, A a finite alphabet, and let C be a class of formal languages that is closed
under finite intersection and inverse homomorphism, and contains the class of reqular
languages. If (G, X, A) is C-graph automatic, then (G,Y, A) is C-graph automatic.

Proof. Since we can use the same language L C A* for (G,Y, A) as for (G, X, A), it
suffices to show that each language L, lies in the class C.

Let Y1 C Y be the set of generators that do not equal the identity in G. For each
y € Y7, choose u, € X such that u, =¢ y. Fix y € Y7 and suppose u, = 1 ...z with
z; € X. Consider convolutions of k + 1 strings v; € L

®('U()71)1,'U2, e 7Uk:)

so that v; =g v;_1x; for 1 < i < k. Let P be the language of all such convolutions.

For each z; appearing in u, define a language A; of convolutions of k + 1 strings over
A where rows ¢ and i 4+ 1 correspond to the language L,, and all other rows can be any
words in A*. Then A; is the inverse image of L,, under the homomorphism which sends
®(voy - -, Vk) 10 R(vi—1,v;)-

Then ﬂle A; is in C since the class is closed under finite intersection.

Finally consider the e-free homomorphism from ﬂle A; to ®(L, L) defined by

®(vo,v1,v2, ..., V%) = @(vo, Vk).

Since y is assumed to be non-trivial, the image this map is guaranteed to be e-free. The
language L, is the image of ﬂle A; under this homomorphism, so is in C.

To complete the proof, we must consider the case that Y contains generators y that
equal the identity element. In this case L, = {®(u,u) | v € L} which is regular, and so
by assumption in C. O

Note that the lemma holds when one or both of X and Y are countably infinite, since
for each y € Y the word u, is a finite string of letters in X.
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Lemma 15 (Direct product). Let G and H be groups with symmetric generating sets X
and Y, respectively, A and I" finite alphabets, and let C be a class of formal languages
that is closed under intersection with reqular languages, finite intersection and inverse
homomorphism. If (G, X, A) and (H,Y,I") are C-graph automatic, then the group G x H
is C-graph automatic.

Proof. Assume A and I" are disjoint. Let Lg C A* and Ly C I'* denote the languages
of normal forms for each group, and Z = {(z,1x), (1g,y) | x € X,y € Y} a generating
set for G x H. Define a normal form L = @(Lg, L) for G x H.

The language ®(Lg, ['*) is the inverse image of the homomorphism from ®(Lg, ™)
to Lg which sends ®(u,v) to u, and similarly for ®(A*, Ly ). Then L is the intersection
of these languages and hence lies in the class C.

For each z € X let L, be the multiplier language for the C-graph automatic structure
on G. Define

L = {&(®(u,w), ®(v,w)) | u,v € A", we I},
Ly = {®(®(u,w), ®(v, 2)) | u,v € A", we€ Ly,z€I'*},

and
L; = {®(®(u,w),®(v,z)) | u,v € Lg, 0 =g tax,w,z € F*}.
Then L, is regular, Lo is the inverse image of the homomorphism
¢:@(0(A*, ), ®(A*, ™)) = Ly
given by ®(®(a,b),®(c,d)) = b, and L3 is the inverse image of the homomorphism
¢: (@A, T*),®(A*, ™)) — L,

given by ®(®(a,b), ®(c,d)) = ®(a,c), so Ly and Lg lie in C.
It follows that

Lz = {®(®(u,w),®(v,w)) ] u,v € Lg, 0 =¢ tUz,w € Ly}

is in C since it is the intersection Li N Lo N Lg.
A similar argument applies to multiplier languages L(1,.,). O

For certain language classes C we prove that C-graph automatic groups are closed
under free product. The following argument is specific to the class of non-blind counter
languages, and can be modified to apply to poly-context-free, and context-sensitive lan-
guages.
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Lemma 16 (Free product). Let G and H be groups with symmetric generating sets X
and Y, respectively, and A and I' finite alphabets. If (G, X, A) is Sj-graph automatic
and (H,Y,I) is /1-graph automatic, then G * H is 1 ax(k,1y-graph automatic.

