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Abstract

Consider a complex classical semisimple Lie group along with the set of its nilpotent coadjoint
orbits. When the group is of type >, the set of orbital varieties contained in a given nilpotent
orbit is described a set of standard Young tableaux. We parameterize both, the orbital varieties and
the irreducible components of unipotent varieties in the other classical groups by sets of standard
domino tableaux. The main tools are Spaltenstein’s results on signed domino tableaux together with
Garfinkle’s operations on standard domino tableaux.
♦ 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let b be a complex semisimple Lie algebra with adjoint groupF and write Ke +F · e
for the coadjoint orbit of F through e in b∗. Fix a Borel subgroup A of F and let C
be the flag variety F<A) For a unipotent element t ∈ F, Ct is the variety of flags in C
fixed by the action of t. The orbit Ke has a natural F-invariant symplectic structure and
the Kostant–Kirillov method seeks to attach representations of F to certain Lagrangian
subvarieties of Ke (see [6,9,10]). Of particular importance is the set of orbital varieties,
Lagrangian subvarieties of Ke that are fixed by a given Borel subgroup of F.
A result of Spaltenstein identifies the set of orbital varieties for a given nilpotent orbit

with the orbits of a finite group on the irreducible components of the corresponding
unipotent variety [11]. The main purpose of this paper is to provide new parameterizations
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of both, the orbital varieties contained in a given nilpotent orbit, as well as the irreducible
components of the unipotent variety Irr(Ct(.
In the case of classical groups, nilpotent coadjoint orbits are classified by partitions.

Because the number of orbital varieties contained in a given orbit is finite, one expects
that both orbital varieties and the components of the unipotent variety should also admit
combinatorial descriptions. This is most apparent when F is of type >.

Theorem [12]. Suppose that F+ GLm(�( and the nilpotent orbit Ke corresponds to the
partition λ of m. Then the orbital varieties contained inKe as well as the set of components
Irr(Ct( are both parameterized by the family of standard Young tableaux of shape λ.

In the setting of other classical groups, a method similar to the one used to obtain
the above can also be employed to describe both families of objects. However, the
resulting parameterization by subsets of signed domino tableaux is somewhat cumbersome
(see [12,15]). The following argument suggests a more appealing parameter set.
First, we recall that the set of domino partitions indexes the unitary dual ofU , the Weyl

group of F. In types Am and Bm, the elements of Û are parameterized by ordered pairs
(b.e ( of partitions such that |b|+|e |+ m [1]. In each case, the parameter set is in bijection
with the set of domino partitions of 2m (type Bm) or 2m+ 1 (type Am). Write N for this set
and λ for a partition lying in N. The dimension of the representation given by λ is precisely
the number of standard domino tableaux of shape λ. If we choose a unipotent representative
tλ ∈F in the conjugacy class corresponding to λ, then Springer’s characterization of the
representations Û in the top degree cohomology of Ct [13] indicates that

#SDT(m(+
∑

λ∈N
dimG top�Ctλ.�

)+ #{Irr�Ctλ

) ∣∣ λ ∈ N}
)

This suggests that Irr(Ct( should correspond to a set of standard domino tableaux in a
natural way. Indeed, this is the case. The precise relationship between van Leeuwen’s
parameter set for Irr(Ct( [15] and the set of domino tableaux can be described in terms
of Garfinkle’s notions of cycles and moving-through maps [2]. After defining the notion
of a distinguished cycle for a cluster of dominos, we show that moving through sets of
distinguished cycles of open and closed clusters in van Leeuwen’s parameter set defines a
bijection with the set of all domino tableaux of a given size.

Theorem 1.1. Suppose that F is a complex classical simple Lie group not of type >. Then
the collection of irreducible components of the unipotent varieties for F as the unipotent
element ranges over all conjugacy classes is parameterized by SDT(m(, the set of standard
domino tableaux of size m.

The action of the finite group >t on the irreducible components Irr(Ct( is described
in [15]. In the signed domino parameterization, it acts by changing the signs of open
clusters.We exploit this to obtain a parameterization of orbital varieties by standard domino
tableaux. This time, moving through the distinguished cycles of just the closed clusters in
van Leeuwen’s parameter set defines the required bijection. The result is a little simpler
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to state if we consider nilpotent orbits of the isometry group of a nondegenerate bilinear
form, Fγ .

Theorem 1.2. Suppose that F is a complex classical simple Lie group not of type >
and K is the nilpotent orbit of Fγ that corresponds to the partition λ. Then the set of
orbital varieties contained in K is parameterized by the set of standard domino tableaux
of shape λ.

Parameterizations of orbital varieties by domino tableaux have been obtained in [8], by
describing equivalence classes in the Weyl group of F, as well as in [14]. We will address
the compatibility of these parameterizations with the one above in another paper.
In [10], this parameterization of orbital varieties is used to calculate infinitesimal

characters of certain Graham–Vogan representations. The Graham–Vogan construction of
representations associated to a coadjoint orbit is an extension of the method of polarizing a
coadjoint orbit. Polarization relies on a construction Lagrangian foliations, which may not
always exist. To amend this shortfall, [6] replaces Lagrangian foliations with Lagrangian
coverings. By a theorem of V. Ginzburg, it is always possible to construct a Lagrangian
covering of a coadjoint orbit. In fact, there is a unique one for each orbital variety contained
in the orbit. For nilpotent orbits, the main ingredients of the Graham–Vogan construction
are admissible orbit data and orbital varieties.
Our domino tableaux parameterization of orbital varieties facilitates the computation

of a number of parameters required to calculate the infinitesimal characters of Graham–
Vogan representations. For a given orbital variety, it is easy to extract information such
as its maximal stabilizing parabolic as well as to construct certain basepoints from
the corresponding domino tableau. For representations constructed from orbital varieties
whose stabilizing parabolic has dense orbit, this information facilitates the computation of
the infinitesimal character.

2. Preliminaries

We first describe unipotent and orbital varieties, the relationship between them, and the
combinatorial objects we will use in the rest of the paper.

