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Let T'4(q) denote the group whose Cayley graph with respect to a particular generat-
ing set is the Diestel-Leader graph DLg4(q), as described by Bartholdi, Neuhauser and
Woess. We compute both Aut(I'4(q)) and Out(T'4(q)) for d > 2, and apply our results
to count twisted conjugacy classes in these groups when d > 3. Specifically, we show
that when d > 3, the groups I'4(¢q) have property Roo, that is, every automorphism has
an infinite number of twisted conjugacy classes. In contrast, when d = 2 the lamplighter
groups I'2(q) = Lq = Zq 1 Z have property R if and only if (¢,6) # 1.

Keywords: Diestel-Leader groups; Diestel-Leader graphs; automorphisms; property Roo;
Reidemeister number; twisted conjugacy classes.
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1. Introduction

Bartholdi, Neuhauser and Woess in [2] describe a family of groups I'4(¢) whose
Cayley graphs with respect to certain finite generating sets denoted Sy , are horo-
cyclic products of trees, or Diestel-Leader graphs DL,(q). The construction of
the groups I'4(q) requires that for any prime p dividing ¢, we have d < p + 1.
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We call these groups as Diestel-Leader groups. When d = 2 these groups are the
well-known lamplighter groups Lg; the identification of a Cayley graph of L, with
the Diestel-Leader graph DLy (q) has been previously explored in [3, 20, 22]. Hence
for d > 3, I'4(q) can be viewed as a higher rank generalization of the lamplighter
groups, with the advantage that these higher rank groups are finitely presented.

Metric properties of Diestel-Leader groups were studied by the first two authors
in [18], where a method for computing word length with respect to the generating
set Sq,q is explicitly described. Using this word length formula, these groups are
shown to have dead end elements of arbitrary depth, infinitely many cone types
and no regular language of geodesics. Random walks on Diestel-Leader graphs are
explored in [2], where the authors also note that I';(q) is of type F;—1 but not type
F,;, and in most cases is an automata group. For a more thorough introduction to
the properties of T'4(q), we refer the reader to [1, 2, 18].

The construction of the Diestel-Leader groups given in [2] and used in [18] is
quite general; in this paper we work with a specific family of Diestel-Leader groups.
This is made precise in Sec. 2. Henceforth, I'y(¢) will denote a member of this family.

Analogous to the semidirect product structure of the lamplighter groups, the
Diestel-Leader groups with d > 3 can be expressed as a split short exact sequence

1 —Talq) — Talq) — 741 1.

In this paper, we use the semidirect product structure to compute both the auto-
morphism group Aut(T'4(¢q)) and the outer automorphism group Out(T'4(q)). In [2]
graph automorphisms of a more general Diestel-Leader graph are studied and the
full isometry group of this graph is computed. Although the graph DL4(¢) has many
natural symmetries which yield graph automorphisms, in general these symmetries
do not induce group automorphisms. Namely, we prove the following theorem.

Theorem 3.2. If d > 2, then
Aut(T4(q)) = Der(Z 1, Ra(Ly)) % (U(Ra(Zy)) x K),
where K = { € Aut(247 1) | KP = K}.

In the statement of the theorem, R4(L,) is a quotient of a polynomial ring in d
variables and their inverses with coefficients in Z, and U denotes the group of units;
the group K is the kernel of a particular short exact sequence given in Sec. 2.3 used
to define the derived group I'y(¢)’. The group Der(Z¥~ R4(L,)) of derivations is
defined below in Sec. 3.

In Theorem 3.4 we completely characterize the subgroup K, and find that when
d > 3, K is trivial unless ¢ = d — 1 is prime; moreover, if d > 3 then any nontrivial
automorphism corresponds to a permutation matrix that is a maximal length cycle
in ;1. Although other possibilities may arise when d = 2 or d = 3, they are also
quite constrained. Namely, if d = 2 then K = Z,, and if d = 3, both K = Z5 and
K = D¢ may arise.

The outer automorphism group then has the following description.
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Theorem 3.7. If d > 3,

Out(Ta(g)) = (U(Ra(Zq))/M) x K,

where M = {192} (t +1;)% | x; € Z} is the set of monomials with coefficient one.

In Sec. 5, we extend these results to Baumslag’s metabelian group.

As an application of these results we consider whether these groups have prop-
erty Ro; a finitely generated group G has this property if every automorphism
© € Aut(g) has infinitely many twisted conjugacy classes. Two elements g,h € G
are @-twisted conjugate if there is some s € G so that sgp(s)~! =h. In general,
given an endomorphism ¢ : m — 7 of a group m, the @-twisted conjugacy classes
are the orbits of the action of 7 on itself via o - a +— cap(a) L.

Groups with property R include Baumslag—Solitar groups BS(m,n) (exclud-
ing BS(1,1)) [11], groups quasi-isometric to BS(1,n) for n > 1 [19] and generalized
Baumslag—Solitar groups [16], non-elementary Gromov hyperbolic groups [10, 17]
as well as relatively hyperbolic groups [12], and mapping class groups [12], among
others.

The following theorem follows from our characterization of the automorphism
group of I'y(q).

Theorem 4.3 The group I'y(q) has property Roo for all d > 3.

This is in contrast to the analogous result for the lamplighter groups L, = I'2(q),
as it is proven in [13, 20] that L, has property R if and only if (¢,6) # 1. This
distinction is perhaps surprising because the proof in [20] relies on the geometry
of the Diestel-Leader graph DLs(q). However, when d > 2, the limited number
of automorphisms which can arise enable us to show that all such groups have
property R.

Property R, has its roots in Nielsen fixed point theory. Given amap f : X — X
of a compact connected manifold X, the fixed point set Fixf = {z € X | f(z) = z}
is partitioned into fixed point classes, which correspond to the ¢-twisted conjugacy
classes of ¢ = fy, the homomorphism induced by f on the fundamental group m (X).

The nonvanishing of the classical Lefschetz number L(f) guarantees the exis-
tence of fixed points of f, although it does not yield any information about the size
of this set. The Nielsen number N(f) provides a lower bound on the size of this set,
though is difficult to compute. The Reidemeister number R(f) is the cardinality
of the set of p-twisted conjugacy classes, and is an upper bound for N(f). When
R(f) is finite, this provides additional information about the cardinality of the set
of fixed points of maps in the homotopy class of f, and R(f) is often easier to
compute than N(f).

For the family of Jiang spaces [14], the vanishing of L(f) implies the vanishing of
N(f); the nonvanishing of L(f), combined with a finite Reidemeister number R(f),
yields the equality R(f) = N(f). This provides a valuable tool for calculating the
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Nielsen number in this particular case. Groups G which satisfy property R, will
never be the fundamental group of a manifold which satisfies the conditions of a
Jiang space.

2. Diestel-Leader Groups

In this section, we begin with a brief description of the Diestel-Leader groups I'4(q)
defined by Bartholdi, Neuhauser and Woess in [2]. We then focus on analyzing the
groups as higher rank analogues of the lamplighter groups, extending the “lamp-
stand”, and deriving group presentations which we use in later sections.

To construct the groups I'q(q), first let £, denote a commutative ring of order
q with unit 1 from which one can choose distinct elements [lq,ls,...,lq_1 whose
pairwise differences [; — I; for i # j are all invertible. Consider the ring of finite
polynomials with coefficients in £, over the formal variables (t+11) ™", (t+12)7 1, ...,
(t+14-1)"', and t, which we denote by

Rd(ﬁq) - Eq[(t + ll)ila (t + l2)717 ceey (t + ldfl)ilat]'

Polynomials in R4(L,) have the form

P = > ay I (8 + 1),

v=(v1,02,...,0q_1)ELI "L

where only finitely many coefficients a, € £, are nonzero.
The group I';(q) consists of matrices of the form

((t S LI (7 P L

P
0 1), with ki, ko,...,k4—1 € Z and P € Rq(Ly).