Proof. Assume that A and I" are distinct sets of symbols, and let Lg C A*, Ly C I'* be
the normal form languages for G, H, respectively, and \g € Lg and 79 € Ly the normal
form words for the identity in each language.

Define L1 = Lg \ {\o}; this is a k-counter language as it is the intersection of L with
the regular language A*\ {\o}, and similarly Ly = Ly \ {7} is an l-counter language. If
L; contains the empty string, choose u € A*\ Lg and replace Ly by its image under the
homomorphism from L; to A* which sends € to v and is the identity on all other strings.
Then L; remains a k-counter language. Similarly if Ly contains the empty string, it can
be replaced. Define

€7

HUIFVIFE - . . FUFH Vs,

L=< #uifvi# ... #vs_1#fus, | > 0,u; € Ly,v; € Lo
#UI#UQ# s #us#vm
#UI#UQ# <o #/Usfl#us

over the alphabet {#}U AU There is an obvious bijection from L to the free product,
namely the map that deletes all #, sends u; to @; and v; to ;.

Let M; be the k-counter automaton accepting Li, with start state 7; analogously
let M be the [-counter automaton with start state 7o accepting Lo. Assume the sets of
states of My and Ms are distinct. Define a nondeterministic, non-blind max{k, [ }-counter
automaton M as follows. The states of M are the states of M7 and M, together with
three new states kg, k1,k2. The start state for M is kg, and accepting states are x
and ko. The edges in M are as follows:

1. Every edge in M; is again an edge in M, where the first k£ counters correspond to
the k counters in M.

2. Every edge in M, is again an edge in M, where the first [ counters correspond to
the | counters in Ms.

3. For each accept state 7, in My, put an edge from 7, to ko labeled e~ _. Note that
this transition is allowed only when all counters are zero.

4. For each accept state 7, in Mo, put an edge from 7, to k1 labeled e—  _. Again,
this edge is followed only when all counters are zero.

5. Put an edge labeled ¢ from kg to k1, and an edge labeled ¢ from kg to ks.

6. Put an edge labeled # from k; to 71, and an edge labeled # from kg to To.

See Fig. 1. Then M is a non-blind non-deterministic max{k, [ }-counter automaton which
accepts the language L.
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O/
M, GD M,
ol K{N T

Fig. 1. Construction of the automaton M in the proof of Lemma 16. Start state is ko and accept states are
k1 and Ko.

Let z € X, and let Lg , be the multiplier language for the counter-graph automatic
structure on G. Analogously, for y € Y let Ly, be the multiplier language for the
counter-graph automatic structure on H.

We will describe the multiplier language in the case of multiplication by = € X and
leave the analogous case of y € Y to the reader.

The multiplier language L, = {®(p,q) | p,q € L,§ =g«n Pz} C ®(L,L) for
G x H is accepted by a modified version of M which we denote M,, constructed as
follows.

1. Let M, initially have the same states and transitions as M, with none labeled as
accept states. Replace each edge label a # ¢ by (z)

2. Let AMiAs -+ Ay € Ly be the normal form word for z. Add a new state y; and a path
from s1 to x1 labeled (;) (;1) . (;S). Declare 1 to be an accept state. This ensures
that if p is empty, or p ends with a subword from H, that ®(p, ¢) is accepted, where
4 =ag px.

3. From k1 add an edge to a copy of the machine L , labeled €. Declare all previous
accept states of this machine to be accept states of M,. If p ends with a subword
from G, say p = B where « is the maximal suffix from G, then 3 corresponds to a
path through M with an epsilon edge leading to 7. At that point, Lg , checks that
the two suffix strings differ by z in G. O

6. Examples
6.1. Infinitely generated groups

The purpose of this example is to show that non-finitely generated groups are captured
by the class of C-graph automatic groups for appropriate C.
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@

Fig. 2. Deterministic non-blind 1-counter automaton accepting the language L3 in the proof of Proposition 17.
The start state is s3. Accept states are sa, s3, a, b, r,t. The automaton for L is identical with start state ss.