2.1. Unipotent and orbital varieties

Let F be a connected complex semisimple algebraic group, A a Borel subgroup fixed
once and for all, and C + F<A the flag manifold of F. We consider the fixed point
set Ct of a unipotent transformation t on C . It has a natural structure of a projective
algebraic variety, called the unipotent variety. We write Irr(Ct( for the set of its irreducible
components. The stabilizer Ft of t in F acts on Ct and gives an action of its component
group >t +Ft<F

◦
t on Irr(Ct()

Now consider a nilpotent element e of the dual of the Lie algebra b∗ of F. Write Kade
for the orbit of e under the coadjoint action of F on b∗) Using the non-degeneracy of
the Killing form, we can identify Kade with a subset of b. If � is the Lie algebra of A
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and l its unipotent radical, then the set Kade ∩ l inherits the structure of a locally closed
algebraic variety from the orbit Kade . Its components are Lagrangian submanifolds of Kade
and are known as orbital varieties [7]. There is a simple relationship between the set of
orbital varieties contained in a given nilpotent orbit and the irreducible components of
the corresponding unipotent variety. Suppose that the unipotent element t of F and the
nilpotent element e of b∗ correspond to the same partition.

Theorem 2.1 [11]. There is a natural bijection

Irr
�
Kade ∩ l

)
→ Irr(Ct(<>t

between the orbital varieties contained in the nilpotent orbitKade and the orbits of the finite
group >t on Irr(Ct()

The set of nilpotent orbits for a classical F admits a combinatorial description by
partitions. Write O(m( for the set of partitions λ + =λ1.λ2. ) ) ) .λj[ of m, ordered so that
λg > λg+1.

Theorem 2.2. Nilpotent orbits in bgm are in one-to-one correspondence with the set O(m()

The corresponding statement for the other classical groups is not much more difficult.
To obtain slightly cleaner statements, we will state it in terms of the nilpotent orbits of
the sightly larger isometry groups of nondegenerate bilinear forms. Let γ +±1, write γg +
�γ(�1(g and consider a nondegenerate bilinear form on �l satisfying (u. x(γ + γ(x. u(γ
for all u and x . LetFγ be the isometry group of this form and bγ be its Lie algebra. Define
a subset Oγ(l( of O(l( as the partitions λ satisfying #{i | λi + g{ is even for all g with
γg +�1. The classification of nilpotent orbits now takes the form:

Theorem 2.3 [5]. Let l be the dimension of the standard representation of Fγ . Nilpotent
Fγ -orbits in bγ are in one to one correspondence with the partitions of l contained in
Oγ(l()

The nilpotent Fγ orbits in bγ can be identified with the nilpotent orbits of the
corresponding adjoint group with one exception. In type C, precisely two nilpotent orbits
of the adjoint group correspond to every very even partition. We will write Ke for the
Fγ -orbit through the nilpotent element e and Kλ for the Fγ -orbit that corresponds to the
partition λ in this manner.
The group >t is always finite, and in the setting of classical groups, it is always a two-

group. More precisely:

Theorem 2.4 [12, (I.2.9)]. The group >t is always trivial whenF is of type >. In the other
classical types, let Aλ be the set of the distinct parts λg of λ satisfying (�1(λg +�γ. Then
>t is a 2-group with |Aλ| components.
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2.2. Standard tableaux

A partition of an integer l corresponds naturally to a Young diagram consisting
of l squares. We call the partition underlying a Young diagram its shape. Recall the
definitions of the sets of standard Young tableaux and standard domino tableaux from,
for instance, [2]. We will write SYT(λ( and SDT(λ( respectively for the sets of Young and
domino tableaux of shape λ. We refer to both objects generically as standard tableaux of
shape λ, or ST(λ(. hoping that the precise meaning will be clear from the context. Also,
we will write ST(m( for the set of all standard tableaux with largest label m.
We view each standard tableau S as a set of ordered pairs (j. Ngi (, denoting that the

square in row g and column i of S is labelled by the integer j. When S is a domino tableau,
the domino with label j, or C(j.S (, is a subset of S of the form {(j. Ngi (. (j. Ng+1.i ({
or {(j. Ngi (. (j. Ng.i+1({. We call these vertical and horizontal dominos, respectively. For
convenience, we will refer to the set {(0. N11({ as the zero domino when in type A .
Whenever possible, we will omit labels of the squares and write Ngi for (j. Ngi (. In that
case, define labelNgi + j.

Definition 2.5. For a standard tableau S , let S (j( denote the tableau formed by the squares
of S with labels less than or equal to j. A domino tableau S is admissible of type W + A ,
B, or C, if the shape of each S (j( is a partition of a nilpotent orbit of type W.

The dominos that appear within admissible tableaux fall into three categories.
Following [15] , we call these types H+. H�. and M .

Definition 2.6.

(1) In types Am and Cm (respectively Bm), a vertical domino is of type H+ if it lies in an
odd (respectively even) numbered column.

(2) A vertical domino not of type H+ is of type H�.
(3) A horizontal domino is of type M if its left square lies in an even (respectively odd)

numbered column.

Example 2.7. Suppose that F is of type Bm and consider the tableaux

S + . S + + )

Then S is admissible of type B but S + is not, since shapeS +(2(+ =3.1[ is not the partition
of a nilpotent orbit in type B. The dominosC(1. S ( and C(3. S ( are of type H�, C(2. S (
and C(4. S ( are of type H+. and C(5. S ( is of type M .

Clusters partition the set of dominos in an admissible standard domino tableau into
subsets. We follow [15] and define them inductively. Hence, suppose we already know the
clusters of S (j � 1( and would like to known how C(j.S ( fits into the clusters of S (j(.
Here is a summary:
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Definition 2.8. In types Am and Bm, let cl(0( be the cluster containingC(1. S (.

(1) If C(j.S ( + {Ngi . Ng+1.i { and typeC + H�, then C(j.S ( joins the cluster of the
domino containing Ng.i�1. If i + 1, then C(j.S ( joins cl(0(.