The generating set consisting of the following matrices is denoted Sy 4, and it is
verified in [2] that T'(T4(q), Sa,q) = DLa(q):

t+10; b !
0 ) , withbe Ly, i€{1,2,....,d—1} and

((t+li)(t+lj)—1 —b(t+1;)7"

0 . ), withbe Ly, 1,7 €{1,2,...,d—1}, i #j.

This group depends on the choice of [; € £,, and in fact for the same values of
d and ¢ but different choices of I;, we may obtain non-isomorphic groups. We will
discuss different choices for these parameters later in this section.

When d = 2, the above construction with £, = Z, and [; = 0 yields a pre-
sentation for the lamplighter group L, = Z4 ! Z with respect to the generating
set {(; ll’)il |b € Zy}. If we compare this to the standard presentation for the
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lamplighter group L,, namely
i J
Lq - <a7t| aqa [at 7at ])

we see that the matrix (é 11;) corresponds to the group element a’t.

When d = 3, the group I's(¢) (with £, = Z,4, la = 1, and I; = 0) is a torsion
analog of Baumslag’s metabelian group (BMG); the latter was introduced in [4] as
the first example of a finitely presented group with an abelian normal subgroup of
infinite rank, namely its derived group. This group has presentation

BMG = (a,s,t|st = ts,[a,a'],aa® = a").

Baumslag also proved in [4] that every finitely generated metabelian group can be
embedded into a finitely presented metabelian group, and he embeds the lamp-
lighter groups into a torsion analogue of the above group, namely the group with
presentation

(a,s,t|a?, st =ts,[a,a'],aa® = a). (2.1)

Using the matrix representation of I'3(q) given above with I; = 0 and Iy = 1, we
identify T'3(q) with this torsion analogue of Baumslag’s group, and the generators
in the above presentation correspond to matrices as follows:

11 t 0 1+t 0
a , S« , and t<« .
o 1) o= (0 0) e e (100)

It is interesting to note that while the groups I'4(¢) have a quadratic Dehn function
for all values of d and ¢ for which the construction holds [9, 24], it is shown in [15]
that Baumslag’s metabelian group has an exponential Dehn function. Amchislavska
and Riley have recently given an exposition and overview of these groups and related
contexts in which they appear in [1].

The proof that I'(T4q(q), Sa,q) = DLa4(g) relies on single variable polynomials
derived from the formal Laurent series associated to polynomials in Rq(L,). Recall
that a formal Laurent series in the variable z with coefficients in the ring R is a
series Ziooo riz’ with 7, € R and r; = 0 for all but finitely many of the indices
1 < 0. The set of all such series is denoted R((x)).

Lemma 2.1 (Decomposition Lemma). Let
Q € Ra(Ly) = Lo[(t+ 1) (t+12) ooy (4 La) ™1,

where the l; € L, are chosen so that l; — ; is invertible whenever i # j. Then Q
can be written uniquely as Py (Q) + P2(Q) + - - - + P4(Q) where

(a) for1 <i<d—1 we have that P;(Q) is a polynomial in t +1; all of whose terms
have negative degree, and
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(b) for i = d we have that Py(Q) is a polynomial in t=1 all of whose terms have
non-positive degree.

Proof. It is an easy exercise to see that any polynomial ) can be written as the
sum of d polynomials of the desired form. To show such a decomposition is unique,
suppose we have any decomposition Q = Q1 + Q2 + - - - + Q4 where the Q; satisfy
the conditions of the lemma. Any polynomial @ € R4(L,) can be rewritten as a
formal Laurent series £5;(Q) in L,((t+1;)) for 1 <i<d—1,orin L£,((¢t!)) when
i = d. We have

d
£S:i(Q) = Z L£S:(Q));

note that £5;(Q;) = Q;. To compute LS;(Q;) for i # j we use the formulas below.
When k € Z~ we have:

(t+1)" = i (:) (U =)+ )" = i (k i n) ke,

n=—k

and when k € Z,k > 0

" [k
k k—n n
)k = nz::O <n> (=Lt + )™
Notice that if i # j, then the minimal degree of £5;(Q;) is greater than or equal to
zero for ¢ # d, and strictly greater than zero for i = d. Thus, @Q; is the sum of the
terms of £5;(Q) with negative degree in the case 1 <i < d— 1, and Qg is the sum
of the terms of £S5;(Q) with non-positive degrees, and hence the decomposition is
unique. O

2.1. Choosing parameters

We now describe the specific Diestel-Leader groups which we consider for the
remainder of the paper. For fixed d and ¢ (always satisfying d < p + 1 for any
prime p dividing ¢), the choice of the coefficient ring £, and the elements [; € L,
satisfying I; — [; is invertible when i # j determine (possibly) non-isomorphic groups
whose Cayley graphs have the same underlying graph. Note that for any such d and
q, there is a choice of I; satisfying the required condition with £, = Zg, that is,
producing a group which satisfies the construction in [2]. For instance, if we choose
l; = i — 1, then the fact that d — 1 < p for every prime p dividing ¢ implies that
l; — 1; is invertible in Z, when i # j.

For the remainder of this paper I'y(¢) will denote a Diestel-Leader group with
Ly = Zg4, and with [; = 0 and some choice of l2, . . ., [4—1 satisfying [; — [; is invertible
when 7 # j.
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2.2. Extending the “lamplighter picture” to T'q(q) for d > 3

Recall that an element of the lamplighter group I's(¢) = L4 can be viewed as a
pair (A,t), where A € @, Z, and t € Z. In fact, each pair (A,t) corresponds to a
unique element of

Ia(q) = Ly = (EB Zq> x Z.
Z

When we view g € L, as a pair (A,t), we can interpret €9, Z, as an infinite string
of g-way “lightbulbs”, or copies of Z,, placed along a “lampstand”, or copy of Z;
an element of this sum is viewed as a finite collection of illuminated bulbs, where
each bulb has ¢ — 1 possible illuminated states. The integer ¢ corresponds to the
position of the “lamplighter”.

Similarly, each element of T'y(q) = @y Zq % Z%=1 for d > 3 can be represented
by a pair (A,x), where A € @ 4-17Z4 and x € Z4=1 as follows. Suppose that

g € T'4(q) has matrix (H;'tll(t(f L)™ ?) Note that @ has the form

Q= eI (t + 1)

Jj=1
with ¢; € Zg, but this expression is not unique. Let
_ d—1
Vi = (V1,052,053 Vja-1) € 2T

Then

A= (c1)v, ®(C2)vy @ (Cr)v,. € EB Lq,

Zd—1

where ¢, denotes the element ¢ in the copy of Z, indexed by v & 7471 and x =
(x1,22,...,24-1). Since the expression above for @ € Rq(Z,) is not unique, A €
D1 Zq is not unique, although the vector x is uniquely determined by g.
For example, assume that d =3, ¢ > 2, [; =0, I =1, and
Q=0+t +2=1+t+t%
Then g = ((1) ?) is represented by both (A;,0) and (A2,0) where A;=1()®
l2,0) € @Zg Zq and Ay = L0,00® 11,00 D 1(2,0) € @Zz Zq.

Reversing this procedure, it is easy to obtain a matrix representing a unique
group element of I'q(g) from any pair (4,x) € @a1 Zy x Z~1. We can again
interpret @,.-1 Z, as an infinite array of “g-way light bulbs”, or copies of Z,
placed on the (d — 1)-dimensional grid. The coefficients in Z, at each point on the
grid specify the state of the light bulb, with a zero coefficient indicating that the
given bulb is not illuminated. As with the lamplighter group, the vector x can still
be thought of as specifying the position of the lamplighter.

