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1. Introduction

Automatic groups were formally introduced in [7] by Epstein, Cannon, Holt, Levy,
Paterson and Thurston, motivated by initial observations of Cannon and Thurston about
hyperbolic groups and their geometry. Their goal was first to understand fundamental
groups of compact 3-manifolds, and then to streamline computation in these groups. For
example, if G is an automatic group, then its Dehn function is at most quadratic, its
word problem can be solved in quadratic time, and the automatic structure can be used
to reduce any word in the generating set to a normal form for that group element, also
in quadratic time.

A finitely generated group G has an automatic structure with respect to a generating
set S if there is a regular language of normal forms for elements of G, and, for each s € S,
a finite state automaton which recognizes multiplication by s. The class of automatic
groups includes all finite groups, braid groups, Coxeter groups, hyperbolic groups and
mapping class groups, among others. It is shown in Section 2.4 of [7] that if G has
an automatic structure with respect to one generating set, then it has an automatic
structure with respect to any generating set. All automatic groups are finitely presented,
and there are geometric conditions which can be used to show that a set of normal forms
constitutes the basis of an automatic structure. For a comprehensive introduction to
automatic groups, see [7], or for a shorter treatment, [9], [11] or [14].

It is unsatisfying that many groups which have nice algorithmic properties, including
the properties listed above, are not automatic. For instance, a finitely generated nilpo-
tent group is automatic if and only if it is virtually abelian. In [13], Kharlampovich,
Khoussainov, and Miasnikov extend the definition of an automatic group to a (Cayley)
graph automatic group, in which the language of normal forms representing group ele-
ments is defined over a finite alphabet of symbols. If one takes the symbol alphabet to be
the generating set for the group, then the definition of an automatic group is recovered.
Graph automatic groups retain many of the computational advantages of automatic
groups, and this enlarged class includes the solvable Baumslag—Solitar groups BS(1,n),
the lamplighter groups Z, ! Z, the metabelian groups Z™ x 4 Z for A € SL,(Z), and all
finitely generated groups of nilpotency class at most 2, among others. [13] It is shown
in [2] that the non-solvable Baumslag—Solitar groups BS(m,n) are also graph automatic.

In this paper, we prove the following theorem.

Theorem 1. The Diestel-Leader groups I'4(q) for d > 3 are graph automatic.

The family of Diestel-Leader groups I'y(¢q) for d > 3, or higher rank lamplighter
groups, was introduced in [1] by Bartholdi, Neuhauser and Woess. These groups are
not automatic, as they are type Fy_; but not F; when d > 3, and automatic groups
are of type F'P,,. These groups are defined explicitly in Section 2 below, and their
metric properties were studied by the third author and Stein in [16]. Kevin Wortman
has sketched a proof showing that arguments analogous to those of Gromov in [10] imply
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that the Dehn function of T'y(q) is quadratic regardless of the values of d > 3 and ¢. It
was shown in [3] that when p is prime, I'3(p) is a cocompact lattice in Sols (F,((t))), and
its Dehn function is quadratic. The Dehn function of I's(m) is studied for any m in [12]
where it is shown to be at most quartic.

The Cayley graph of the Diestel-Leader group I'y(q), with respect to a certain gen-
erating set is a Diestel-Leader graph, a particular subset of a product of d infinite trees
of valence ¢ + 1. More general Diestel-Leader graphs were introduced in [4] as a po-
tential answer to the question “Is any connected, locally finite, vertex transitive graph
quasi-isometric to the Cayley graph of a finitely generated group?” The Diestel-Leader
graph which is a subset of a product of two infinite trees of differing valence is not
quasi-isometric to the Cayley graph of any finitely generated group, as shown by Es-
kin, Fisher and Whyte in [8]. The Cayley graph of the well-known lamplighter group
L, = T2(q) = Z, 1 Z, with respect to a natural generating set, is the Diestel-Leader
graph contained in a product of two infinite trees of valence ¢+ 1. In this sense we view
the Diestel-Leader groups as a geometric higher rank generalization of the lamplighter
groups.

2. Diestel-Leader groups

We briefly introduce the Diestel-Leader groups I';(¢q) and their geometry, and refer
the reader to [1], [16] and [17] for a more comprehensive treatment. The Diestel-Leader
graph DL4(q) is the subset of the product of d infinite regular trees Ty, T5, - - - , T4, each
with valence ¢+ 1 and a height function h; : T; — R, consisting of the vertices for which
the sum of the heights of the coordinates is equal to zero. Two vertices are connected
by an edge if and only if they are identical in all but two coordinates, and in those two
coordinates, say ¢ and j, the entries differ by an edge in both T; and T}.

Bartholdi, Neuhauser and Woess in [1] present a matrix group I'4(¢q) with a particular
generating set Sy(g) so that the Cayley graph I'(T's(q), Si(q)) is exactly the Diestel-
Leader graph DL4(q). Their construction relies on the arithmetic condition that d—1 < p
for all prime divisors p of ¢. Specifically, let £, be a commutative ring of order ¢ with
multiplicative unit 1, and suppose £, contains distinct elements [1,...,l4—1 such that if
d > 3, their pairwise differences are invertible. In this paper, we additionally assume that
l; is also invertible, for 1 <4 < d — 1. These conditions are easily satisfied, for example,
in Z, for large enough gq.

Define a ring of polynomials in the formal variables ¢ and (¢t + ;)" for 1 <i <d—1
with finitely many nonzero coefficients lying in £g:

Ra(Ly) = Lot (t+ 1) (t+1) " o (E+1am1) Y

The Diestel-Leader group constructed in [1] is the group of affine matrices of the form:

(D)

(t+ll)ml "~(t+ld_1)md_1 P
0 1
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with mq,mg, -+ ,mg_1 € Z and P € Ry4(L,), which has Cayley graph DLg(q) with
respect to the generating set S4(q) consisting of the matrices

+1
t+1; b . .
( E 1) , withbe £y, i €{1,2,--- ,d—1} and

(t+L)E+1) bE+1)t
0 1

), with b € L4, i,j € {1,2,--+ ,d—1}, i # j.

t+1;

b
We refer to a matrix of the form ( 1) as a type 1 generator and a matrix of

(t+ L)+~ bt+1;) !
0 1

type 2 generator s we have i < j. If this is not the case, replace s by s~! which reverses

the form ( > as a type 2 generator. We assume that in a

the roles of ¢ and j.

An element g € T'4(q) is uniquely defined by a (d — 1)-tuple (mq,mg,--- ,mg4_1) of
integers which determine the upper left entry of g and a polynomial P € R4(L,). The
identification between a group element and a vertex in the Diestel-Leader graph D L4(q)
is based on this information as well, and is explicitly described in [1] as well as [15], the
extended version of [17]. Roughly, the tree T} is associated with the variable (¢ + 1;)?,
for 1 <i <d—1, and Ty is associated with the variable t. Vertices in the tree T; are
assigned equivalence classes of Laurent polynomials in the corresponding variable. For
P € R4(L,) we let LS;(P) denote the Laurent polynomial obtained when P is rewritten
in terms of the variable t+1; for 1 <i < d—1, or t~! when i = d. To find the coordinate
in the tree T; of the vertex corresponding to g € I'4(q), compute the Laurent polynomial

LS ((t+ 1) 7™ - (t+la1) ™1 P)

and consider only those terms of negative degree, or nonpositive degree when i = d.
This Laurent polynomial, along with the integer m; (or m; + -+ + mgy—1 when i = d)
determines an equivalence class of polynomials associated to a vertex in T;. To show
this is well defined we refer to the following lemma, proven in [17]. The proof relies on
rewriting @ € Rq(L,) as a Laurent polynomial in each of the possible variables.