(2) If C(j.S (+ {Ngi . Ng+1.i { and typeC + H+ then C(j.S ( forms a singleton cluster in
S (j(, unless g > 2 and Ng�1.i+1 is not in S . In the latter case, C(j.S ( joins the cluster
of the domino containing Ng�1.i .

(3) Take C(j.S (+ {Ngi . Ng.i+1{, so that typeC +M . Let B1 be the cluster of the domino
containing {Ng.i�1{ but if i + 1, let B1 + cl(0(. If g > 2 and Ng�1.i+2 is not in S , let B2
be the cluster of the domino that containing Ng�1.i+1. If B1 + B2 or B2 does not exist,
the new cluster is B1 ]C(j.S (. If B1 ∈+ B2, the new cluster is B1 ]B2 ]C(j.S (.

(4) The clusters of S (j� 1( left unaffected by the above simply become clusters of S (j(.

Definition 2.9. A cluster is open if it contains domino of type H+ or M along its right edge
and is not cl(0(. A cluster that is neither cl(0( nor open is closed. Denote the set of open
clusters of S by OC(S ( and the set of closed clusters as CC(S (. For a cluster � , let H� be
the domino in � with the smallest label and take Ngi as its left and uppermost square. ForW
equal to A or B, we say that � is an W-cluster iff g + i is odd. For W equal to C or C+

(see [4] for definition), we say that � is an W-cluster iff g + i is even.

This definition differs from [15] as we do not call cl(0( an open cluster.

Example 2.10.Using the domino tableaux from Example 2.7, ifF is of type B, then S has
three clusters: {1{, {2.3{. and {4.5{; the first is cl(0(, the second is closed, and the third is
open. The tableau S + consists of one cluster.

The open clusters of S correspond to the parts of λ contained in Aλ, the set
parameterizing the C2 factors of >λ) As the latter set parameterizes the C2 factors of
>λ, we will ultimately use open clusters to describe the action of >λ on the irreducible
components of Ct. To be more precise, define a map

XS :Aλ → OC(S (] cl(0()

For q ∈ Aλ, let XS (q( be the cluster that contains a domino ending a row of length q in S .
This map is well-defined: any two dominos that end two rows of the same length belong to
the same cluster; furthermore, such a cluster is always open or it is cl(0(. The map XS is
also onto OC(S (, but it is not one-to-one as S may have fewer open clusters than |Aλ|)
We also recall the notions of a cycle in a domino tableau and moving through such

a cycle, as defined in [2]. We will think of cycles as both, subsets of dominos of S , as well
as just sets of their labels. Write MT(C(j.S (. S ( for the image of the domino C(j.S (

under the moving through map and MT(j.S ( for the image of S under moving through
the cycle containing the label j. If T is a set of cycles of S that can be moved through
independent of one another, we will further abuse notation by writing MT(T.S ( for the
tableau obtained by moving through all the cycles in T . Recall the definition of W-fixed
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and W-variable squares for W + A , B, C, or C+ [2]. Under the moving through map, the
labels of the fixed squares are preserved while those of variable ones may change. We will
call a cycle whose fixed squares areW-fixed anW-cycle. Note also that the A- and B-cycles
as well as the C- and C+-cycles in a given tableau S coincide.

Example 2.11. Consider the domino tableaux S and S + from Example 2.7. The B-cycles
in S are {1{, {2.3{, and {4.5{ while those in S + are {1{ and {2.3.4.5{. We have

MT(2. S (+ . MT(4. S (+ )

The C-cycles in S are {1.2{, {3.4{, and {5{, while there is only one in S +, mainly
{1.2.3.4.5{.

3. Signed domino tableaux parameterizations

The irreducible components of the unipotent variety Ct for classical F were described
by N. Spaltenstein in [12]. We summarize this parameterization as interpreted by M.A. van
Leeuwen [15]. Its advantage lies in a particularly translucent realization of the action of
>t on Irr(Ct(.

3.1. Equivalence classes of signed domino tableaux

Let l be the rank of F. Fix a unipotent element t ∈F and let λ be the partition of the
corresponding nilpotent orbit. We define a map

Ct → ST(λ(

by the following procedure. Fix a flag E + 0⊂ E1 ⊂ E2 ⊂ · · · ∈Ct and let λ+ be the shape
of the Jordan form of the unipotent operator t↓ induced by t on the space E ↓ defined as
E<E1 in type > and E⊥

1 <E1 in the other classical types. The difference between the Young
diagrams of λ and λ+ is one square in type > and a domino in the other classical types. By
assigning the label l to the set λ | λ+ and repeating the procedure with the triple (E.t.l(

replaced by (E ↓. t↓.l� 1(, we obtain a standard tableau of shape λ.

Theorem 3.1.WhenF is of type >, then this construction defines a surjection onto SYT(λ(

that separates points of Irr(Ct(. That is, it defines a bijection

Irr(Ct(→ SYT(λt()

Corollary 3.2.WhenF is of type >, the orbital varieties Irr(Kλ ∩l( are parameterized by
the set SYT(λ(.
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In the other classical types, any domino tableau in the image of the above map is
admissible. Admissible tableaux, however, do not fully separate the components of Ct. If
two flags give rise to different domino tableaux in this way, they lie in different components
of Ct. However, the converse is not true. The inverse image Ct.S of a given admissible
tableau S under this identification is in general not connected. Nevertheless, the irreducible
components of Ct.S are precisely its connected components [15, (3.2.3)]. Accounting for
this disconnectedness yields a parameterization of Irr(Ct(.

Definition 3.3. A signed domino tableau S of shape λ is an admissible domino of shape λ

together with a choice of sign for each domino of type H+. The set of signed domino
tableaux is denoted ΣDT(λ(.

The set ΣDT(λ( is too large to parameterize Irr(Ct( and we follow [15] in defining
equivalence classes.