Recall that @ does have a unique decomposition Q = P1(Q) + -+ -+ Py—1(Q) +
P4(Q) given in Lemma 2.1, where each P;(Q) is a polynomial in a single variable.
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Using this decomposition to choose a € @,a-1 Zq, we obtain a unique representa-
tive (A,x) € @y Zq x Z¥7' C @ya-1 Zy x Z71, where the “lampstand” L is the
union of d rays:

L=L;ULyU---ULy; Cc Z%1,
with
L, ={(0,...,0,a;,0,...,0)) |a; € Z7} for1<i<d-—1,
and
Lg = {(aq,0,...,0)|aq € ZT U{0}}.

This induces a natural surjection from @,q-1 Zg to P, Z4, taking any A corre-
sponding to a decomposition of a polynomial @) to the unique element of @, Z,
determined by the unique decomposition of ) given in Lemma 2.1. It follows that
we have a bijection between elements of I'q(¢) and elements of @, Z, x Z3~1.

This generalizes both the standard lampstand construction for the lamplighter
groups, and the construction for I's(2) given in [6, 7].

2.3. A presentation for T'q(q)

We first obtain a presentation for @, Z,. Let {t1,...,ts_1} be generators for Z¢~1,
and then the element Hf:_ftfi can be represented by the vector v = (v1,...,v4-1).
Recall from the previous section that if b € Z; and v denotes an element of 741
then by € @, -1 Zg denotes the element b in the copy of Z, indexed by v. Then
the group ;-1 Zq has the following presentation:

@ Zqg= <IX>X ez*! | q(lx), [1"’ 1y]>-
Z7d—1

Now recall the natural surjection from @,.-1 Z, to €, Z4, and let K be the
kernel of this map, so we have

1—- K — @ZqH@ZqHI.

7d—1 L

Recall that the formal variables used to define the ring Rq(Z,) are t,t+1o, ...,
t+1lgoand t +1g_1, as I3 = 0. If d > 3, then for each pair i # j, we have the
following simple linear relationship between the variables t 4+ [; and ¢ + ;:

(lj—=L)+({t+1lL)—(t+1;)=0.
It follows that for any x = (x1,...,24-1) we have
(4 = ) (23 () ™) + (0 L) (T2 + )™ ) = (84 1) (T2 (8 + ) ™) = 0.
Thus, we see that in the notation of the presentation for @, Zg,

(lj = 1) 1x + 1xqe;, — Ixte, € K.

We claim that elements of this form generate K.
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Proposition 2.2. The kernel K in the exact sequence

1HKH@Z(1H®ZQH1

zd-1 L

is generated by elements of the form
(lj - li)lx + 1X+ei - 1X+e,
for1<i#j<d-—1.

Proof. Let J be the subgroup of K generated by elements of the form
(l] - lz)lx + 1x+ei - 1x+ej.

We first note that since Z, is a cyclic group, and hence ¢(1x) = ¢x for any c € Z,,
we obtain

(ZJ — li)Cx + Cx+e; — Cx_;,_ej eJ (22)

for arbitrary ¢ € Z;. We now show how to rewrite an arbitrary element
(b)v=(v1,....va_1) Where b € Z, and v; € Z as a sum of elements of the form cy,
where x € L, and elements of J, which implies that J = K as desired.

First suppose v; > 0 for some j > 1. Then using an element of .J of the form given
in (2.2) with ¢ = 0,4 =1, and x = v —e;, we have (I;b)v_c; +bvie,—e, — by € J,
and hence by = (1;b)v e, +byte,—e; +7 for some v € J. Note that the jth coordinate
in both of the new vectors v —e; and v+e; —e; is v; — 1, and the only other vector
coordinate which is affected is the first, so repeated applications of this strategy
allow us to rewrite the original element as a sum of elements of the form ¢, with
x; <0 for all j > 1 and elements in J.

Thus, we may assume that v; < 0 for j > 1. Next, suppose that v; < 0 and
v; < 0 for some j > i > 1. Then using the element of the form as in (2.2) with
c="b(l; — ;)" and x = v, we have by + (b(l; — 1;) " )vie, — (0(l; — i) " )ve, € J,
0 by = (b(l; — 1) ")vre; — (b(lj — 1i) " )vie, +, where v € J. Note that in the
new expression, both new vector subscripts have either jth coordinate of v; +1 but
all other coordinates unchanged, or the ith coordinate of the subscript is v; + 1 and
all other coordinates are unchanged, so after repeated applications we can rewrite
the original element as a sum of elements of the form ¢y, where x; <0 for all &£ > 1
and z; < 0 for at most one index j > 1, and elements in J.

Thus, we may assume that at most one index j > 1 in v has v; < 0; for all
other indices ¢ > 1, v; = 0. If v; = 0orv; =0, ve L. If v; <0 and v; > 0,
using the element of J of the form as in (2.2) with ¢ =1, ¢ =b and x = v — ey,
we see that by = byye,—e; — (Ijb)v_e, + 7 Where v € J. Note that in the right-
hand expression for by, the vector subscripts of the first two summands have first
coordinates whose absolute values are smaller than the absolute value of v;. The
same is true for the jth coordinate of the subscript of the first summand and v,
but all other coordinates remain unchanged.
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On the other hand, if v; < 0 and v; < 0, using the above argument with i =1,
c= bl;1 and x = v, we see that by, = —(bl;l)\,Jre1 + (bl;l)we] + 7 where v € J.
Note that in the new expression, the first coordinate of the vector subscript of the
first summand has absolute value less than the absolute value of v. The same is
true for the jth coordinate of the subscript of the second summand and v;, but all
other coordinates remain unchanged.

Thus, in either case, we see that after repeated applications of the same strategy
we may rewrite our original element as a sum of elements of the form ¢, where x € L
and elements of J. O

Proposition 2.3. Ifd > 3,
Ta(q) = (a,t1,ta, ..., tq_1|a?,[a,a™], [ti,tj],aljfliati (atj)fl),

where the last two relations are included for every i # j,1 <i,j <d—1.

Proof. We obtain a presentation for I'y(¢q) = @y Zq 74~ using the semidirect
product structure. We use multiplicative notation for the group operation, as
opposed to the additive notation we used when restricting to the abelian group
P, Z,. For clarity, we use the formal symbol ax, where x = (x1,...,24-1) for the
generator 1x. Then Proposition 2.2 yields the following presentation for B, Z,:

@Zq = (ax,x S Zdil | a’gu [axv ay]7a£g_liax+ei (ax+€j)71>v (23)
L

where the relations range over all x and all 1 < i,5 < d—1, i # j. Identifying
P, Z, as the group of matrices of the form (é 113) where P € R4(Zg), the generator

ax is identified with the matrix ((1) Hltll(tﬁ li)zi).