Lemma 2 (Decomposition Lemma). Let
Qe Rd(ﬁq) = Eq[(t + 11)717 (t + 12)717 ) (t + ld—1)717t]'
Then @ can be written uniquely as P1(Q) + P2(Q) + - - - + Pa(Q) where

(a) for 1 <i<d—1 we have Pi(Q) € L,[(t + ;)] with constant term 0, and
(b) fori=d we have Py(Q) € L,[t].
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While we will not explicitly use the identification between a group element and the
corresponding vertex in the Cayley graph in this paper, we will use the Decomposition
Lemma repeatedly. That is, for g € T'4(q) as in Equation (1), we will decompose a polyno-
mial related to P using the Decomposition Lemma, and use the component polynomials
as the basis of our graph automatic structure. In our analysis of the relationship between
g and gs, for s € S4(q), we expand the upper right entry of the product gs using the
same techniques.

It is easily verified that the following combinatorial formulae allow us to rewrite poly-
nomials in ¢ + [,, in terms of ¢ + [, for u # v, and ¢~

e+ =3 () -y @

n=0
and
(t+ 1) = i;i P\ (3)
h n=—k -n) "

for any k € Z. Moreover, when k is nonnegative, we write t* as a polynomial in ¢ + [, as
follows:

w =3 (B (@

n=0

In the proofs below, we repeatedly use Equations (2) and (3) with a fixed value of
ue{l,2,---,d—1} and k = —1 to rewrite (t+1,) ! in terms of t +1,, for u # v, or t 1.
In the first case, we have:

(t+ 1) }:ant+l (5)

where oy, = (1) (L — 1)~ = (=1)"(l, — 1,) V. Writing Cyy .y = (I — 1) * for
1 <wv < d—1, this simplifies to a,, = (71)”6’;‘7}51. Notice that for fixed values of u and v,

we have a1 = —Cy p0p.

Similarly, we simplify Equation (3) with exponent k¥ = —1 as follows:
=Y ( ) A D C (A (6)
n=1 n=1

Denote the coefficients in the above sum as o, = (=1)""!(l,)" !, and note that o/, ; =
—lyal,.

We make one assumption about our Diestel-Leader groups to simplify notation
throughout this paper. Namely we take £, = Z, and note that all our theorems hold for
more general coeflicient rings as well.
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3. Graph automatic groups

Let G be a group with finite symmetric generating set X, and A a finite set of symbols.
The number of symbols (letters) in a word u € A* is denoted |u|s. We begin by defining
a convolution of group elements, following [13] in our notation.

Definition 1 (Convolution). Let A be a finite set of symbols, ¢ a symbol not in A, and let
Li,..., Ly be a finite set of languages over A. Set A, = A U {o}. Define the convolution

of a tuple (w1, ..., wk) € L1 X --x L to be the string ®(w1, ..., wy) of length max |w;|a
over the alphabet (A)" as follows. The i-th symbol of the string is

A1
Ak
where \; is the ith letter of w; if ¢ < |w;|x and ¢ otherwise. Then
®(L1,...,Lk) = {®(w1,...,wk) | w; € Lz}
We note that the convolution of regular languages is again a regular language. When

L; = A* for all i the exact definition in [13] is recovered.
As an example, if wy = abb, wy = bbb and w3z = ba then

a b b
®(’U}1,U}2,U}3) = b b
b a

The definition of a graph automatic group extends that of an automatic group by
allowing the normal forms for group elements to be defined over a finite alphabet of
symbols. When this set of symbols is simply taken to be the set of group generators, the
definition of an automatic group is recovered.

A set of normal forms for a group may additionally be quasi-geodesic.

Definition 2 (Quasigeodesic normal form). A normal form for (G, X, A) is a set of words
L C A* in bijection with G. A normal form L is quasigeodesic if there is a constant D
so that

ula < D([ullx +1)

for each u € L, where ||u||x is the length of a geodesic in X* for the group element
represented by wu.
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The ||u||x +1 in the definition allows for normal forms where the identity of the group
is represented by a nonempty string of length at most D. We denote the image of u € L
under the bijection with G by .

The following definition was introduced in [13].

Definition 3 (Graph automatic group). Let (G, X) be a group and finite symmetric gen-
erating set, and A a finite set of symbols. We say that (G, X,A) is graph automatic
if there is a regular normal form L C A*  such that for each x € X the language
L, = {®(u,v) |u,v € L,T7 =g ux} is a regular language.

The language L, is often referred to as a multiplier language.

Any set of normal forms forming the basis of an automatic structure for a group G
is automatically quasigeodesic. The proof of Lemma 8.2 of [13] contains the observation
that graph automatic groups naturally possess a quasigeodesic normal form, and a proof
is included in [5].

Lemma 3. Let G be a group with finite generating set X. If (G, X, A) is graph automatic
with respect to the regular normal form L, then L is a quasigeodesic normal form.

The existence of a quasigeodesic regular normal form in an automatic or graph auto-
matic structure ensures that the word problem is solvable in quadratic time. While the
Diestel-Leader groups are metabelian, and hence have solvable word problem, we note
that it is a direct consequence of Theorem 9 of [16] that the set of normal forms defined
in Section 4 is quasi-geodesic.

We conclude with two straightforward lemmas about convolutional languages which
we will refer to in the verification of our graph automatic structure for I'y(q).

Lemma 4 (Offset Lemma). Let A and B be regular languages, with
A" ={®(a1,a2)|a; € A, |a1| = |az]}

and B’ any subset of (B, B) which is a regular language. Let A be any finite alphabet.
Then

{®(a1by, azxbs), @(a1yby, asbs)| @ (a1,a2) € A, ®(b1,ba) € B, x,y € A}
is a reqular language.
The proof of Lemma 4 follows easily from the next lemma, whose proof is given in [18].
Lemma 5. Let £ be a regular language defined over a finite alphabet A. Then the set
{@(zw,w)|w € L, x € A}

forms a regular language.
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4. A regular language of normal forms

We begin the construction of a graph automatic structure for I'y(¢) with a quasi-
M1t + )™ R

0 1
(mq, ma,--- ,mg_1) and the polynomial R uniquely define g. However, ¢ is also uniquely

geodesic normal form. Let g = . The vector of integers m =

defined from the data m and the polynomial

R =141 (t+1;) ™R
and this forms the basis of the normal form we use for our regular language. Namely,
using the Decomposition Lemma from [17] (Lemma 2.1 in [17] and Lemma 2 in this
paper) we can uniquely decompose R’ as follows:

R/:R1+R2+"'Rd

where R; for 1 < i < d contains only terms in the variable ¢ + [; of negative degree, and
R, contains terms in the variable ¢~! of nonpositive degree.