Definition 3.4. Write |S | for the standard domino tableau underlying a signed domino
tableau S . If S .S + ∈ ΣDT(λ(, let S ∼op.cl S + iff |S | + |S +| and the products of signs
in all corresponding open and closed clusters of S and S + agree. Denote the equivalence
classes by ΣDTop.cl(λ() Define the set ΣDTcl(λ( similarly. We represent the elements of
ΣDTop.cl(λ( and ΣDTcl(λ( as admissible tableaux with a choice of sign for each of the
appropriate clusters.

3.2. Parameterization map

There is a considerable amount of freedom in how a bijection between ΣDTop.cl(λ(
and Irr(Ct( can be defined. In fact, it is possible to choose the bijection in such a way that
a specific element of ΣDTop.cl(λ( with underlying tableau |S | is mapped to any chosen
component of Ct.|S |. We follow [15] and define a particular choice. A similar construction
appears in [12, (II.6)].
The main step requires constructing certain flags ES for S ∈ ΣDT(λ( that will lie in

Ct.|S |. They will be build up from special lines which we now need to define. We begin
by recalling the notion of a �=t[-module from [12, (II.6)] for a unipotent t. Essentially,
these are finite-dimensional modules over the polynomial ring �=t � 1[ together with a
bilinear form X on which t � 1 acts nilpotently and X is fixed by the action of t. For a
�=t[-module M , we will write I (M( for the partition of the nilpotent orbit corresponding
to t.
We construct a few basic �=t[-modules. LetJi be �i with an action of t� 1 defined

by (t � 1( · d1 + 0 and (t � 1( · dg + dg�1 for g / 1 on the basis elements {dg{. Note
that I (Ji( + i . The bilinear form XJi can be defined inductively. Let XJ1(d1. d1( + 1)
Suppose thatJi�2 is already defined. The form XJi is then determined by the conditions
that Ji is non-degenerate, and that the isomorphism }d1〈⊥<}d1〈 → Ji�2 sending the
coset of dg to the coset of dg�1 becomes a �=t[-module isomorphism. In this case, define
the special line inJi to be }d1〈.
Note theJi ·Ji is also a �=t[-module. Define two special lines k+ as }(d1. gd1(〈 and

k� as }(d1.�gd1(〈 where g is a fixed square root of negative one.
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Define modulesJi.i as submodules ofJi+1·Ji+1 given by k⊥+<k+. The correspond-
ing special line is the image of k+ ± k�<k+.
Now let λ be a partition in Oγ(l(. Its Young diagram can be partitioned in a unique way

in to rows of length i with γi + 1 and pairs of adjacent rows of length i with γi + �1.
We define a moduleJλ as a product ofJi for each γi + 1 andJi.i for each pair of rows
with γi + �1. The special lines in Jλ will correspond to the dominos at the periphery
of λ. Let C be such a domino and define the special line in Jλ belonging to C to be the
special line in the appropriate summand of Jλ. When C is of type H+, this leaves us the
choice between k+ and k�, so we choose ksign(C(.
If k is a special line in Jλ that belongs to a domino C, and λ+ is the partition

with C removed, then there is a canonical isomorphism k⊥<k → Jλ+ . When the sign
of C is negative, we use the automorphism mapping k� to k+ to transform the canonical
isomorphism k⊥+<k+ → Jλ+ to an isomorphism k⊥�<k� → Jλ+ ) We write E ↓ E + when
a flag E in k⊥<k corresponds in this manner to a flag E + ∈Jλ+ )

Finally, we are ready to define ES . This is done inductively by requiring that for all
j �l:

(1) (ES (j((1 is the special line belongingC(j.S (j((, and
(2) (ES (j((

⊥
1 <(ES (j((1 ↓ ES (j�1(.

A easy enumeration of cases shows that two such flags ES and ES + lie in the same
component of Ct.|S | whenever S ∼op.cl S +. This allows us to define a map �t from
ΣDT(λ( to the components of Ct.|S | by sending the equivalence class of S to the unique
component containing ES .
We describe an action of >t on ΣDTop.cl(λt() For q ∈ Aλ, let XS (q( be the cluster that

contains a domino ending a row of length q in S . Let ξq act trivially if XS (q(+ cl(0( and
by changing the sign of the open cluster XS (q( otherwise. For each q ∈ Aλ, let fq denote
the generator of the corresponding C2 factor of >t. One can now define the action of fq
on ΣDTop.cl(λt( by fq =S [ + ξq =S [)

Theorem 3.5 [15]. Suppose that F is a classical group not of type A and t is a unipotent
element of F corresponding to the partition λ) The map �t defines an >t-equivariant
bijection between the components Irr(Ct( and ΣDTop.cl(λ()

Since >t acts by changing the signs of the open clusters of ΣDTop.cl(λ(. it is simple to
parameterize the >t orbits on Irr(Ct()

Corollary 3.6. Suppose that F is a classical group not of type A and K+
λ is the nilpotent

orbit corresponding to the partition λ. The orbital varieties Irr(Kλ ∩ l( are parameterized
by ΣDTcl(λ()

4. Domino tableaux parameterizations

We show how to index the components Irr(Ct( and Irr(Kλ ∩ l( by families of standard
tableaux. In type >, this is Theorem 1. For the other classical types, we define maps from
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domino tableaux with signed clusters to the set of standard domino tableaux by applying
Garfinkle’s moving through map to certain distinguished cycles.

4.1. Definition of bijections

Consider an W-cluster � and let HB be the domino in � with the smallest label. Let V�
be the W-cycle through HB . We call it the initial cycle of the cluster � .

Proposition 4.1. A cluster of an admissible domino tableau S that is either open or closed
contains its initial cycle.

We defer the proof to another section. Armed with this fact, we can propose a map

Φ :ΣDTop.cl(m(→ SDT(m(

by moving through the distinguished cycles of all open and closed clusters with positive
sign. More explicitly, for a tableau S ∈ ΣDTop.cl. let B+(S ( denote the set of open and
closed clusters of S labelled by a (+( and let σ(S (+ {V� | � ∈ B+(S ({ be the set of their
distinguished cycles. Write |S | for the standard domino tableau underlying S . We define

Φ(S (+MT
�
σ(S (. |S |

)
)

Lemma 4.2. The map Φ :ΣDTop.cl(m( → SDT(m( is a bijection. We can view the set
ΣDTcl(m( as a subset of ΣDTop.cl(m( by assigning a negative sign to each unsigned open
cluster of a domino tableau inΣDTcl(m() Restricted to ΣDTcl(m(, Φ preserves the shapes
of tableaux and defines a bijection Φ :ΣDTcl(λ(→ SDT(λ( for each λ that has the shape
of a nilpotent orbit.