Proposition 17. The free group Foo = (21, 2,23, ...|—) on the countable set of generators
Y ={x; |i € Z4} is deterministic non-blind 2-counter-graph automatic.

Proof. The idea is to represent generators and their inverses as positive or negative unary
integers. Let X = YUY ! A = {p,n,1}, and define a homomorphism ¢ : X* — A*
by ¢(x;) = pl* and ¢(x; ') = nl’. For example, 2325 " is mapped to plipliplinlilll.
The set of freely reduced finite strings of generators is a normal form for F,, so define
a normal form L C A* to be the image of this set under ¢. Note that the identity
corresponds to the empty string e.

Let Ly C A* be the set of strings of the form r11™ ...rp1" where r; € {p,n} and

€ ZT. Let Ly be the set of strings in L; where ro;_1 # ro; implies ny;_1 # 125,
and Lz the strings in Ly where ry; # 79,41 implies n2; # nm2i41, for ¢ > 1. That is, in
Lo substrings rq;_117i-1r5;1"2 represent a freely reduced pair, and in L3 substrings
ro;1M2irg; 4 1172+1 represent a freely reduced pair. For example, nlpllnllpl is in Lo but
not Lz. The intersection Ly N L3 is then the normal form language L.

A deterministic non-blind 1-counter automaton accepting L3 is shown in Fig. 2. The
automaton accepting Lo is obtained from this by setting ss to be the start state. Recall
that the notation 1., means if the counter is nonzero, read 1 and set the counter to 0.

Then L = Ly N L3 is deterministic non-blind 2-counter by Lemma 4.

The multiplier language L,, for the generator x; is the set of strings in ®(L, L) of the

(0 OO G0

form
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if r, = p or N # i, and otherwise if rp, = n and n, =@

GO GO G0 00

Define ch’i to be the regular language is given by the regular expression

{00 CHEOE

and L, the language given by the regular expression

1 p n\ )" /n) /1)
{)- G- CIHEE)

Next consider the language ®(A*, L). Modify the automaton in Fig. 2 by replacing
edges labeled z4 (where z € {p,n,1} and # denotes some counter instructions) by four
edges labeled (5)#, (Z)#7 (i)#7 (;)# The intersection of the two languages of strings
accepted by this automaton with start state either so or ss is the language ®(A*, L),
and is deterministic non-blind 2-counter.

A similar argument shows that ®(L, A*) is deterministic non-blind 2-counter. Then
L., is the union of L;‘I_ N®(A*, L) and L N®(L, A*), and so is deterministic non-blind
2-counter. 0O

6.2. Baumslag—Solitar groups

In [1] the solvable Baumslag—Solitar groups are shown to be graph automatic. Here we
show that the non-solvable Baumslag—Solitar groups are blind deterministic 3-counter-
graph automatic.

Proposition 18. Let 2 < m < n. Then BS(m,n) = (a,t | ta™t~! = a™) is blind deter-
manistic 3-counter-graph automatic.

Proof. Any word in {a*!,b*'}* can be transformed into a normal form for the corre-
sponding group element by “pushing” each a and ¢! in the word as far to the right as

possible and freely reducing using the identities

atlaTl =1, a*"t = ta™™, a”'t =a""ta"™,

tilt:Fl — 17 aimt—l — t—lain7 a_jt_l — am—jt—la—n_

where 0 < i < n and 0 < j < m, so that only positive powers of a appear before a t*!
letter. The resulting word can be written as Pa”, where P is a freely reduced word in
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the alphabet IT = {t,at,...a" ', t7 1 at™! .. .a™ =1} (see for example [38, p. 181]).
Let I' C IT* be the set of freely reduced words in IT*.

It is clear that the language of the words of the form Pa" with P € I'N € N
is regular, and in bijection with the group. The idea for the counter-graph automatic
structure is to represent the integer N in two different ways, so that multiplication by
the generator ¢ can be easily recognized.