As concatenations of regular languages are regular, we define a prefix language and
a suffix language for our normal form which are both regular, and whose union gives
a regular language of normal forms for elements of I'y(¢q). Let the prefix language P
be defined over the alphabet {z,y,#}, and encode the vector (mqy,ma, -+ ,mq_1) as
€V b # - He) ", where €, = x if m; > 0 and ¢; = y if m; < 0; if m; = 0 we omit
¢;. Note that the prefix corresponding to the identity is #%~2. The collection of these
strings forms a regular language which we denote P.

We now encode the information contained in the polynomials Ry, --- , R4 as a suffix
language S over the finite alphabet {#,bg, b1, - ,bg—1} where {bg, b1, ,bg—1} = Zg.
If R; # 0, denote its minimal degree —§;, for ; € N, and when i # d write

04
R; = Zﬁi,j(t +1;) 7.

=1

When i = d we include a constant term in the polynomial expression, which is written
in the variable t.

Let S; = Bi1Bi2- - Bis, With B; ; € Zg for 1 <7 < d denote the string of coefficients
of R;, with S; = 0 if R; = 0. The entry in the suffix language S corresponding to the
tuple Ry,---, Rq is

S1#Sof - - #54.

We use the string #¢~! to denote the suffix string when we have R, = 0 for 1 < k < d.
Let S be the union of all strings of the above form; it is clear that S is a regular language
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and hence the language of concatenations A/ = PS describes a regular language of normal
forms for elements of T'4(q). Elements of the normal form language A" will be written as
(p,s) for some p € P and s € S. If u € N, let u denote the corresponding element of
Ty(q), and if g € T'y(q) we let v(g) denote the corresponding element of A, with 7(g)
and o(g), respectively, denoting the prefix and suffix strings of v(g).

5. Multiplier languages

We now show that the multiplier languages L, where s € S;(q), arising from this
normal form A are also regular. The multiplier language £, consists of convolutions
®(v(g),v(gs)) where g € T'y(q). It suffices to check that L, is regular when s has one of

t+1; b (E+L)(E+1) " bt +1;)
S € 0 1] 0 1

with b € Z,, as it is proven in [6] that £y is a regular language if and only if £,-1 is a

two forms:

regular language. Recall that when s is a type 2 generator, we assume that ¢ < j. The
following theorem constructs the remainder of the graph automatic structure for T'y(q).

Theorem 6. Let s € Sy(q) be a

t+1; b
o a type 1 generator of T4(q) of the form ( +O 1)’ or

1)+ bt+1;)7!
0 1

e a type 2 generator of the form (

where 1 < 14,7 <d—1,1<j and b € Zy. The language

L ={®((9),v(gs))lg € Tala)}
s a regular language.

Fix a generator s, which necessarily fixes a value of ¢ and possibly also of j. We prove
Theorem 6 in several steps. First observe that the relationship between the prefix strings
m(g) = (my,ma,--- ,mq_1) and 7(gs) = (m},mh,--- ,m/,_,) is easily determined:

1. If s is a type 1 generator, m; = m; + 1 and mj, = my, for all other k.
2. If s is a type 2 generator, then m} = m; + 1 and m;. =m; — 1. Forall k #i,5 we
have m), = my,.
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These conditions are easily checked with a finite state machine, and we conclude that for
a fixed generator, the set of strings Py = {®(p1,p2)|p; € P} satisfying the appropriate
condition is a regular language.

The next step in the proof of Theorem 6 is to determine the relationship between
o(g) and o(gs), and construct a finite state machine which recognizes this relationship
between any two suffix strings. Beginning with a pair of elements g, gs € T'4(q):

o let the polynomials Ry, Ra,--- Rq determine o(g) and Q1,Q1, -+ ,Qq4 determine
o(gs);

o the strings of coefficients of Ry and Q) are denoted Sy and S}, respectively;

o the suffix strings o(g) and o(gs) are then written, respectively, as o(g) =

S1#So# - - #Sq and o(gs) = S1F#SH# - - - #5).

In Sections 6 and 7 we determine the algebraic relationship between the entries of Sy
and S}, and build a finite state machine which recognizes this relationship. Namely, for
a fixed generator s we construct finite state automata which verify:

1. For each n # i, that the strings S,, and S/, differ in the appropriate manner. This
step creates d — 1 finite state automata.

2. When n = 4, that the first entry in S} relates to the remaining coeflicients in o(g) in
the appropriate manner. This entry corresponds to the coefficient of (¢t +1;) ™! in Q;.

3. When n = i that the remaining entries in .S; and S; differ in appropriate manner.

These finite state automata are combined to create an automaton M which accepts
a regular language N of convolutions ®(o(g),a(h)), for g,h € T4(g). This language
includes {®(c(g),0(gs))lg € Ta(q)}. Define Ny to be the language of concatenations
P.N.. The following proposition follows immediately.

Proposition 7. The language of concatenations Ns = PsN is a regular language.

To conclude the proof of Theorem 6 we show in Section 7 that Ny = L,.

6. Construction of automata I

Let s be either a type 1 or type 2 generator, so values of 4 and possibly j are fixed. In
this section we determine the relationship between the coefficients of R, and @,, arising
from o(g) and o(gs), respectively, when n # i and construct automata which recognize

this relationship.
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6.1. Analysis of coefficients for type 1 generators
. . . t+10; b
Consider pairs ®(v(g), v(gs)) where s is a type 1 generator of the form 0 L)

d—1 me
With g = <H’f—1(t +1x) R) we compute

0 1

gs - <<t+li>ﬂz‘%<t+lkw BT 1+ 1) +R>.
0 1

Using the Decomposition Lemma (Lemma 2), write
I (t+1;) ™ R=Ri+Ro+--+ Ry (7)

and

(¢ + 1) T (4 1) " (B (t + )™ + R)
=bt+05) '+ (t+L) " (Ri+Ra+--+ Ry (8)
= Qi+ Qo+ +Qu

where the latter decomposition into polynomials @)y is also obtained via the Decomposi-
tion Lemma. We now use Laurent polynomials to describe the exact relationship between
R, and @, and show that any differences between them can be detected by a finite state
machine. Namely, for 1 <n < d and n # i, we compute the Laurent polynomial £S,, of
the left hand side of Equation (8) and then consider the terms of negative degree, which
form @Q,, for n # d, and when n = d the terms of nonpositive degree, which form Q.

First note that £5;(b(t +1;)~!) = b(t +1;)~! and when n # i we see from Equations
(5) and (6) that £S,,(b(t+1;)~!) contains no terms of negative degree when n # i, d and
no terms of nonpositive degree when n = d. Thus b(t + [;)~! will add a term to @Q; but
no other Q,, for n # i.