Proof. We check that Φ is well-defined, that its image lies in SDT(m(, and then construct
its inverse. We first need to know that the definition of Φ does not depend on which order
we move through the cycles in σ(S (. It is enough to check that if V� and V�+ ∈ σ(S (, then
V�+ is also lies in σ(MT(|S |.V�((. While this statement is not true for arbitrary cycles, in
our setting, this is Lemma 4.4.
The image of Φ indeed lies in SDT(m(. That Φ(S ( is itself a domino tableau follows

from the fact that moving through any cycle of |S | yields a domino tableau. Hence,
Φ(S ( ∈ SDT(m( and if S ∈ ΣDTcl(λ( then Φ(S ( ∈ SDT(λ( since in this case Φ moves
through only closed cycles.
The definition of a cluster forces the initial domino H� of every closed cluster to be of

type H+. By the definition of moving through, the image of MT(H� . S ( in MT(V� . S ( is
inadmissible, i.e., it is a horizontal domino not of type M . In general, all the inadmissible
dominos in Φ(S ( appear within the image of distinguished cycles under moving through.
Furthermore, the lowest-numbered domino within each cycle is the image of the initial
domino of some distinguished cycle. With this observation, we can construct the inverse
of Φ)We define a map

Ψ :Φ
�
ΣDTop.cl(m(

) → ΣDTop.cl(m(
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that satisfies Ψ ◦ Φ + Identity. Let ι(Φ(S (( be the set of cycles in Φ(S ( that
contain inadmissible dominos. We define Ψ (Φ(S ((+MT(Φ(S (. ι(Φ(S ((() By the above
discussion, ι(Φ(S (( contains precisely the images of cycles in σ(S (. Hence,

Ψ
�
Φ(S (

)
+MT

�
Φ(S (. ι

�
Φ(S (

))
+MT

�
MT

�
|S |.σ(S (

))
+ S

as desired. Thus Φ is a bijection onto its image in SDT(m( and restricted to ΣDTcl(λ(,
it is a bijection with its image in SDT(λ(. As we already know that the sets ΣDTcl(λ(
and SDT(λ( both parameterize the same set of orbital varieties, and that ΣDTop.cl(m( and
SDT(m( both parameterize the same set of irreducible components of unipotent varieties,
Φ must provide bijections between these two sets. �

Theorems 1.1 and 1.2 are immediate consequences.

Example 4.3. Let F be of type C and suppose that both t and Kλ correspond to the
partition λ+ =32[. The van Leeuwen parameter set ΣDTop.cl(=32[( for Irr(Ct( is:

.

The image of ΣDTop.cl(=32[( under Φ is the following set of standard domino tableaux.
We write the image of a given tableau in the same relative position. Note that this parameter
set for Irr(Ct( consists of all tableaux of shapes =32[ and =4.2[.

.

The van Leeuwen parameter set ΣDTcl(=32[( for the orbital varieties contained in Kλ is:

.

Its image under Φ is the set of all domino tableaux of shape =32[. Again, we write the
image of a tableau in the same relative position

.

4.2. Independence of moving through initial cycles

Lemma 4.4.Consider open or closed clusters � and � + and their initial cycles V� and V�+ )
Then V� is again a cycle in MT(|S |.V�+(.
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Proof. If � and � + are clusters of the same type, then so are their initial cycles and the
lemma is [2, (1.5.29)]. Otherwise, without loss of generality, take � to be a B-cluster and
� + to be a C-cluster. As the proof in the other cases is similar, we can also assume that V�
is B-boxed while V�+ is C-boxed.
Suppose that the dominosC(q( ∈ V� andC(r( ∈ V�+ lie in relative positions compatible

with the diagram

,

where the box labelled by q is fixed. The same squares in MT(|S |.V�+( have the labels

for some r+.
To prove the lemma, we need to show that r , q implies r+ , q and r / q implies r+ / q)

Since our choice of q and r was arbitrary, this will show that V� remains a cycle. There are
two possibilities for the domino C(r(. It is either horizontal or vertical and must occupy
the following squares:

Case (i( Case (ii(

Case (i). In this case, r , q always. Garfinkle’s rules for moving through imply that
MT(|S |.C(q(( ∩ � + ∈+ ∅) This is a contradiction since we know by hypothesis that V� ∈+
V�+ . Hence, this case does not occur.

Case (ii). First suppose r / q . Then the squares within MT(|S |.V�+( must look like

for some r+ ∈+ r) Since the tableau MT(V�+ . S ( is standard, this requires that r+ / r

implying r+ / q which is what we desired. Now suppose r , q and suppose the squares
in our diagram look like

.

As in case (i), we find that C(s( <∈ � +. Since C(s( ∈ � , type C(r( + H+ implies type
C(s( + H�, type C(q( + H�. and type C(t( + H+. Otherwise, the rules defining clusters
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would force r to lie in the cluster � . Now C(t( lies in the initial cycle of a closed cluster
of same type as � +. Since it lies on the periphery and its type is H+, then its top square
must be fixed. In particular, C(t( <∈ � . But r , q implies MT(C(q(( ∩C(t( ∈+ ∅. This is
a contradiction, implying that this case does not arise.

To finish the proof, we must examine the possibility that C(r( and C(q( lie in the
relative positions described by

.

This case is completely analogous and we omit the proof. �

This lemma shows that the image of moving though a subset of distinguished cycles is
independent of the order in which these cycles are moved though. Note, however, that a
similar result is not true for subsets of arbitrary cycles.