For N € Z, if N is positive write N = pm+r =qgn+swith0 <r <mand 0 < s < n;
if N is negative write N = —(pm 4 r) = —(¢n + s); and otherwise write N = 0. Define
L to be the language

PA1TH1PH15419, PeT,
— P#(_l)?"#(_l)p#(_l)9#(_1)q’ T e [07m)78 € [077’1),
P##4# r+pm =s+qn,
r+pm >0

Then L is in bijection with words of the form Pa™ for N positive, negative and zero, so
is a normal form for BS(m,n) over the alphabet A = IT U {1, —1, #}.
For example, in BS(4,7):

o the string at#111#1##1 represents the word ata”;
e the string at#11111#1#+#1 is rejected since r = 5 is not less than m = 4;
e the string at#11#114#1#1 is rejected since r + pm = 10 whereas s + gn = 8.

Let L; be the language

PH1T41P 4154149, P ¢ {a,t*'}*,
Ly = P#(-1)"#(=1)P#(=1)°#(=1)%, | r,p,s,q €N,
PH###H# r+pm=s+qn>0

Then L, is accepted by the blind deterministic 1-counter automaton shown in Fig. 3.
Let Lo be the regular language of strings

PHITHIPHT#19, Pel,
Ly = PH(=D)"#(=1)P#(=1)#(=1)% |r,s,p,q €N,
PHAHH# r<m,s<n

Then L = Ly N Ly is a blind-1-counter language.
Now we turn to the multiplier languages L, and L;.
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1, lim 1 1,
O % ’ & (=)
a,t*! 1y 1im
OENOENOENORNG
-1y —1im

L\#K\#O#@

—14 —1im —1_ -1

Fig. 3. 1-counter automaton accepting the language L, for BS(m,n). Accept states are g4, go and g—. The
counter checks the equation r + pm = s + gn is satisfied.

First observe that the languages ®(L, A*) and ®(A*, L) are blind-1-counter, and so
®(L,L) = ®&(L, A*) N ®(A*, L) is a blind-2-counter language by Lemma 4.

We will describe L, as the union of a set of languages intersected with ®(L, L). Note
that L, is the set of strings ®(u,v) where @ = Pa”, o = Pa’¥ 1. Recall that the regular
expression {1}*#{1}* denotes the set of strings in {1, #}* with exactly one # letter.
The languages are as follows, for 0 <r <m — 2:

) P € {a,t*1}*,

PHIT#1P#Q,
. [:»,« - ® ( r p S Na )
PHRTHRVER )G R e (1 a1y
+1 1%
RS D B R Y R A §
" PHEAVTHR ) o e ey |

1%
) o (PR Q)| | P E L |
o P#(_l)r#<_1)p#R Q R é {_1}*#{_1}* ’

+1*
| (PrrcapigQ ) | D E L
Fo=0 9 pg-ymrgr | |PEN
Q,Re{-1}#{-1}"

These languages are designed simply to check the condition that @ = Pa",
o = Pa™ !, Each language is regular, so its intersection with ®(L, L) is a blind 2-counter
language. It follows that L, is blind 2-counter.

Now we come to the language L;. We will again intersect with the blind 2-counter
language ®(L, L). We must accept strings ®(u,v) for words u,v € L with @ = Pa” and
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? = PaNt. We consider the following cases, which depend on whether or not P ends
in t~', and whether or not n divides .

Case 1. P ends in t or is empty:
For N > 0, write N = gn + s with 0 < s < n. Then o™Vt = a*ta?™. This gives strings
of the form

@ (PHLIH1P #1419, Pa®tH41944174£1°)

where «, 3,7, are the appropriate integers. Note that there is no cancelation between
P and the letters added, since P is either empty or ends in t.

For N < 0, write N = —(qn + s) with 0 < s < n. Then aVt = a Sta 9. If s = 0
then this gives the set of strings

®(PH#(—1)"#(—1)P#4:(— 1), Pt(—1)4:(—1)7#(~-1)°).

If s > 0 then aVt = a=5ta™9™ = @™ ta~™~9™ which gives the set of strings

®(P#(—1)#(—1) #(—1)*#(—1)1, Pa™ t##(— 1)1 #(—1)7#(-1)°).