Recall that i is fixed by our choice of generator s. Rewrite the left hand side of
Equation (8) as a Laurent polynomial in t +1,, if 1 <n < d—1, and t~! if k = d. When
k # n,d we see that when (t + [;) ! Ry is rewritten as an expression in ¢ + [,, there are
no terms of negative degree. Hence this polynomial contributes no terms to @,. To see
this, recall that above we wrote

Ok
Ry = Zﬁk,z(t +1)7F

z=1

where —0; is the minimal degree of Ry, and hence a generic term from (¢ + ;) 'Ry has
the form B(t +1;) 7' (t + 1) ™™ for some 8 € Z, and m € N. We rewrite this in terms of
t + I, using Equations (2) and (5) as
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Blt+ 1) t+ )™ (ZaytJrl )(Zfrtﬂ )

where the ¢, and «, are the coefficients computed in Equations (2) and (5), and note
that there are no terms of negative degree.

When k = d, the above argument holds with ¢+, replaced by ¢t~ and any application
of Equation (2) replaced by Equation (4).

Thus it must be the case that the terms of £S,,((t+1;) "' R,,) of negative degree form
the polynomial Q,. If R, = 0 then @, = 0 as well. First consider the case n # i,d.
Write

On
= Bu:(t+1,)"
z=1

and it follows that

(t+l)1Rn_<Zayt+l )(Zﬂnzt+l >

y=0

where the o, are computed in Equation (5).
To simplify notation in the following argument, write

(t+1;)7"

9
D oyt 1) | (Bt +1n) Bt + 1) A+ Bo, (E+ 1) ) ©)

y=>0

where 8, € Zq and 6, # 0, S5, # 0.

We see that multiplying R, by each term in the infinite sum produces a pattern in
the resulting coefficients. As we multiply R,, successively by each term in the infinite
sum above, we keep track of the resulting coeflicients of the terms of negative degree of
Q. in Table 1.

Now compute the coefficient vy of (¢t + 1,)™% in @Q,, by summing the entries of the
appropriate column of Table 1 to obtain

Sn—Fk

Ve = Z ayBy+k (10)

y=0

for 1 <k <4, —1, and s, = Cy:8, since ag = Cp ;. Recall that Cy,; = (I; — 1,)~*
and hence is invertible. As i is fixed by our choice of generator, we shorten C,,; to C),
for the remainder of the paper.
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Notice that for k < d,, — 1 it follows from Equation (10) that

Ve = —CnYis1 + @B = —Cpyes1 + CnBr

and hence

Vi1 = —Cp (v — CuBr) = —Cy 'k + Br.

In Section 6.3 we will use the expression of ;41 in terms of 4 to construct a finite
state machine which recognizes the relationship between the coefficients of R,, and Q.
It follows from this equation that a pair (8y,7x) of coefficients of (t41,,) ™% in R,, and Q,,,
respectively, uniquely determine the coefficient vy 1 of (t + 1)~ *+1) in Q,.

If we take n = d and replace any instance of Equation (5) with Equation (6), and
Equation (2) with Equation (3), we can make an analogous argument. In this case,
Ry and Qg include a constant term. We also rely on the fact that o) and o 41, the
coefficients in Equation (5), are related in the same way as «j and a1, the coefficients
in Equation (2). In this argument we use the assumption that the [; are chosen to be
invertible. We include a few details for completeness.

When n = d, write

(t+1;) "' Ra
11
= Za;(tfl)y (Bo—l-ﬁl(t*l)*l+62(t71)72+...+Béd<t,1),5d) (11)

y=>1

where 8; € Z4 and B5, # 0. We construct a table analogous to that in Table 1, and
obtain coefficients yg, 71 - - - s, for Qq satisfying

Edfk
Yo=Y o) Byin (12)
y=1
for 0 <k <§4—1.
As when n < d, recall that afy 1= fll-afy and these coefficients satisfy the relationship
Ve = —livkt1 + A Bt

and hence, as o} =1,
Yor1 = =1 (W — Brs1)-

Notice that unlike the case of n # i, d, the coeflicient ;41 depends both on vx and Bj41.
This will create different transition functions in the finite state machine constructed in
Section 6.3 when n = d.
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A proof of the following lemma is contained in the above exposition when n # i; it is
proven through repeated application of Equations (2), (3), and (4) to the expression in
Equation (8). The case n =i is verified in Section 7. We state it for easy reference.

Lemma 8. Fiz a type 1 generator s, and let g € I'y(q). Using the decompositions above
in Equations (7) and (8), we see that:

1. If n # i,d then the minimal degree of R, is the same as the minimal degree of Q..
2. If n = d then the minimal degree of Q; is one greater than the minimal degree of R;.
3. If n =1 then the minimal degree of Q; is one less than the minimal degree of R;.

6.2. Analysis of coefficients for type 2 generators

We now perform the same analysis on the coefficients of the polynomials which de-
termine o(g) and o(gs) when s is a type 2 generator of the form

(t+1)t+1)"" bt+1;) !
0 1

) with i < j.

d—1 my
If g= (Hk_l(t(j_ Ik) ]f> , compute

g — ((t+li)(t+ L) (f 4+ 1)™ b(t+ 1) G (4 )™ + R)
N 0 1 '

Apply the Decomposition Lemma to write
M4 (t+1;)"™R=Ry+Ry+ -+ Ry
and compute

(1) M+ LT 2 (1) 7™ (b + 1) I 2y (E+1)™ + R)

=b(t+ 1)+ (E+ L)+ )R "
13
=b(t+1L) 1)+ ) (R + Ra+ -+ Ry)

=Q1+ Q2+ -Qq—1+Qq

where the last line is obtained by applying the Decomposition Lemma to the original
polynomial expression. We must compute @ and show in Section 6.3 that its relationship
to Ry can be verified by a finite state machine.
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Recall that when s is a type 2 generator, the values of 1 <i < j<d—-1andbecZ,
are fixed. We defined C,, = (I; — l,,)~! and let D,, = l; — l,, for the fixed values of i and

j.
First note that when n # i, d, we can write

b(t+1;) —bZayt—i-l

where «, is computed in Equation (5). As this expression has no terms of negative
degree, we do not need to consider b(t + 1;)~! when computing Q,, for n # i,d. When
n = d we use Equation (6) in place of Equation (5) and observe that there are no
terms of nonpositive degree in £S4(b(t + 1;)™1). Hence b(t + ;)= does not play a role
in determining Q4.

Rewrite (¢ + ;)" '(t + ;) as an expression in the variable ¢ + ,, for n # i, j, d as

LSu((t+1:) 7 (t+15) (Zayt—i-l )((lj—ln)+(t+zn))

y=0

= CuDy + > (Dnoy + ay_1)(t +1,)"

y=1
= Z oyt +1n)?
y=0

where o9 = C,, Dy, for y > 1 we have 0y = Dpay, + ay—1 and «ay is computed as in
Equation (5). Since ay4+1 = —Cpay, it follows that for y > 1 we have oy11 = —Cp0y.
When n = j the above expression simplifies to

L£S;((t+1;)~ Zay 1(t+15) (15)

When n = d we obtain

LSy((t+1L)" t+1)) = OO(—li)’”‘l(t—l)?“) (H™ 7 +1y)
N (16)
:ZTT(fl
r=0

where 79 = 1 and for r > 0 we have 7, = (=1)" "} (=1,)" " (—1; + 1;).
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For the remainder of this section, we assume that n # i. Now we compute
LS,((t + ;)" (t + I;)R;) and show that when k # n there are no terms of negative
(resp. nonpositive when n = d) degree, and hence the terms of @,, are exactly the terms
of £S,((t+1;)7 (t +;)R,) of negative (resp. nonpositive) degree.