4.3. Nested clusters and the periphery of a cluster

We aim to show that closed and open clusters contain their distinguished cycles. The
proof has two parts. First, we show that V� is contained in a larger set of clusters �, defined
as the union of � with all of its nested clusters. Then, we show that V� intersects each of
the nested clusters trivially.
Let � be a cluster of a tableau S and denote by rowjS + {Nj.i | i > 0{ the jth row

of S . Define coljS similarly. If rowjS ∩ � ∈+ ∅, let infj � + inf{i | Nj.i ∈ rowjS ∩ �{ and
supj � + sup{i | Nj.i ∈ rowjS ∩ �{.

Example 4.5. Consider the following tableau of type C) It has two closed clusters given
by the sets � + {1.2.3.4.5.8.9.10.11.12{ and � + + {6.7{.

� is a C-cluster while � + is a A-cluster. V� is then a C-cycle and consists of the dominos
in the set {1.3.5.11.12.10.9.2{) S has two other C-cycles, {4.6{ and {7.8{) Both
intersect � , but are not contained within it. The A-cycle V�+ equals {6.7{ and is contained
in � +. Hence, an W-cluster may not contain all the W-cycles through its dominos. However,
it always contains its initial cycle. Also notice that � completely surrounds � +. We call such
interior clusters nested.

Nested clusters complicate the description of clusters. To simplify our initial results, we
would like to consider the set formed by a cluster together with all of its nested clusters.
To be more precise:
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Definition 4.6. Let � + be a cluster of S . It is nested in � if all of the following are satisfied:

inf{j | rowjS ∩ � + ∈+ ∅{/ inf{j | rowjS ∩ � ∈+ ∅{.
sup{j | rowjS ∩ � + ∈+ ∅{, sup{j | rowjS ∩ � ∈+ ∅{.
inf{j | coljS ∩ � + ∈+ ∅{/ inf{j | coljS ∩ � ∈+ ∅{.
sup{j | coljS ∩ � + ∈+ ∅{, sup{j | coljS ∩ � ∈+ ∅{)

Define � to be the union of � together with all clusters nested within it. We will write
periphery(�( for the set of dominos in � that are adjacent to some square of S that does
not lie in �. Note that periphery(�( is a subset of the original cluster � .

Example 4.7. In the above tableau, � + is nested in � . Furthermore, � ] � + + � + S . and
periphery(�(+ V� ⊂ � .

The next two propositions describe properties of dominos that occur along the left and
right edges of �. Recall that our definition of the cycle V� endows � as well as � with
a choice of fixed and variable squares by defining the left and uppermost square of H� as
fixed.

Proposition 4.8. Suppose that � is a nonzero cluster of a domino tableau S and
that the intersection of the jth row of S with � is not empty. Then the dominos
C(label(Sj. infj �(. S ( and C(label(S

j. infj �(. S ( are both of type H
+) In addition, if �

is also closed, then the dominos C(label(Sj. supj �(. S ( and C(label(S
j. supj �(. S ( are oftype H�)

Proof. The first statement is true for all nonzero clusters by Definition 2.8. The second
statement is the defining property of closed clusters. �

Proposition 4.9. Suppose that � is a nonzero cluster of a domino tableau S . If the
domino C consisting of the squares Nnp and Nn+1.p lies in periphery(�(, then

(1) Nnp is fixed if typeC + H+ and
(2) Nn+1.p is fixed if typeC + H�.

Proof.
Case (i).Assume that there is aC+ in the periphery(�( of type H+ whose uppermost square
is not fixed. Then periphery(�( must contain two type H+ dominos D + {Nj.k. Nj+1.k{ and
D+ + {Nj+1.l. Nj+2.l{ with the squares Njk and Nj+2.l fixed and |l� k| minimal.
Assumel, k. The opposite case can be proved by a similar argument. Because D+ is of

type H+, there is an integer s such that l, s , k, Nj+1.s ∈ periphery(�(, and s is maximal
with these properties. Let E be the domino containing Nj+1.s . E has to be {Nj+1.s . Nj+2.s {
and of type H�. If its type was H� or M , Definition 2.8 would force Nj+1.s+1 to be in
periphery(�( as well. If E , on the other hand, was {Nj+1.s . Nj.s {, this would contradict the
minimality of |l� k|. We now consider two cases.
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(a) Assume s + k�1. Because D and E lie in periphery(�( and hence in � , � must contain
a domino of type M of the form {Nt.k�1. Nt.k{ with t / j + 2 and t minimal with this
property. The set of squares {Nn.k�1 | j + 2, n , t{ ] {Nnk | j + 1, n , t{ must be
tiled by dominos, which is impossible, as its cardinality is odd.

(b) Assume s , k � 1. We will contradict the maximality of s . Because D and E both lie
in � , � must contain a sequence Gα of dominos of type M satisfying

Gα + {Nj+1+e (α(.s+2α. Nj+1+e (α(.s+2α+1{.

where 0� α � (k � s + 1(<2. We choose each Gα such that for all α. e (α( is minimal
with this property. Because the sets {Nj+n.k | j + 1 , n , j + 1+ e ((k � s + 1(<2({
and {Nj+n.s | j + 2 , n , j + 1+ e (0({ have to be tiled by dominos of type H+ and
H� respectively, e (0( has to be even and e ((k � s + 1(<2( has to be odd. Hence, there
is a β such that e (β( is even and e (β + 1( is odd.
Assume e (β( , e (β + 1(, but the argument in the other case is symmetric. Let F
be the domino containing the square Nj+1+e (β(.s+2β+2) F must belong to � , as
Gβ and F is either of type H� or M . The type of F cannot be M , however,
as this would contradict the condition on e . Hence, F must be of type H�.
If F equals {Nj+1+e (β(.s+2β+2. Nj+e (β(.s+2β+2{. Then by successive applications of
Definition 2.8, the set of dominos

{
{Nj+e (β(�γ γ.s+2β+γ. Nj+1+e (β(�γ�γ.s+2β+γ{

}

with γ + 1 or 2 and 0 � γ � e (β( � 2 is contained in � as well. But this means
that s + 2β + γ for γ + 1 or 2 satisfies the defining property of s , contradicting its
maximality.