Writing Z4~1 = (t1,...,t4—1|[t:,t;]), the splitting we choose to express I'4(q)

t+1; 0
0

as a semidirect product sends ¢; to the matrix ( 1)- Since alf = tiati_1 = Ox+te;,

we obtain the following presentation for I'y(¢q) = ['4(q)’ x Z4~1:

Fd(q) = <t17 t27 B 7td*17 ax,X € Zdil | af(, [axa a’y]a [tia tj]7
Li—1; _ ,
ax Oxte; (ax-i-ej) 1’ afé‘ = ax+ei>u
with infinitely many generators and relations.
Relations of the form a% = axie, may be used to reduce the generating set
to the finite set {t1,%2,...,tq—1,a0}, and in the presence of [t;,t;], any remaining
relations of that form are redundant. In addition, since

li—1; — d—1,%k li—1; —
(a()J a'ei(a'ej) 1)Hk:1tk = ax ax+ei(ax+ej) 1,

that infinite subset of relations follows from the finite collection of the form

agfli ali(af)~!. Thus, writing @ = ag (note that a then corresponds to the matrix
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(é })) we obtain:

d—1, d—1,y o _
Fd(q) = <t1a ta, ..., ta-1,a | aq? [a‘nkzltkk ) ankzltkkL [t“ tj]7 a’lj llatl (at]) 1>'

Now it is easy to check that the relations [ai-1tx" aMi=1t*] follow from the
d—1,Tp

subset of the form [a,ankzltkk]. Furthermore, in the presence of the relations

ali=ligti(a'i) =1, these all follow from the single relation [a, a’1]. Reducing the defin-

ing relations accordingly yields the desired finite presentation. O

3. Automorphisms of T'4(q)

We first review the general structure of automorphisms of semidirect products. If
1-A—-G—-B—1

is a split exact sequence with A abelian, then it is well-known (see, for instance,
[5]) that the group of automorphisms of G which restrict to the identity on A and
induce the identity on B is isomorphic to the additive group of derivations from B
to A, which are defined by

Der(B, A) = {0 : B — A|8(byby) = 5(b1)6(b2)"},

where we denote the action of B on A by conjugation. If A is characteristic, this
extends to a characterization of Aut(G); (see [8] or [21] for slight variations of this
result). We summarize these results in the following proposition.

Proposition 3.1. Let G = Ax B, with A abelian and characteristic. Then
Aut(G@) 2 Der(B, A) x T, where

T = {(a, B) € Aut(A) x Aut(B) | a(a®) = a(a)?® for every a € A,b € B}.

Proof. The action of 7" on Der(B, A) is defined as follows. If (o, ) € T and § €
Der(B, A), then §(®#) = ao§o03~1; one easily checks that this yields a well defined
action. We define a map f : Aut(G) — Der(B,A) xT. Let f(p) = (0, (¢, %))
where we define ¢’, @, and 6, as follows. First, ¢ is defined by (¢'(a),1) = ¢(a,1)
for all @ € A. Then @, and a third map ¢” which will be used to define §,, are
defined by (¢”(b),5(b)) = ¢(1,b) for all b € B. Then one checks that ¢(a,b) =
(¢’ (a)¢" (b),2(b)), and that ¢ € Aut(G) implies that ¢’ € Aut(A) and that @ €
Aut(B). Using this last fact, we define 6, (b) = " (7 (b)).

Since ¢ is a homomorphism, ¢(1,5 (b1))e(1,7 *(b2)) = (1,5 1(b1b2)),
which implies that ¢” (3~ (b1b2)) = ¢ (@1 (b1))¢" (7 ' (b2))", s0 &, € Der(B, A).
Finally, since ¢(1,b)¢(a,1) = ¢(a’,b) for every a € A, b € B, we see that
¢’ (a®) = ¢'(a)?®), so (¢',B) € T, and the map f is well defined. One then verifies
that f is a group homomorphism.

This identification can be reversed: given an ordered pair (0, (o, 3)) with ¢ €
Der(B, A), (o, 8) € T, we set g((0, (o, 5)))(a,b) = (a(a)d(B(b)), 5(b)), and the fact
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that (o, 8) € T is sufficient to show that ¢(d, (e, 3)) € Aut(G). Moreover, one
checks that g o f and f o g are the identity on their respective domains. O

When d > 3 one can verify that T'4(¢)" consists of those matrices of the form
((1) ]13), and that this group is infinitely generated by conjugates of a = (é }) by

products of the form

where x; € Z. (The notation a comes from the presentation in (2.1) for T's(q).)
Hence I'y(q)" = @ Z, is characteristic and we can apply Proposition 3.1 to T'q(¢) =
@, Zy x Z37! to obtain a characterization of Aut(I'4(q)).

When d = 2 we have I's(q)" € €D, Zq; however one can verify that it has finite
index in €p; Z, and hence @, Z, is characteristic. Thus Proposition 3.1 can be
applied when d = 2 as well. We begin by establishing some notation. Recall the
following exact sequence:

1— K — @qu@zq—q,
Zd—1 L
which depicts @ Z, as a quotient of @41 Ze. We showed that K is generated
by elements of the form (I; — 1;)1x + lxte, — lIxte; fori # j, 1 <i,j < d—1, so0
that the presentation in Eq. (2.3) for @, Z, can be rewritten as:

P2z = (L, x € 97 [ qla, [, 1y, (1 = 1)1 + Lo, — Lncte, )-
L

We use additive notation for the group operation since both R4(Z,) and
@D ,a-1 Z, are rings, however we view the group operation as multiplication of
matrices when elements are expressed in that form, and as addition when iden-
tifying @, Z, with R4(Z,) and viewing the elements of @, Z, as polynomials. In
the ring @Zd,l Zgq, multiplication is defined via 1y1w = ly4w, and extended to
make multiplication distribute over addition. It is easy to see that K is an ideal,
for if k = (I; —1;)1x + 1x—e, — Lx+te, is a generator for K as an additive group, then

vk = 1V((lj - li)lx + lxte, — 1x+ej)

- (l] - li)l(erv) + 1(x+v)+ei - 1(x+v)+ej

which is itself a generator of K. Hence, €, Z, is isomorphic, as a ring, to
(Da-1 Zq)/ K. Moreover, since

Ie((l; = li)lo + 1o, — 1) = (Ij — 1i)1x + 1xye, — lxte;-
K is finitely generated as an ideal by the set
{(lj = li)lo+1e, = le; [P # j,1 <, j < d—1}.
Now Z~1 acts on P,u-1 Zg via

1Y = Lysy = Lyly.
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Since this is an action by multiplication in this ring, and K is an ideal, it induces
an action of Z~1 on @, Z; = Ra(Z,).

In addition, Aut(Z9~') acts on @41 Zq. To see this, for B € Aut(Z4~1) define
189 = 14(v), and extend via (3/_; 1v,)” = 37, (1y,)?. Note that since 1y1y =
lyt+w, we have (1y1w)? = 1912 so Aut(Z?~') acts on @1 Z, via ring homo-

morphisms. The two actions on @ a—: Z, interact as follows. For every A €
Di-1 Zyg,v € 2971, 3 € Aut(Z97") we have

(AV)7 = (1,4)" = 1047 = 15,y A% = (A7)0,
SO
(AV)ﬁ _ (Aﬁ)ﬂ(V)_

It is not always true that the action of Aut(Z?~!) on @,. . Z, induces an
action on the quotient ring @, Z,. However, for fixed § € Aut(Z471), if k% € K
for every k € K, then the action by the element 3 does pass to the quotient. Define
K={pecAut(z )| KP = K}. If 3 € K, then ! € K, K is clearly a subgroup
of Aut(Z~1), and K does act on the quotient @; Z, via ring homomorphisms.

Before stating the main theorem, recall that for any ring R, the multiplicative
subgroup of the units in R is denoted U(R). We now compute the automorphism
group of T'y(q).

Theorem 3.2. For any d > 2,
Aut(Ta(q)) 2 Der(Z71, Ra(Zq)) % (U(Ra(Zy)) % K),
where
K={3¢eAut(z )| K’ = K}.

Before beginning the proof, we establish some notational conventions. We denote
elements of Z4~! by vectors v = (v1,...,v4_1), v; € Z, where the generator t; of
T'4(q) corresponds to the standard basis vector e;. Furthermore, we denote elements
of @, Z, by polynomials in R4(Z,). An element 3 € Aut(Z9~!) can be represented
by a (d —1) x (d — 1) matrix with entries in Z with respect to the standard basis,
and we freely identify § with its matrix (b; ;).