A generic term in (¢ + ;) (¢ + [;) Ry, has the form

(t+ 1)+ 1)EE+ 1),

with £ € Z; and e € N. When n # 4, j,d and k # d,

£, ((t+ 1) M b+ )EE + 1))
Yo 0 Oa(t+ 1) EX 2 o X (t+ 1y)? when n # j,d

doey Qa1 (t+1)"E 322 g Xa(t + ;)7 when n = j

where Equations (2), (14) and (15) are used to obtain these expressions, neither of which
contains any terms of negative degree in the variable ¢ + [,,.
When n # i, j,d and k = d we expand a generic term of (¢t +1;) (¢t + ;) Ry as

LS, ((t+ 1)t +15)¢ Zalf—kl Z() AT+ 1,)" (17)

which has no terms of negative degree. In the equation above, o, is defined in Equation
(14), € € Z4 is the coefficient of (t71)~¢ in Ry, and e € N. Thus @Q,, is comprised of the
terms of £S,,((t + ;)71 (t + ;) Ry) of negative degree.

When n = d, we use Equations (3) and (6) in place of Equations (2) and (5), and
Equation (16) to obtain the expression

LSa((t+ 1)1+ 1) + 1)~ Zth—l 52( > e 1y

and since e > 1, this has no terms of nonpositive degree. Thus the terms of Q4 are
exactly the terms of £S4((t +1;) 7' (t 4+ I;) Rq of nonpositive degree.
Our computations now mimic those in Section 6.1. When n # i, j, d, we can express

LS ((t+1)7 (b +1)Ry) as

Zazt—i—l (Br(t+1n) " 4 Balt +1n) 2+ -+ Bs, (£ + 1) %)

where o, is defined in Equation (14), and create a chart analogous to Table 1. This
allows us to compute the coefficients v, in @, as
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on—Fk

T = Z O'yﬂy—i-k (18)

y=0

where o, is defined in Equation (14) and g9 = C,D,,. Recall that for y > 1 we have

oy+1 = —Ch0y. Hence, as in the case of type 1 generators, we see that
Ve = —CnVk41 + 008k = —CnYk41 + Crn Dy B
When n = j, we begin with Equation (15) and express the Laurent polynomial

ESJ((t‘Flz)il(tﬁ’lj)Rj as
Doy a(t+1)Y (Biat+1) "+ Bt +1) 7 4+ B, (E+1;) %)
y=1

from which we construct a chart for the coefficients of (J; and determine that

5~k

Tk = Z QyBytk+1-

y=0
Reasoning analogous to previous cases yields
Yer1 = =C5 (v + Brr)-
When n = d, replace instances of Equations (2) and (5) with Equations (3) and (6)
to see that @ is the sum of the terms of £S4((t+1;)~ (¢t +1;)R4) of nonpositive degree.

To compute this, we write

(t+1

~

A1) (Bo + Bt T 4 Bt T 4 4 B, (171 09

B (Z(—l)“_llfl(fl)x) (D7 + 1) Bo+ Br(t™H) T -+ Bo, (7))

= (2:(—1)”;7”@_1)z +

=0 T

NE

(—1)1_”?'_11]‘@_1)%) (Bo+Br(t™) ™ oo B, (171 0)

1

- (Z 0;@1)1) (Bo+ But™) " 4 Balt™)) 2 o+ B (1))
(19)

where o = 1 and o/, = (—1)%I% + (1)1~ '1;; it follows that o/, = (—1;)o7,. Hence
when we compute the coefficients 7y of Q4 we see that the formula is identical to the case
of type 1 generators. The difference between type 1 and type 2 generators when n = d is
that the minimal degree of the expression in Equation (19) is the same as the minimal
degree of Ry. This is because the expression for (¢ +1;) 7' (¢t +1;) written in terms of ¢~!
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has a constant term, which is not the case when (¢ + [;)™! is written in terms of ¢t~1.
Explicitly, we compute that
Sa—k
Tk = Z U;Bv-&-k:

v=0

which is identical to the expression in Equation (12) for type 1 generators except that
the index begins at 0. Computations then yield

Ve = —livk+1 + 0Bk
and hence
Vo1 = —17 (v — Br)-

We now state the following lemma, whose proof for n # i is contained in the verifica-
tion of the above expressions. The case n = i is verified in Section 7.

Lemma 9. Fiz a type 2 generator s, and let g € T'y(q). Using the decompositions above
in Equations (7) and (8), we see that:

1. If n #1,j then the minimal degree of R, is the same as the minimal degree of Q.
2. If n =i then the minimal degree of Q; is one less than the minimal degree of R;.
3. If n = j then the minimal degree of Q; is one greater than the minimal degree of R;.
6.3. Construction of automata when n # i

We now construct, for each 1 < n < d, n # 4, and € € {1,2} a finite state machine

M,, . which accepts the convolution ®(o(R,,),c(Q)). The value of e indicates whether
s is a type 1 or type 2 generator. That is, the machine accepts strings of the form

G -G 20

except when (¢ =1 and n = d) or (¢ = 2 and n = j) and in those two cases, strings of

)G o) @

where the relationship between the 3, and ~, is explicitly described in the previous two

the form

sections. If R,, = 0 it follows that @, = 0 as well, and we adapt the machines to accept
this pair as well.
For each n # 7 construct a finite state machine M,, . as follows.



334 S. Bérubé et al. / Journal of Algebra 496 (2018) 315-343

1. Create states T, » for all o, 7 € Z,, and for a given pair (o, 7):
(a) When n # d and
i. € =1, compute the least residue v of —C,; 17 + ¢ (mod g).
ii. € =2 and n # j, compute the least residue v of —C;; 17 + D,,0 (mod q).
For each 3 € Z,, add a transition arrow from 7, , with label (5) to state T3 .
(b) When ¢ = 2 and n = j, for each 8 € Z,, compute the least residue v of
—C7 't + B (mod ¢) and add a transition arrow from 7T, , with label (3) to
state Tjg .
(c) When € = 1, and n = d, compute the least residue v of —I;*(7 — 8) (mod q)
for each € Z4. Add a transition arrow from T, , to T3 4 with label (5)
(d) When € = 2 and n = d, compute the least residue v of —I; ' (1 — &) (mod gq).
For each f € Z,, add a transition arrow from 7, , with label (5) to state Tj .
2. Add a start state, and for each 8,7 € Z,, a transition edge with label (5 ) which
terminates at T . Allow the start state to be an accept state so that the empty
pair R, = @, = 0 is accepted.
3. Introduce an accept state A; from each state T, ,:
(a) When n # d and
i. € = 1, compute the least residue v of —C; 17 + ¢ (mod ¢) and the least
residue 8 of C,; 1y (mod q).
ii. € =2 and n # j, compute the least residue vy of —C,;'7 + D,,0 (mod q)
and the least residue 3 of (C,,D,,) 'y (mod gq).
Add a single transition from this state to A with label (f ).
(b) When € = 2 and n = j, compute the least residue 3 of 7Cj_17', and add a single
transition to state A with label (f)
(¢) When n = d, and
i. e=1,let B =7 and add a single transition to state A with label (f)
ii. € =2, compute the least residue v of —I; (7 — o) (mod ¢). Add a single
transition to state A with label (:’/)

A word accepted by M, . corresponds to two nonempty strings 8132+ B, and

MYz -y (for n =k or k — 1) where the coefficients differ according to Equation (10)

r (18). Thus M,  accepts the language of convolutions of the form ®(c(R,),o(Qr)),
n # i where R,, and @, arise from g and gs, respectively.