Case (ii). We would like to show that the bottom square is fixed for every H� domino
in periphery(�(. It is enough to show that this is true for one such domino, as an
argument similar to that in case (i) can be repeated for the others. Let k + inf{j |
rowjS ∩ � + ∅{. Then by 4.8 and the definition of fixed, we know that N

k. infk � is fixed. As
{N
k. supk �. Nk+1. supk �{ is a domino of type H

� in periphery(�(, we have found the desired
domino. �

Lemma 4.10. The following inclusions hold when � is an open or closed cluster:
periphery(�(⊂ V� ⊂ �.

Proof. Recall that our choice of a fixed square in H� defines the fixed squares in all of �.
Define �̃ as � when � is closed and � unionwith all empty holes and corners of |S | adjacent
to � when � is open [2, (1.5.5)]. We show that the image MT(C.S ( of C in periphery(�(
lies in �̃. This shows the second inclusion, as if any domino in periphery(�( stays in �
under moving through, then so must the cycle V� . The first inclusion is a consequence of
the argument and the definitions of moving through and clusters. We differentiate cases
accounting for different domino positions along periphery(�()
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Case (i). Take C + {(j. Ngi (. (j. Ng+1.i ({ and suppose typeC + H+. Because C lies on
periphery(�(, Proposition 4.9 implies that Ngi is fixed. Due to Definitions 2.8(1) and 2.9,
Ng.i+1 ∈ �̃.

(a) Suppose Ng�1.i+1 in not in � . Then q + label(Ng�1.i+1( , j. Otherwise Ng�1.i and Ngi
would both belong to the same cluster by Definition 2.8(1). Since Ng�1.i and Ng�1.i+1
are in the same cluster by Definition 2.8(2) or (3), this contradicts our assumption.
Now [2, (1.5.26)] forces MT(C.S ( to equal {(j. Ngi (. (j. Ng.i+1({. and since Ngi and
Ng.i+1 both belong to �̃, so must MT(C.S ()

(b) Suppose now that Ng�1.i+1 ∈ �̃. Then the square Ng�1.i ∈ � as well since by
Definition 2.8(2) or (3), they both belong to the same cluster. Now [2, (1.5.26)] implies
MT(C.S (⊂ {Ngi . Ng�1.i . Ng.i+1{) As all of these squares lie in �̃ , we must also have
MT(C.S (⊂ �̃ .

Case (ii). Suppose C + {(j. Ngi (. (j. Ng.i+1({ and that the square Ng.i+1 is fixed. By
Definitions 2.8(1) and 2.9, Ng.i+2 ∈ �̃.

(a) Suppose Ng�1.i+1 is not in �. Then Ng�1.i+2 lies in |S | but not in �, as by
Definition 2.8(2) or (3), they both belong to the same cluster. The definition of
a cluster forces q + label(Ng�1.i+2( , j and [2, (1.5.26(ii))] implies MT(C.S ( +
{Ng.i+1. Ng.i+2{) Since the squares Ng.i+1 as well as Ng.i+2 are both contained in �̃,
so is MT(C.S ()

(b) Suppose Ng�1.i+1 lies in �. Then because the domino MT(C.S ( must be a subset of
{Ng.i+1. Ng.i+2. Ng�1.i+1{, it must also be a subset of �.

Case (iii). Suppose C + {(j. Ngi (. (j. Ng.i+1({ and that the square Ngi is fixed. Then
Ng.i�1 ∈ � by Definition 2.8(3).

(a) Suppose first that Ng+1.i�1 is not in �) Then q + label(Ng+1.i�1( / j by either
Definition 2.8(1) or (3). But [2, (1.5.26(iii))] forces MT(C.S ( to be precisely
{Ngi . Ng.i�1{ which is a subset of �.

(b) If Ng+1.i�1 ∈ �. then Ng+1.i ∈ �̃ as well, since by Definition 2.8(2) or (3), they either
must belong to the same cluster or Ng+1.i is an empty hole or corner. But by [2,
(1.5.26(iii)(iv))], MT(C.S ( is a subset of {Ngi . Ng+1.i . Ng.i�1{, all of whose squares
lie in �̃.

Case (iv). Suppose C + {(j. Ngi (. (j. Ng+1.i ({ and that the domino C is of type H�. The
square Ng+1.i is then fixed and Ng+1.i�1 ∈ �.

(a) Assume that Ng+2.i�1 ∈ �. Then Ng+2.i ∈ �̃. Since MT(C.S ( is the domino
{Ng+1.i . Ng+1.i�1{ or {Ng+1.i . Ng+2.i {. Hence, MT(C.S ( lies in � as both possibilities
are contained in �.
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(b) Assume Ng+2.i�1 is not in � . We have q + label(Ng+2.i�1( / j, for otherwise C(q. S (

and hence Ng+2.i�1 would lie in �. But then MT(C.S ( + {Ng+1.i . Ng+1.i�1{, so it is
contained in �.

These cases describe all possibilities by Proposition 4.9. �

What remains is to see that the initial cycle V� is contained within the cluster � itself.
It is enough to show that its intersection with any closed cluster nested in � is empty, as
open clusters cannot be nested. Our proof relies on the notion of W-boxing [2, (1.5.2)]. We
restate the relevant result.

Proposition 4.11 [2, (1.5.9) and (1.5.22)]. Suppose that the dominosC(j.S ( andC(j+. S (
both belong to the same W-cycle. Then

(1) C(j.S ( is W-boxed iff MT(C(j.S (. S ( is not W-boxed.
(2) C(j.S ( and C(j+. S ( are both simultaneously W-boxed or not W-boxed.

Lemma 4.12. If � + ⊂ � is a closed cluster nested in � , then V� ∩ � + + ∅)

Proof. It is enough to show that periphery(� +( ∩ V� + ∅, as this forces � + ∩ V� + ∅. We
divide the problem into a few cases.