Proof. According to Proposition 3.1, Aut(I'4(q)) = Der(Z?~, R4(Z,)) x T, where
T = {(a, ) € Aut(Ra(Zg)) x Aut(Z*") [ a(g¥) = a(g)"™},

and the condition on («, 3) holds for every g € @, Z,, v € Z471.

Note that the action of K on €, Zq =Ra(Z,) preserves U(R4(Zy)), for if
ReU(Ra(Zy), then RP(R71)? = (RR™1)P = (1)® = 1. Thus, K acts on the mul-
tiplicative group U(R4(Z,)), and we use this action to construct the semidirect
product U(Ra(Z4)) x K. In other words, multiplication is given by (R, 3)(S,~) =
(RSP, B o).
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To complete the proof of the theorem, we must show that T'= U(R4(Z,)) x K.
We first define a map f from T to U(R4(Z,)) x K via f(«o,3) = (a(1), ) for
(a, ) € T. We claim that a(1) € U(R4(Z,)) and § € K, so the map [ is well
defined.

The fact that a(1) € U(Rq4(Zy)) follows from the surjectivity of a. Since («, 3) €
T, we know that a(QV) = a(Q)?™) for every Q € R4(Z,) and v € Z9~!, and since
« is surjective, we have a(P) = 1 for some P € R4(Z,). In addition, observe that
QY = Q1Y for any Q € Rq(Z,) and v € Z9~!. Express P asasum P =Y, _, 1k
Then we compute.

a(P) =« (Z 1Vk> _ Za(lvk) _ Za(l),@(vk)

k=1 k=1 k=1

= a(l)lﬁ(vw =a(1) (i: 1/J’(Vk)> —1.
k=1

k=1

<

Thus a(1)S = 1 where S = 3", _, 1°8) 50 a(1) € U(Ra(Zy)) -

Next we claim that 3 € K. Since Aut(Z~!) acts on @,._1 Z, via ring homo-
morphisms, it suffices to show that &? and k8" are both elements of K for every
k in the finite set of generators for the ideal K. Let

k= (l; —1i)lo+ 1e, — e,
be one such generator. We must show that
K = (Il = 1)1o + Lae = Lae,) = (I = )10 + 157 = 15 € K.

Using the facts that a(QV) = a(Q)?™) and Q¥ = Q(1Y) for any Q € Ra4(Z,),
v € Z471, we compute:

a(0) = a((l; — k)
= a((l; = k)
(lj = li)a(l
= (lj —l)a(l
( (

(t+1)— (t+1))

1 —1%)

)+ a(1%) — a(1%)

)+ a(1)Pe) — q(1)e)

)+ a(1) (1)) — a(1)(1°))
a()((l; — 1) + 18(ei) _ 15(ej)) —0.

+
+

I —1)a(l

Since a(1) is invertible, this implies that (I; — [;) + 1°(¢) —15(e1) = 0 in Ry4(Z,),
which in turn implies that k% = (I; — 1;)1o + 15 — 15) ¢ K as desired. Now
(a, 3) € T implies (o=, 371) € T, so a similar argument shows that k* € K, and
hence § € K, and the map f is well defined.

We remark that since 8 € K, the action of 3 on @41 Z, induces an action on
P, Z,, which yields a simple formula for . To obtain the formula, recall that in



Int. J. Algebra Comput. 2015.25:1275-1299. Downloaded from www.worldscientific.com

by BOWDOIN COLLEGE on 10/24/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

Automorphisms of higher rank lamplighter groups 1289

an earlier computation, we showed that if S € Ry(Zq) is written as S =Y, _; 1V,
then

a(S) = a(1) (Z 15<Vk>>. (3.1)

k=1

But since (1V)? = (19)#V) = 18 for any v € Z4~ 1| the formula for a simplifies:

s T s 5
a(S) =a(1) Y 170 =a(1) Y (1¥)7 = a(1) (Z 1%) = a(1)85.

k=1 k=1 k=1

In particular, if (a1,01), (ag,B2) € T, then it follows from Eq. (3.1) that
ai(az(1)) = ar(1)az (1), so

fla, B1) (a2, B2) = (a1(1), B1)(aa(1), B2) = (a1(1)(az(1))"", B132)

= (ai(az(1)), B1B2) = flarae, B152)
= f((alaﬂl)(a2aﬂ2))7

and hence f is a group homomorphism.

Now define a map ¢ from U(R4(Z,)) x K to T via g(R, 5) = (g, ), where
we define ap g(S) = RSP for any S € @, Z,. One easily verifies that apg is a
group homomorphism, for

app(S1+52) = R(S1 4 85)° = R(SY + S5) = RSY + RSY = ap 3(S1) + ars(S2).

Since R € U(R4(Z,)), we know that R~ € U(R4(Z,)), and since 3 € K, we know
that #~1 € K as well, which in turn implies that (R=1)% € U(Ra(Zq)). Thus,
((R_l)ﬁfl,ﬁ_l) € U(Ra(Z,)) x K. One easily checks that

O‘(R—l)ﬁflﬁfl(aR,ﬁ(S)) = O‘R,B(O‘(Rfl)ﬁfl,gfl(s)) =5

for any S € Ry(Zgq), and hence ar g € Aut( Zq). To see that (agg, () € T, let
P e @, Zy and v € Z47 1. Then apr g(PY) = R(PY)P = R(PP)PN) = ap 4(P)PM),
and hence (ag g, 3) € T. Thus the map g is well defined.

It is easily verified that f(g(R,03)) = f(arg,B) = (R,5) and g(f(a,5)) =

9(a(1), 8) = (@aq),5: ). But anq)5(S) = a(1)S” for all S € Py Zq, 0 an),
a, and g(f(a,B)) = (a,B). Thus f is a group isomorphism, and therefore T

U(Ra(Zq)) x K, as desired.

[t

In the next two subsections, we characterize the subgroup K and determine the
outer automorphism group.

3.1. Characterizing IC

Recall that K = {3 € Aut(Z9~1) | K = K}, where K is the kernel of the natural
surjection from @41 Zg to @y Zg. In the case d = 2, K = {0}, so K = Aut(Z) =
Zso, and Theorem 3.2 simplifies as follows.
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Theorem 3.3. Aut(L,) = Der(Z, R2(Zq)) x (U(R2(Zyg)) % Zs).

If d > 3, even though Aut(Z%~!) contains more possible automorphisms, very
few of them arise as elements of K. Let (b; ;) be the matrix for 4 and let (¢; ;) be
the matrix for 3~!. Let

S={BeAut(Z"") | (I = L) + T (¢ + )™ =Ty (4 1) =0V i #
(I — L) + T (E+ )™ — TG (E+ L) =0V i # )

We claim that S = K. To see this, note that (I; —l;)1o + L(e,) — 1g(e;) € K if and

only if (I; —1;) + TI{ZE (4 1,) 0% — L (4 1,,)m9 = 0, s0 B € S if and only if &%

and k% are in K for each generator k of K. But this is equivalent to the condition

KP =K,or B€K.So €S if and only if 3 € K.

We now use these conditions on the matrix entries to show that K is quite
restricted when d > 3.

Theorem 3.4. Let IC be as above with d > 3. Then we have:

(1) If d > 3 and g = d — 1 is prime, then K = Zy—1. Furthermore, without loss of
generality if l; =i—1 for 1 <1 < d—1, then K is generated by the permutation
B with matriz (b; ;) where bit1,; = b1, =1 and all other entries are 0.