We now construct a machine M, which accepts ®(o(g),o(h)) if for each 1 < n < d,

n # i, the n-th substrings in the convolution ®(o(g),o(h)) are related in the manner

proscribed by M,, . Recall from Lemmas 8 and 9 that for

e n#1,j4,d, we have |o(R,)| = |o(Qn)],

e n =1, we have |[o(R;)| + 1 = |0(Q;)],

e n=7j,if e =1 then |o(R,)| = |6(Qy)| and if € = 2 then |c(Ry)| — 1 = |6(Qq4)], and
o n=d, if e =1 then |[0(Ry)| — 1 = |0(Qq)], and if € = 2 then |o(Rq)| = |0(Q4)|-
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This list describes the offset in ®(o(g), o(gs)) between the strings o(R,,) on the top line
of the convolution and ¢(@,,) on the bottom line of the convolution when a finite state
machine reads ®(o(g),0(gs)). If e = 1 then for n > i the strings o(R,) and o(Q,) are
offset by 1 as the convolution ®(o(g),o(gs)) is read. If ¢ = 2 then for ¢ < k < j the
strings o(Ry) and o(Qy) are offset by 1, and for k > j they are aligned, and hence read
simultaneously.

Let ®,, and ¥,, be (possibly empty) strings of length 7, > 0 and x, > 0 of symbols
from the finite alphabet consisting of elements of Z,, for 1 < n < d. Let K. be the
language of convolutions of the form

QO H#Do# - #DPg, U1 # Vo - #Vy)

where for n # i we assume without loss of generality (as these conditions can be verified
with finite state automata) that the lengths 7y and x; agree with Lemma 8 if e = 1 and
Lemma 9 if € = 2. We view the two strings in the convolution as arising from o(g) and
o(h) for some g,h € T'y(q). It is clear that K. is a regular language. We want to show
that the subset K. of K. in which ®(®,,,¥,,) is accepted by M,, , for all 1 < n < d,
n # i is also a regular language.

Let K. consist of strings of the same form as those in K. with the condition that
7; = Xi, that is, the strings ®; and ¥; have the same length. We impose no other
conditions on the remaining strings ®,, and ¥,,. When ¢ = 1, this language is accepted
by the machine M; constructed as follows.

1. The start state of M is the start state of the machine M—ll

2. For 1 <n <i—2, add a transition arrow with label (z) between the accept state A
of M,, 1 and the start state of M,y 1.

3. Add a transition arrow with label (i) from the start state of M,,_11 to the start
state of M, 1, for all 2 <n < d with n # 1.

4. Add a transition arrow with label (i) from the accept state A of M; 1 to a state
S;. Add a loop at S; with label (f) for each pair 3,y € Z,. From S; add a transition
arrow to the start state of M;;1 1 with label (i)

5. For i+1 < n < d—1, add a transition arrow with label (i) between the accept
state A of M,,; and the start state of M1 1.

6. Let the accept state A of Wi,l be the accept state of the entire machine.

It then follows from Lemma 4 that K} is a regular language. This is exactly the language
of convolutions ®(c(g), o(h)) where all but the i-th substrings have the same relationship
as if h = gs where s is a type 1 generator.

When ¢ = 2 we assume that in Ky the strings ®; and ¥; have the same length, as
do the strings ®; and ¥;. We construct My as above, with one modification. Introduce
a state S; which replaces m analogous to .S; above. The resulting machine accepts
convolutions where all but the i-th and j-th substrings differ in the proscribed manner
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for a type 2 generator. The language accepted by this machine is regular, and it follows
from Lemma 4 that ), in which |¥;| = |®;|+1 and |¥;| = |®;|—1, is a regular language.
Create a simple finite state machine which additionally verifies that ®; and ¥; have the
relationship given by m We then conclude that the language of convolutions /o of
the form ®(o(g),o(h)) where all but the i-th substrings have the same relationship as if
h = gs where s is a type 2 generator, is a regular language.

7. Construction of automata II

We now determine the relationship between the coefficients of R; and Q); arising from
o(g) and o(gs), where i is fixed by the choice of generator s. The coefficient of (t+1;)~! in
Q; is given by a complicated sum, and we construct a separate automaton to verify that
this coefficient is correct. A second automaton is constructed to verify the relationship
between the remaining coefficients of R; and Q);.

7.1. Analysis of coefficients for type 1 generators

Suppose that o(g) and o(gs) are as above, where s is a type 1 generator. First we
compute the coefficient of (t+1;)~! in Q;, beginning with the expression in Equation (8).
We compute this coefficient as a running sum, which we refer to as a partial sum o, as
each term in each R, for n # i will contribute a term to the final sum which becomes
the coefficient of (t +1;)~! in Q;.

First note that the b(t+1;)~! term in Equation (8) will contribute b to o. Additionally,
(t+1;)"'R; only contains terms of degree at most —2 and hence does not contribute any
terms to o.

We now compute the contribution to o from a generic term in (¢t +1;) ' R,, for n # ;
when n # d as well, such a term has the form (¢ + ;) ~'¢(¢t + 1,,) = where £ € Z, and
e € N. Using Equation (2) or Equation (4) (when n = d) we see that

o0

(t+ 1)+ 1) = (E+1)TEY xelt+1)"

r=0

which has a single term of negative degree, namely &xo(t+1;) ~!. Here, x.. is the coefficient
computed in Equation (2) and xo = CS. When n = d we obtain an analogous equation
with xo computed as in Equation (4), in which case xo = (—1;)¢. So each term of R,
contributes its constant term (when expanded in the variable ¢ 4 [;) to the sum o. As
above, write

=
3
|

On
> Bua(t+1,)7
z=1

oo

On
> Y (D)ot iy
z=1

=0
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when n # d, and when n = d,

4 z
Ry = Zﬂd,z Z (i) (=L)*T(t+ 1)
z=1 r=0

As we are only interested in the terms in the above sum when r = 0, we see that the
coefficient of (¢ +1;)~! in Q; must be

b+ Z iﬁvzcz+2ﬁdw 7,' (22)

v=1,v#i z=1 w=0

where the values of b and ¢ are determined by the original generator s.
Next, we ignore the coefficient of (¢ +1;)~! and then the above reasoning shows that
the terms of @; of degree at most —2 are given by the terms of £S;((t+1;) "' R;). Write

(t+1) 'Ry = (t+1) Zﬁmtu Zﬁ”t—i—l —(=+D)

and notice that the coefficients of R; are shifted over to form the coefficients of @; of
degree at most —2. The minimal degree of Q; is —(0; +1) with coefficient 5; 5, # 0. Thus
we are comparing strings of coefficients of the form

Bix Bi2 Biz - Bisi—1  Bis, +

& Bix Biz o Bisi—2 Bisi—1 Bis (23)

where £ € Z, can be any element, since we are not concerned in this step with the
relationship between the coefficient of (t +1;)~! in R; and Q;.