Case (i). Suppose {typeV� . typeV�+{ + {B.C+{) We investigate the intersection of
periphery(� +( with V� . It cannot contain dominos of types H+ and H�; because the
boxing property is constant on cycles according to Proposition 4.11(ii), such dominos
would have to be simultaneously B- and C-boxed, which is impossible. If C(j.S ( ∈
periphery(� +( ∩ V�+ is of type (M(, C(j.S ( and MT(C(j.S (. S ( are both B- and C+-
boxed. This contradicts Proposition 4.11(i), forcing periphery(� +( ∩ V� + ∅. The proof is
virtually identical when the set {typeV�. typeV�+{ equals {A.C{ instead.

Case (ii). Suppose {typeV�. typeV�+{ + {B.C{) The proof is similar to the first case,
except this time, dominos of type M cannot be simultaneously B- and C-boxed. Again,
the proof is identical when the set {typeV�. typeV�+{ equals {A.C+{ instead.

Case (iii). Suppose {typeV� . typeV�+{ ⊂ {A.B{ or {C.C+{. Then by the definition of
cycles, V� ∩V�+ + ∅. We know periphery(� +(⊂ V�+ ⊂ �+ by Lemma 4.10, implying again
that periphery(� +(∩V� + ∅) �

5. The � -invariant for orbital varieties

A natural question is whether our method of describing orbital varieties by standard
tableaux gives the same parameterization as [8]. More precisely, if π : Irr(Ct(<>t →
Irr(Kt∩l( is the bijection of [11], does the same tableau parameterize both � ∈ Irr(Ct(<>t
and its image T + π(�(? Write P (�( for the domino tableau corresponding to the >t-orbit
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� ∈ Irr(Ct(<>t via the map of the previous section and P (T( for the domino tableau used
to parameterize T in [8].
Let Π + {α1. ) ) ) .αm{ be the set of simple roots in b. Write {d1. ) ) ) . dm{ for the basis

of the dual of the Cartan subalgebra, and choose the indices so that α1 + 2d1 in type Bm,
α1 + d1 in type Am, and α1 + d1 + d2 in type Cm. The remaining simple roots are then
αg + dg � dg�1 for 2� g � m. The τ -invariant, a subset ofΠ , is defined for orbital varieties
in [7] and for components of the Springer fiber in [12]. It is constant on each >t-orbit.
For a standard domino tableau S , it can be defined in terms of the relative positions of the
dominos.We say that a dominoC lies higher thanC+ in a tableau S iff the rows containing
squares of C have indices strictly smaller than the indices of the rows containing squares
of C+. Then τ (S ( consists of precisely the simple roots αg whose indices satisfy:

(1) g + 1 and the dominoC(1. S ( is vertical and, if F is of typeC, shape(S (2(( ∈+ =3.1[.
(2) g / 1 and C(g � 1. S ( lies higher than C(g. S ( in S .

The notion of the τ -invariant can be generalized using wall-crossing operators to define
equivalence classes of domino tableaux, see for instance [3] and [4]. Defined on tableaux,
the generalized τ -invariant is used to classify primitive ideals in groups of type Am and Bm.
In type Cm, a further generalization, the generalized generalized τ -invariant is necessary.
According to [4], there is in fact a unique tableau of a given shape within each equivalence
class of tableaux generated by the generalized τ -invariant. We show

Theorem 5.1. Suppose that � ∈ Irr(Ct(<>t and that T + π(�() Then

τ
�
P (�(

)
+ τ

�
P (T(

)
)

Proof. In fact, we show that all of following sets are equal

τ
�
P (T(

)+ τ (T(+ τ (�(+ τ
�
P (�(

)
)

The first equality follows from [8] and [7]. The second from the definition of π . We
verify the third.
Recall the map Φ :NDTop.cl → SDT defined in the previous section. We prove that

if S̃ ∈ SDTop.cl parameterizes the irreducible component � ∈ IrrCt in [15], then its τ -
invariant τ (�( is precisely the τ -invariant of the standard domino tableau Φ(S̃ ( + P (�(
as defined above. The content of the proof is a description of the effect of Φ on the
characterization of the τ -invariant of the components of the Springer fiber given in [12]:

Proposition 5.2 [12, II.6.29 and II.6.30]. Let W + A , B, or C. Consider � ∈ IrrCt.|S |,
that is, an irreducible component whose classifying tableau S in SDTop.cl has underlying
domino tableau |S |. Then αg ∈ τ (�( iff one of the following is satisfied:

(i) g + 1, C(1. S ( is vertical, and W ∈+C.

(ii) g / 1 and C(g � 1. |S |( lies higher that C(g. |S |( in |S |,
(iii) g / 1 and {C(g � 1. S (.C(g. S ({ ∈ BB+(S (.
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(iv) If W + C, then α1 ∈ τ (�( iff {1.2{ ∈ BB�(S ( and shape(S (2(( ∈+ =3.1[, while
α2 ∈ τ (�( iff {1.2{ ∈BB+(S (.

That α1 ∈ τ (�( iff α1 ∈ τ (Φ(S̃ (( is clear in types Am and Bm since C(1. S ( never lies
within a closed cluster and hence remains unaltered byΦ . In typeCm, the conditions for αg .
when g � 2, to lie in τ (�( described by Spaltenstein translate exactly to our conditions
for αg to lie in τ (Φ(S̃ ((.
For g / 1, suppose that either C(g. S ( or C(g � 1. S ( lies in some F ∈ BB+(S (. If F

contains more than two dominos, then [4, (III.1.4)] implies that αg ∈ τ (�( iff αg ∈ τ (Φ(S̃ (()

So suppose that F contains exactly two dominos. If, in fact, F+ {C(g(.C(g � 1({, the
simple root αg must lie in τ (�(. But C(g � 1( is higher than C(g( in MT(�. S (, implying
by the definition of Φ that αg ∈ τ (Φ(S̃ (( as well. The remaining possibility is that only
one of the dominosC(g( andC(g � 1( lies in the two-domino cluster F. Then the fact that
αg ∈ τ (�( iff αg ∈ (S̃ ( follows by inspection. �
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