(2) Ifd=3 and g > 2 and ly € {£1}, then K = Zs. Ifls = —1, then K is generated
by B = (711 701)7 whereas if lo = 1, then IC is generated by [ = (_01 _11)

(3) If d=3 and q=2, then K= Ds. In this case, in addition to the identity, K con-
tains the two matrices in case (2) above, as well as the matrices (_11 _01), (_01 _11),
and ((1) é)

(4) In all other cases, K is trivial.

Before embarking on the proof of this theorem we prove some lemmas restricting
the entries of (b; ;).

Lemma 3.5. Let § € K have matriz (b; ;), and let C(i) = Z;} bi,i, the sum of
the entries in the ith column of (b; ;). Then the following hold:

(1) C(i) <0 for at most one i with 1 <i <d—1,
(2) C(i) =0 for at most one i with 1 <i<d—1, and
(3) if C(i) > 0 for some i, then C(j) = C(i) for all j with 1 < j <d—1.

Proof. Since # € K, the following equations involving the entries in the matrix
(b;,;) for  hold for all i # j:
Qij = (I — 1) + T (¢ + 1) =T (¢ + 1)o7 = 0. (3.2)

S; S;

Recall that the Decomposition Lemma (Lemma 2.1) gives a unique decomposition
of @;,; into d polynomials Py(Q; ;) for 1 < k < d. Since @Q; ; = 0, we must have
Pr(Q;;) = 0 for 1 < k < d. To prove the lemma we compute the formal Laurent
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series £54(Q; ;) in the variable t ! by computing £S4(l; —1;) + L£Sq(S;) — LS a(S;).
Then P;(Q;,;) consists of the sum of all terms of non-positive degree in this sum,
so setting Py(Q; ;) = 0 yields restrictions on the matrix entries.

First, £S4(l; —1;) = 1; —1; # 0, since [; —[; is invertible. We claim that £54(S,)
has lowest degree term with degree —C(i) = — ZZ: bi,i- To see this, note that:
o If by ; >0, then (t+ I)% can be expanded easily as a polynomial in ¢, and then

rewritten as (t71) 7%+ (terms of higher degree).

o If by; <0and k=1, then as [; = 0 we have (t + [j)%¢ = (¢71) 70k,
o If by ; <0 and k # 1, we expand

((t+lk)—1)—bk,i:<i)bk,i

14 [ttt

—b.i

_ ch(tfl)v

v>1
= Z C; (til)va
v>—bg,;

where ¢,, ¢, € Z, and the initial coefficients ¢; and ¢’ b, , Poth equal 1.

Substituting these expressions into S; = Hi;} (t + Ix)% and expanding, we see
that the lowest degree term in £S54(S;) has degree —C(i) = — Z;} by and has
coefficient 1. Similarly, we see that the lowest degree term in £54(5;) has degree
—C(j) and coefficient 1.

If C(i) < 0 and C(j) < 0 for some distinct values of ¢ and j, then

LS4(Qi ;) = (I; — I;) + (terms with positive degrees),

and hence P;(Q;,;) = l; — l; # 0, a contradiction. Therefore at most one column
of (b;;) can have negative sum. Similarly, if for some distinct ¢ and j we have
C(i) = C(j) = 0 then as the both £4(S5;) and L£4(S;) have constant term 1 and no
terms with negative degree, Pyi(Q; ;) = l; — l; # 0, a contradiction. Hence at most
one column has sum equal to zero.

Now suppose for some ¢ we have C(i) > 0. If C(j) # C(i) for some j # i,
then the analysis above shows that P;(Q); ;) contains a term with strictly negative
exponent, a contradiction since Py(Q; ;) = 0. Thus if C(7) > 0 for some i we must
have C(i) = C(j) for all j # 4, in which case the terms of degree —C'(7) cancel when
we compute Py(Q; ;). |

Lemma 3.6. Let § € K have matriz (b; ;). If by < 0 for some 1 <n,i <d-—1,
then for every j, b, ; = —1 and by ; > 0 if k # n.

Proof. Suppose b,,,; < 0, choose j # 4, and recall that P,(Q; ;) = 0. As before,
we compute £5,(Q; ;) by computing the Laurent series separately for [; —l;, S;
and S;. First, £S,,(l; — ;) = l; — l;, and since n < d, this contributes no terms to
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Po(Qij). If k # n, then (t + ly)" = (I, — l,)% plus terms in ¢ + I, of higher
degree, so £S,,(S;) has lowest degree term c;(t + 1,,)i for some invertible ¢; € Z,.
Similarly the minimal degree term in £S,,(S;) is ¢j(t + 1,)b7 for some invertible
¢j € Zgq. Since b, ; < 0 we see unless b, ; = b, ; we will not have P,(Q; ;) = 0 as
required. By varying j we conclude that all entries of the nth row of 3 are identical
and negative, say with value s. But then s divides det(8) = +1, and since s < 0
we conclude that s = —1. If by ; < 0 for k # n, then rows k£ and n are identical,
contradicting the fact that the matrix is invertible. Thus, by ; > 0 if k # n. O

Proof of Theorem 3.4. If d > 3, Lemma 3.5 shows that all column sums of
(bi,j), the matrix for 3, must be positive and equal. Let C(i) = s > 0 for every
1 <7< d-—1. Adding every row to the last row yields a matrix whose determinant
is still det(b; j) = %1, whose final row has all entries equal to s. Since s divides
det(b; ;), we must have s = 1. We claim that in fact, all entries of (b; ;) are non-
negative. Suppose to the contrary that some entry of (b; ;) is negative, say b, ; < 0.
By Lemma 3.6 we know that all entries in row n are —1. Now choose a row k # n,
and add all rows of (b; ;) to its kth row. Rows n and k of the resulting matrix are
linearly dependent, contradicting the fact that det(b; ;) = £1. Hence b; ; > 0 for
all i and 7, and it follows that (b; ;) is a permutation matrix.

Suppose that 3 corresponds to the permutation o € ¥4_1. Thus, by ; = 1 if
k=o0(j) and by ; = 0 if k # 0(j), so Eq. (3.2) becomes

Qij =1 —li+ ({t+1ow) — t+1l) =0,
which simplifies to an equation in Z,, namely:
Qi,j = lj —l; + lg(i) - lg(j) =0.

Write 0 = 0109 -+ -0, as a product of disjoint cycles. Suppose this decomposition
contains a k-cycle for 2 < k < d—1 < ¢, say o1 = (i1---ix). We claim that
k(li, —l;,) = 0, but since (I;, — l;,) is invertible, this implies that k = ¢ = d — 1.
Since d — 1 < p for any prime p dividing ¢, it follows that ¢ is prime.

To verify this claim, we first examine the equation Q;, i, = l;, —l;, +1li, —l;; =0,
which implies that I;, = l;,+(l;; —l;,). If k = 2, this yields 2(l;, —l;,) = 0 as desired.
If £ > 3, we use the k — 2 equations for Q;, i,, - .., Qi i, , inductively to show that
lim = lil + (m - 1)(112 - l“) for 3 S m S k. Combining llk = lil + (k - 1)(112 - l“)
with l;, = U, + (i, —1;,) yields k(l;; —l;,) = 0, as desired, and hence k = ¢ = d— 1.

Now since k = ¢ = d — 1, ¢ is a single cycle. In addition, {l1,...,lg—1} = Zg.
Without loss of generality, let I;;, = 13 = 0, and suppose lo = 1,l3 = 2,...,l4—1 =
d—2. Then 1 =l = [;, for some j, and 0 = (12---d — 1)~U=1, Moreover, it is
easily verified that if v € Aut(Z9~!) corresponds to a permutation matrix, then
vy eKk.