7.2. Construction of finite state machines for type 1 generators when n =1

Consider again the language K defined in Section 6; this is the language of all possible
strings ®(o(g),o(h)) for g,h € Ty(q) and s a type 1 generator. These strings have the
form ®1#PoH# - - - #Py and V1 H# WU - - - #WU,, respectively, where each ® and Uy is a
string of elements of Z,, and we assume without loss of generality that the lengths of
the corresponding substrings are related as in Lemma 8.

In this section, we must show that the subset H; of Ky in which the first entry of ¥;
relates to the entire string ®1#Po# - - - #P4 as specified in Equation (22), and then the
subset Hz of strings where the remaining entries of ®; and ¥; differ as in Equation (23),
are regular languages. Their intersection is then a regular language H in which ®; and
U, differ as in ®(c(g),0(gs)) where s is a type 1 generator.

We first construct a machine My ; which accepts exactly the set H;. This machine
stores a partial sum which is augmented as each pair (5) is read from ®(o(g),0(h)) € K4,
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although only the value of 8 increases the sum. To accept a string, this value is compared
against the first entry in U; C o(h). As the machine has no memory, these values are
stored implicitly in the indexing of the states and the transition functions.

For each value of n with 1 < n < d, n # i, consider the cycle C,, = {C,,,C2,C3 ... |
Ckn = 1} of length k,, where all values are taken modulo ¢, and C,, is defined in Section 4.
Create a set of ¢*k,, states of the form T, . , where a, 0 € Zg, e € {1,2,3,-- , ky, }, where

o « stores the coefficient of the term of R,, that we are reading (denoted 3, ., above),
e ¢ is the exponent of C), in the cycle C,, and
e o is the partial sum of the coefficient of (¢ +1;)~! in Q;.

From state T, o, for each § € Z, and v € Z, U {#}, compute ¢’ to be the least
residue of o + SCEFL (mod q) (resp. o + B(—1;)¢*! (mod ¢) when n = d) and introduce
a transition labeled (f ) to T,c+1,0/- To streamline notation, we always assume that the
second coordinate in the state index is reduced modulo k,,, and the third index is reduced
modulo g. Denote the resulting machine N,,; note that this step creates d — 1 distinct
finite state automata, and that we have not added any start or accept states to this
machine yet.

To create the composite machine My, 1, begin with a start state with ¢ transition
arrows emanating from it, with labels ({3{ ) for all B3,y € Z4. The arrow with label (g )
terminates at state T 1 p48c, in Ni.

To transition from N, to N.y; for 1 < ¢ < i — 2, create a set of ¢ states S¢,Sc 1,
Se,2, -+ S¢,q—1 reflecting in the second coordinate the possible values of the partial sum o.
From each state T;, . » of N, introduce a transition with label (i) to the state S, ,. From

each state S , introduce ¢? transitions, where the transition with label (5 ) terminates at
the state Sﬁ-,l,0+ﬁ03-+1 of N¢41, for each pair 3,7 € Z,. As we pass from N, to N4 in this
way we are transitioning from reading the coefficients of R, to the coefficients of R.41
and the information we must retain in terms of the state indexing is the partial sum o.

Now add one additional arrow from the start state with label (ﬁ) which terminates at
state S1, where b is fixed in the generator s. From each state S, add a transition with
label (ﬁ) which terminates at state S.11,,. This corresponds to ®. = 0 for c<i-—2.

Now we have connected the machines N; through N; ;. As above, create ¢ states
labeled S;—1,0,5i—1,1, Si—1,2, - - Si—1,q—1 reflecting the possible values of o in the second
coordinate. From each state T;, ., of N;_; introduce a transition with label (i) to the
state S;_1,,. Create ¢* states S; .5 for each pair a, 1) € Z,; the index « stores the value
of ¢ and the index v is the first entry ;1 in ¥;, which corresponds to the coefficient of
(t+1;)"" in Q;. From state S;_1 . for each pair a, v € Z, add a transition with label (z)
to state S; .. At each state S; 4, add a loop with label (‘;) for a € ZgU{#} and b € Z,.

Next, create g copies of N; 1, which we denote N;4 1, for p € Z,. No transitions will
be introduced between copies of N;y1, and N1, for p # p’. From state S; » .4, add a
transition arrow with label (i) to the state T3,1 »+8c; of Nit1,4. The lack of transitions
between the N; , retains the value of .
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Create g copies of N, for i +2 < r < d which we index by N,., for p € Z,, and
corresponding transition states S, , as above. Mimic the transitions between machines
as above, with two changes. To connect the machines N,. , and N, ;, via the intermediate
states Sk p,

o replace any transition with label (i) from N, , to Sk, by a set of transitions with
labels (?), for £ € Zy, and

e replace any transition with label (‘;) with a,b € Zg from S, to N;4q, by a set of
transitions with labels (;;)7 for x € Zq.

To finish the construction of the machine My, ; which accepts the language H;, we
must verify that the final sum o is exactly the coefficient 1); 1. To accomplish this, in
Ng,p designate only Ty, ., as an accept state.

It follows directly from Lemma 5 that the language of convolutions of strings
®(o(g),o(h)) for which all but the initial coefficients in ®; and ¥; are related as in
Equation (23) form a regular language Hsy. Let H = H1 N Hz; then H is the language of
those convolutions where ®; and ¥; are related as in ®(c(g),o(gs)) where s is a type 1
generator. Hence N = K; NH is a regular language which contains all convolutions of
the form ®(c(g),0(gs)).

7.8. Analysis of coefficients for type 2 generators

We now mimic the analysis of the coefficients of o(R;) and o(Q;) where R; and Q;
arise from o(g) and o(gs) and s is a type 2 generator. Recall that we must convert

b(t+ 1)  + (t+ 1) ¢+ 1) (R + Ry + - - + Ra)

to a Laurent polynomial in the variable t + ;. As before, the coefficient of (¢ + 1;)~*
Q; will be computed as a running sum o, of which b will be a summand.

Note that (t +4;)"'(t+1;) = 1+ (I; — Li)(t + ;)" and the initial 1 creates the
difference between the case when s is a type 1 generator and this case. In particular,
when we compute (¢ + ;)7 (¢t + ;) R; we see that

Si+1
(14 (1 — L)t + 1) Zﬂzzt+l =Y n(t+l) (24)
z=1
where
o 71 = Bi1,

o T, =B+ (-— i)Biz—1 for 2 < z < §;, and
o 75,41 = (lj —13)Bis,-
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We notice immediately that this Laurent polynomial contributes its initial coefficient,
Bi1 to the coefficient o of (¢t + I;)~! in Q;, which is not the case when s is a type 1
generator.