Again there is no cancelation between P and the letters added, since P is either empty
or ends in t.
These strings can be obtained by intersecting the following languages with ®(L, L):

q€eN,

Pa##IHR | 0 R e (1ya(1)

for0<s<n-—1,

o . Pe{e,wt : we {atF}*},
v ®<P#Q#<—1>_#1é(—1>, )

s Pe{e,wt : we {att'}*},
cule (P#Q#l #w,)

n—s +1 q€ N’
Pt H#HEDTH R | g r e y iy
forl1<s<n-—1.

q €N,

Q, R e {1} #{1}"

| (Prass-a,
e ®<Pt##(—1)q#R

) Pec{e,wt : we {att1}*},

The languages Us, Vi for 0 < s < n — 1 are blind 1-counter — the counter is used to
check the entries (£1)? are the same in each component of the convoluted string.

Case 2. P ends in ¢!, and n does not divide N.
In this case N = gn + s with 0 < |s] < n.
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For N > 0 write N = gn + s with s > 0. Then Pa™Vt = Pa*ta? where Pa®t has no
cancelation so is in normal form. This gives the set of strings

R (PHIH1PH1419, Pat#41941741°).
For N <0, write N = —(¢gn + s) with s > 0. Then
aVt = a " Sta" I = ¢ St ™ TI™
and so Pa™Nt = Pa"*ta=™~9™ and P does not cancel, so this gives the set of strings
B(PH#(= 1) (1) #(=1) #(= D)%, Pa" "t (- )= 1) #(-1)°).
These strings can be obtained by intersecting the following languages with ®(L, L):

PHQ#1°#14, Pe {5>Wt_l cw € {a,til}*}’
. Ws: ® Pagt##lq#R qu\[7
Q,R e {1} #{1}"

for1<s<n-—1,

Pe{e,wt™! : we {a,tT}*},
qeN,

. ®<P#Q#(1)S#(1)q, )
Q. Re {~1})#{-1)"

Pa" s t##(—1)TH#R

for1<s<n-1.

Again the languages Ws, X for 1 < s < n — 1 are blind 1-counter  the counter is
used to check the entries (+1)7 are the same in each component of the convoluted string.

Case 3. P ends in ¢t~ !, and n divides N.

Put P = Ta‘t™!, where ¢ € [0,m) and T is empty or ends in t*1. Since we will
intersect with ®(L, L) we don’t care whether Ta‘t™! is freely reduced or not.

For N > 0 write N = ¢n so

PaNt = Pta? = Tat™'ta?™ = TatI™.
This gives the set of strings
®@(Tat T 1 1P #H19, THIH1IH#1741°).
For N < 0 write N = —(¢gn) and

PaNt = Pta™ 9" = Ta‘t 'ta= 9" = Ta® 1™ = Tq ™q (1=,

This gives the set of strings
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O(Tat (1) # (1) #H#(— 1), TH(=)™ ()T #(=1)#(-1)°).

These strings can be obtained by intersecting the following languages with ®(L, L):

. y _ o (Tact_l#Q##lq,> Z:I\{Iaytil}*v
THRUFVHRE )] g re nppy
for0<c<n-1,

T € {a,t*'}*,
ez e Ta“t ' #Q##(-1)9, ) | c€[0,n),
= O\ (e nesr ) | gen,
QRe {11 #{ 1)

for0<c<n-1,

Once again the languages )., Z. for 0 < ¢ < n — 1 are blind 1-counter — the counter
is used to check the entries (+1)9 are the same in each component of the convoluted
string.

It follows that the language L; is the union of the languages U;, V;, W;, X, Vi, Z; each
intersected with ®(L, L) and is therefore blind deterministic 3-counter. O

We remark that the above normal form language is not quasigeodesic. In [39] Burillo
and the first author find a metric estimate for BS(m,n). It is shown that the geodesic
length of the element equal to a” is O(log N), while the normal form representative
given above has length O(N/m + N/n) = O(N).
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