If d = 3 and one column sum of [ is positive, the argument above shows that
[ must be a permutation matrix. But the second part of the argument also shows

that if 3 is a transposition, then ¢ = d — 1 = 2. Therefore, ((1] (1]) only occurs if ¢ = 2.
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If d = 3 and neither column sum is positive, it follows from Lemma 3.5 that
one column sum is negative and the other column sum is zero. If C(i) = 0, and
the entries in column ¢ are n and —n, it follows immediately that n divides the
determinant and hence n = £1. But then since one entry is —1, by Lemma 3.6,
the other entry in that row is also —1, and if z is the remaining entry, then z > 0.
But C(j) = x—1 < 0, s0 x < 1, and therefore z = 0, and (b; ;) is one of the
following four matrices, two matrices with determinant —1, namely (3 : (jl Bl)
and (s : (_01 _11)7 and two with determinant 1, 33 : (_11 _01) and (G4 : (_01 _11)

In each case, substituting all four matrix entries into Eq. (3.2) yields further
restrictions on [y, especially in the cases where the matrix has determinant 1. For
(31 we obtain:

Qio=lo+ )t +1l)  —(t+1l) =0,

where we have substituted /; = 0. Now we simplify, multiplying both sides by ¢+,
to obtain (l2 4+ 1)t + (I3 — 1) = 0. Thus, we conclude that this matrix can only arise
if Iy = —1. Similarly, for f2 we obtain (l2 — 1)t + (1 —l2) = 0, which shows that this
matrix only arises if lo = 1. Therefore, if ¢ > 2, since 1 # —1, at most one of (31 or
(o arises, depending on the choice of [.

For (33 we have (I + 1)t + (I — 1) = 0, and hence I = —1 = 1, which implies
that ¢ = 2. Similarly, for 34, we have (1 — l3)t + (=13 — 1) = 0. Thus, Il = 1 and
2 = 0, which also implies that ¢ = 2. Thus, if ¢ = 2, all four matrices, as well as
the transposition, arise. This completes the proof of Theorem 3.4. O

Note that for a fixed d, choosing ¢ = d — 1 yields the “smallest” example of a
Diestel-Leader group whose Cayley graph I'(T'4(q), Sa,q) is DL4(g), meaning that
g = d — 1 is the minimal value for which the construction in [2] holds.

3.2. Characterizing Out(T'4(q))
Theorem 3.7. If d > 3,
Out(Ta(q)) = (U(Ra(Zy))/M) x K
and if d = 2,
Out(T'2(q)) 2 (Zqt, t 1]/t = 1)) 3 (U(Zq[t, 1))/ M) % Z2),

where M = {T19=} (t + ;)% | z; € Z} is the set of monomials with coefficient one.

Proof. It is easy to characterize Inn(I'4(q)), the group of inner automorphisms. If
nel(t+ 1) P
g=< - 0 . € La(q),

then ¢, € Aut(I'y(g)), the automorphism given by ¢,(h) = ghg~! corresponds to
the element

(6p, (L=} (t +1;)",id)) € Der(Z* ', Ra(Zy)) x (U(Ra(Zg)) x K),
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where 0p(v) = PY — P. For any group G and G-module A, the principal derivations
from G to A, denoted P(G, A), is the subgroup of all § € Der(G, A) for which there
exists some m € A such that §(g) = m9 —m for all g € G. Recall that H'(G, A)
can be identified with Der(G, A)/P(G, A) (see for instance [5, Chap. IV]). Thus,
we have shown that for d > 2,

Out(Ta(q)) = H'(Z*™", Ra(Zy)) % (U(Ra(Zg))/M) % K).

If d = 2, we have seen that K & Zs, and R2(Z,) = Z4[t,t~"]. Since the set of
derivations Der(Z, Z,[t, t~']) = Z,[t, ], it follows that

Der(Z, Zy[t, t 1)/ P(Z, Zy[t, t 1)) = Zy[t, t 1]/t — 1),

and we obtain the statement of the theorem for d = 2.

To complete the proof of the theorem, we must show that if d > 3, then
HY(Z471,Ra(Z,)) = 0, or equivalently, that Der(Z9~1, R4(Z,)) = P(Z ', Ra(Zy))
when d > 3. To see this, let § € Der(Z?~!, R4(Z,)). Then since Z¢~! is abelian,
for any nonzero v,w € Z~1 we have §(v) + d(w)¥ = §(w) + 6(v)W. Therefore,
O(v)W —4§(v) = 6(w)Y — 6(w), which implies that there exists A € {5 | f,g9 € Zg[t]}
such that

5(v)
(5 (t + 1)) — 1

for any nonzero v. If we set (5)" = %, then we have §(v) = AV — A for any
v € Z% 1. Since d > 3, we may choose i # j, 1 < i,5 < d — 1, and then since
d(ei) — d(ej) € Ra(Zg), we have

0(e;) —d(ej) =((t+1L)A—-A) —(t+1)A—A) = (li — ;)A€ Ra(Zy).

Since l; — l; is invertible in Z,, this implies that in fact A € R4(Z4) and hence
§ € P(247Y, Ru(Zy,)), as desired. |

In Theorem 3.4, we have completely determined K, one factor of Out(Ty(q))
when d > 3. In the case that ¢ is prime, we claim that the other factor of Out(T'4(q)),
U(Ra(Zy))/M, is simply U(Z,) = Z, — {0}. This fact will be used in Sec. 4.

Proposition 3.8. Let R € U(Ra(Z,)). If q is prime, then R = I3} (t + ;)"
where v; € Z for all i, and c € Zq with ¢ # 0.

Proof. Since R is invertible, RS = 1 for some S € R4(Z,). Let R =
and let S = m
all 4. Then fg = T} (t 4 1;)™+" holds in Z,[t]. But if ¢ is prime then Z, is a
field, hence Z,[t] is a unique factorization domain. Since ¢ + I; is an irreducible
polynomial, it follows that f = be;ll (t+1;)% for s; > 0,s; € Z and b # 0. Thus,
R= ch;f(t—i— l;)V, where v; = s; —m; € Z and ¢ € Zg, ¢ # 0. O

f
I (1) ™
where f,g € Z4[t] and m;,n; € Z with m;,n; > 0 for
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4. Counting Twisted Conjugacy Classes in I'4(q)

There are a variety of techniques in the literature for counting the number of twisted
conjugacy classes of a group homomorphism; some apply to endomorphisms or
homomorphisms, whereas we are concerned only with automorphisms. Let R(¢p)
denote the cardinality of the set R(p) of p-twisted conjugacy classes. We say that
a group B has property R if any ¢ € Aut(B) has R(¢) = co. When a group B
can be expressed via a short exact sequence in which the kernel is a characteristic
subgroup, any automorphism of B yields a commutative diagram:

1 A—‘sB-2,C 1
w,l “’l El . (4.1)
1 A—‘*.p_-r. ¢ 1

Here ¢ € Aut(B), and ¢' and @ are the induced automorphisms on the kernel and
quotient, respectively. A much used technique for counting the number of twisted
conjugacy classes of a homomorphism ¢ is to relate R(p) to R(@) and R(¢’). In the
case where ¢ is an automorphism and A is characteristic, the relationship is quite
simple. The following result is straightforward; a proof of part (1) and additional
background are given in [23]. We include a proof for completeness.

Lemma 4.1. Given the commutative diagram labeled (4.1) above,

(1) if R() = oo then R(p) = oo,
(2) if R(¢') = 00 and Fix(p) = 1, then R(p) = 0.

Proof. The two statements follow directly from the following two facts:

(1) If b and ¥’ are @-twisted conjugate in B, then p(b) and p(d’) are P-twisted
conjugate in C.

(2) If i(a) and i(a’) are p-twisted conjugate in B, then a and a’ are ¢'-twisted
conjugate in A.