We now compute the contribution to the sum o from a generic term in the expression
(14 (l; = L)t +1;)" )R, for n # i,d, which is of the form

I+ — L)+ L) e+ 1) ¢
for £ € Zg. Using Equation (2) we see that
(T4 (L= L)(E+ 1) )t +1,)7°

= (14— L)t +1) gz( )lln)e’”(t+li)’
=1+ —L)(t+1) gzxrﬂ—l

in which the coefficient of (¢t + 1;)~% is (I; — li)éxo = (I; — L;)ECE. As this differs from
the case when s is a type 1 generator only by a constant, namely [; —[;, we see that the
identical analysis applies to computing the contribution to o from (1+(1;—1;)(t+1;) ') R,
when n # i,d. When n = d, we use Equation (4) instead of Equation (2) to obtain

A (G — 1)+ 1) EE™) ™ = (1 + (1 - sz() L) )

From this we see that each term of this form contributes (I; — {;)¢(—{;)° to the sum o,
and the constant term contributes (I; — [;) 84,0 to this sum.
Thus the coefficient of (t +1;)~! in Q; is

b+ Bia+ (L — 1) Z Zv:ﬂvzc +Z/de 1;) (25)

v=1,v#i z=1

where the values of i, j and b are determined by the original generator s. This expression
is very close to the one in Equation (22): there are two initial terms instead of one, and
the summation is multiplied by a constant. The automaton constructed in Section 7.2 is
easily adapted to account for these minor changes in the sum, and we obtain the same
conclusions as in Section 7.1 for type 2 generators.

It now follows that the terms of @Q; of degree at most —2 are given by the terms of

6;+1
(t+L) "+ )R =L+ (= L)+ 1) DR = ) m(t+1)~*

1

+

z
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for 7, defined in Equation (24). Letting D; = [; —I; we create a simple automaton which
accepts strings of the form:

(51',1) < Bi2 ) ( Bi3 ) ( Bis ) ( # ) (26)
Bi1) \Difix + Bi2) \DiBi2 + Bi3 D;fis,—1+ Bis; ) \DiBis,

where all coordinates are computed modulo g. Create ¢ states T, ; for each a,b € ZLq.
From a start state S, add transition arrows with label (¢) terminating at state T, q.
From state T;p, compute d to be the least residue mod ¢ of aD; + ¢, for each ¢ € Z,
and add a transition with label ((‘i) which terminates at state T. 4. From each state
T, add a transition with label (a%,-) to an accept state. Then this machine can be
easily extended to a machine which verifies that in strings ® = &1 #Po# - - - #dP,; and
U = U #Wy# - #T,, all but the initial entries of ®; and ¥, differ as in expression (26).

Thus we have shown that the set of all convolutions ®(c(g),o(h)) for which the
coefficients of o(g) and the initial coefficient of ¥, are related as in Equation (25) form
a regular language, as do the set of convolutions ®(o(g),o(h)) for which all but the
initial coefficients in ®; and ¥; are related as in Equation (26). Thus the intersection of
these languages is a regular language H. As when s was a type 1 generator, we conclude
that ! = Ko NH is a regular language which contains all convolutions of the form
®(o(g),0(gs)) where s.

Regardless of whether s is a type 1 or type 2 generator, to complete the proof of
Theorem 6 we must show that if Ny = P,N., then L, = N, where L, is the multiplier
language for the generator s. It is clear that £, C N,. We now prove the reverse inclusion.

Let ®(p1,p2) € Ps and

Q(P1# P - #Pa, Vi # Vot - - #Tg) €N,

Suppose that g (resp. h) in I'y(q) has w(g9) = p1 (resp. m(h) = p2) and o(g) =
O H# Do - - #Dy (resp. o(h) = U1 #Ua# - #T ;). We will show that h = gs.

We can write g and h in matrix form, where the entries of p; and ps, respectively, deter-
mine the exponents in the upper left entry of each matrix. Let p; = (mq1,ma, - ,mqg—1)
and py = (n1,n2,- - ,ng—1). We know that these strings differ in the manner proscribed
by Ps which corresponds to multiplication by s. The upper right entry of the matrix
representing g is then R = 11921 (t +1,) (R + Ra + - - - + Ry), where the coefficients of
Ry are given by ®;. We analogously construct the upper right polynomial entry of the
matrix for h as Q = Hf;%(t + 1) (Q1+ Q2+ - + Qq), where the coefficients of Qy
are given by Uy.

Now consider the matrix for the element gs. Since ®(p1,p2) € Ps, we must have
w(gs) = (n1,ng, -+ ,ng) = w(h). If the polynomial in the upper right entry of gs is
denoted P, use the Decomposition Lemma to write

MeZi(t+ )™ P =P +Py+ -+ Py
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In order to show that h = gs, we must verify that the polynomial entries are identical.
First note that the values of the minimal degrees of Ry, Qs and P, are encoded in the
lengths of the substrings of o(g), o(h) and o(gs) respectively. As both ®(o(g),o(h)) and
®(o(g),c(gs)) are accepted strings in N7, the minimal degrees of Qj, and Py are identical
for 1 <k <d.

Suppose that s is a type 1 generator, and n # i,d. We will show that Q,, = P,,. From
Table 1 we see that the value of 35, in R, determines the coefficient of the minimal
degree term in both @, and P,, since both ®(g,h) and ®(g,gs) are accepted strings
in V.. Hence the coefficient of minimal degree in these two polynomials is identical.
The following equations determine the coefficients of the polynomials P, for n # i in
increasing order of degree, namely

—Cn Vi1 +Cnfr ifn#id
Ve =

—liYe41 + 4 Bepr ifn=d

and hence the remaining coefficients of both @,, and P, are determined by the coefficients
of R, and the coefficients of higher degree in each polynomial, which are identical. Thus
these two polynomials are identical. This reasoning can be adapted both to the case
n = d and to type 2 generators using the following formulae from Section 6.2.

—UnYk+1 +CnDnﬁk lfn#lijd
Ve =94 —CiVrs1 — Brtt ifn=j
—liYk41 + 00Ok ifn=d

It remains to verify that Q; = P;. When s is a type 1 generator, the coefficients of the
terms of degree less than —1 in both @); and P; are simply a translate of the coefficients
of R;, hence identical. When s is a type 2 generator, the coefficients of the terms of degree
less than —1 in both @; and P; are uniquely determined by the coefficients of R;, and
hence identical. Regardless of the type of generator, Equations (22) and (25) demonstrate
that the initial coefficient of P; and @Q; only depends on the entries of o(g) and hence
must be identical. Hence h = gs and it follows that N, = L. This finishes the proof of
Theorem 6 that the multiplier languages are regular for each generator s € Sg 4, and we
conclude that T'4(q) is graph automatic.
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