The first fact is easily verified, for if zbp(z~t) = b’ for some x € B, then applying
the projection we have p(z)p(b)p(p(x)~1) = p(t'). Then the fact that p is surjective
shows that if R(@) = oo then R(p) = co. For the second fact, if xi(a)p(x) ! = i(a’)
for some x € B, projecting via p shows that @(p(z)) = p(x). But since Fix(@) = 1,
then p(z) = 1, so = i(a) for some @ € A. Thus, aay’(@a~') = a. Therefore if
R(¢’) = 0o and Fix(p) = 1, then R(p) = oco. |

The following lemma will also be used repeatedly.

Lemma 4.2. Let 3 € Aut(Z") for r € ZT. Then we have R(B3) < oo if and only if
det(Id — B) # 0 if and only if Fix(3) is trivial.

Proof. Since R(f3) is the number of orbits of the action o - a — cayp(c)~! and

Z" is abelian, it follows that R(3) is the index of the subgroup (Id — 8)Z" in Z".
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Thus, R(5) < oo if and only if (Id — ) has full rank in Z". Since we can represent
Id — 8 by an r x r integral matrix (with respect to some basis), it follows that
R(B) < o if and only if det(Id — 3) # 0. Note that det(Id — 3) # 0 if and only if
Ker(Id — ) = 0, which means that (Id — 8)x = 0 has only trivial solutions in Z",
that is, the subgroup Fix(3) = {x € Z" | f(x) = x} is trivial. m|

We now show that for d > 3, the group I'4(q) has property R.. Note that when
d = 2, the lamplighter group L, = I'z(¢q) has property R if and only if (¢,6) # 1.

Theorem 4.3. The group T'y(q) has property R for all d > 3.

Proof. Let ¢ € Aut(T'4(¢)) be any automorphism, and recall that ¢ has the form
(6, (R, B3)) € Der(Z¥~1,R(Zy)) x (U(R(Zq))xK), and in the notation of Lemma 4.1,
we have ¥ = 3, and ¢’ = ap 3.

In almost all cases, we show that R(%) = oo, which then implies that R(yp) = 0o
by the first conclusion of Lemma 4.1. In the few remaining cases, we will show that
R(¢') = oo and Fix(¥) = 1, and apply the second conclusion of Lemma 4.1 to
obtain R(¢) = oco. Throughout this discussion, we identify § = @ with its matrix
representation.

Now by Lemma 4.2, R(3) = oo if and only if det(Id — 5) = 0. When d > 3
it follows from Theorem 3.4 that 3 is either the identity or a permutation matrix
corresponding to a cycle of length d — 1. If d = 3, there are four additional pos-
sibilities for § other than the identity or the transposition. If § corresponds to a
cycle of length d — 1, each column of Id — 3 has only two nonzero entries, 1 and —1.
Adding all rows to the first yields a matrix with a first row which has all zeroes,
hence, det(Id — 3) = 0.

If d = 3 and [ is one of the two matrices (_i _(1)) or (7(1) 7}), one easily verifies

that det(Id— ) = 0. Thus, R(f) = oo for every [ with the exception of 5 = (7} 7(1))

or = (_? _}), which occur for some ¢ € Aut(I's(2)). So for every ¢ except these
two special cases, we have R(¢) = oo by the first conclusion of Lemma 4.1. In the
two special cases, det(Id — 3) # 0, so Fix(8) = {0}. We claim that in both cases
R(ap,g) = 00, and so by part (2) of Lemma 4.1 we have R(¢) = oo in these cases
as well.

Let (3 be one of the latter two matrices above. We claim that a?}’%’ 5=1d. Since
arp(S) = RSP for any S € R3(Zs),

% 5(S) = (RRPR?)S7".

We know from Proposition 3.8 that since 2 = d — 1 is prime, R = t*(1 + t)! for
some k,l € Z. Note that such an expression is unique, as it is easy to verify that
t%(1+t)® = 1 implies that a = b = 0. Let w = (k,1). Then

RRPRP — IW(1W)B(1W)B2 _ IW(lﬂ)B(W)(IBQ)BZ(W)
— qw1Bw) 8% (w) _ {Id+5+57)(w)
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But for either choice of 3, Id + 3+ 32 = 0, so RRPRP =1. Moreover, 3% = 1d, so
a%ﬁ(S) = S as desired.

Two elements A, B € T'4(q)’ are ag g twisted conjugate if A— B = P —ap g(P)
for some P € T'4(q)’. Note that P —apg(P) =P+ arg(P) and A— B = A+ B
since the ring coefficients are in Zs. If A # B, we claim that if A and B are both
fixed by ag g, then A and B are not ar g twisted conjugate. To see this, suppose to
the contrary they are, so A+B = P+ap g(P) for some P € I'y(¢)". Then since ag g
fixes A+ B, it fixes P+ ap g(P) as well. Hence, a?{”@(P) = P, but since ai’{’ﬂ =1d,
this implies that P = ap g(P), which implies that A = B, a contradiction. Thus,
to prove that R(ar,g) = 0o, it suffices to produce an infinite sequence Sy, Sa, ... of
distinct elements of I'y(¢)’, each of which is fixed by ag gs.

We construct such a sequence for § = (_} _(1]). Choose m,n > 0 satisfying
n>k+1and m > k, and let v = (m,n). We define

S; =1V 4+ ars(l?V) +ap (1Y) forjeZt.
It is clear that each S} is fixed by ag g, so it only remains to establish that S; # S; if
i # j. We prove this by computing £53(5;), from which we deduce that P3(S;) has
lowest degree term of degree —j(n+m) in the variable t~'. Thus, P3(S;) # P5(S;)
if i # j, and hence S; # S;.
A straightforward computation yields
DY =™ (1 +t)7,

ap,p(17V) = tF7I0m (1 4 gy,

0 5(19¥) = B7I(1 4 P HI-sm)

Therefore, £53(17V) has lowest degree term (in the variable t~1) of degree
—j(m + n), and since this degree is negative this term is present in P3(S;). Now
LS3(ar(17Y)) has lowest degree term of degree (jn) — (k + [), which is strictly
positive according to the choice of m and n. Thus, £S3(ar 3(17V)) contributes
no terms to P3(S;). Finally, £S3(a% 5(17V)) has lowest degree term with degree
jm—k >0, so LS3(a 5(17V)) contributes no terms to P3(S;). Hence, P3(S;) has
lowest degree term of degree —j(n+m), as claimed. A similar argument shows that
if = (7? 7}), then R(ap g) = oo as well. Thus, for all d > 3, the group I'y(¢) has
property Roo. O

5. Remarks on Baumslag’s Metabelian Group

We can mimic the arguments above to compute the automorphism group of Baum-
slag’s metabelian group, which has presentation

BMG = (a,s,t|st =ts,[a,a'],aa® = a') = Z[t, (t + 1)) 7", (t +12) 7] x Z2,
where [; = 0 and [y = £1. Note that these are the only choices for a pair [; = 0

and Iy where Iy — [; is invertible in Z. Letting Rq(Z) = Z[t, (t + 1)1, (t + 12) 7Y,
we obtain the following theorem, whose proof is analogous to that of Theorem 3.2.
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Theorem 5.1.
Aut(BMQG) = Der(Z%, Ra(Z)) x (U(R4(Z)) x K),

{0
{60 )

Similarly, we obtain an analogue of Theorem 3.7.

where

and

Theorem 5.2.
Out(BMG) = (U(Ra(Z))/M) x K,

where M = {t**(t 4+ 1)*2} is the set of monomials with coefficient one, and K = 7
s as above.

Finally, following the reasoning in Sec. 4, replacing Theorem 3.2 with Theo-
rem 5.1, yields the following theorem.

Theorem 5.3. Baumslag’'s metabelian group has property R .
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