Bowdoin College
Bowdoin Digital Commons

Mathematics Faculty Publications Faculty Scholarship and Creative Work

1-1-2014

Sign Under the Domino Robinson-Schensted Maps

Thomas Pietraho
Bowdoin College

Follow this and additional works at: https://digitalcommons.bowdoin.edu/mathematics-faculty-
publications

Recommended Citation

Pietraho, Thomas, "Sign Under the Domino Robinson-Schensted Maps" (2014). Mathematics Faculty
Publications. 36.

https://digitalcommons.bowdoin.edu/mathematics-faculty-publications/36

This Article is brought to you for free and open access by the Faculty Scholarship and Creative Work at Bowdoin
Digital Commons. It has been accepted for inclusion in Mathematics Faculty Publications by an authorized
administrator of Bowdoin Digital Commons. For more information, please contact mdoyle@bowdoin.edu,
a.sauer@bowdoin.edu.


https://digitalcommons.bowdoin.edu/
https://digitalcommons.bowdoin.edu/mathematics-faculty-publications
https://digitalcommons.bowdoin.edu/mathematics-faculty
https://digitalcommons.bowdoin.edu/mathematics-faculty-publications?utm_source=digitalcommons.bowdoin.edu%2Fmathematics-faculty-publications%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bowdoin.edu/mathematics-faculty-publications?utm_source=digitalcommons.bowdoin.edu%2Fmathematics-faculty-publications%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.bowdoin.edu/mathematics-faculty-publications/36?utm_source=digitalcommons.bowdoin.edu%2Fmathematics-faculty-publications%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mdoyle@bowdoin.edu,%20a.sauer@bowdoin.edu
mailto:mdoyle@bowdoin.edu,%20a.sauer@bowdoin.edu

Ann. Comb. 18 (2014) 515-531
DOI 10.1007/s00026-014-0237-6
Published online July 2, 2014
© Springer Basel 2014

| Annals of Combinatorics

Sign Under the Domino Robinson-Schensted Maps

Thomas Pietraho*

Department of Mathematics, Bowdoin College, Brunswick, Maine 04011, USA
tpietrah@bowdoin.edu

Received May 23, 2013

Mathematics Subject Classification: 0SE10

Abstract. We generalize a formula obtained independently by Reifegerste and Sjostrand for
the sign of a permutation under the classical Robinson-Schensted map to a family of domino
Robinson-Schensted algorithms.

Keywords: Robinson-Schensted, domino tableaux

1. Introduction

In their work verifying Stanley’s sign imbalance formula, Reifegerste and Sjostrand
independently obtained the following remarkable formula for reading the sign of a
permutation from its image under the classical Robinson-Schensted map. It is based
on two tableaux statistics e and sign:

Theorem 1.1. ([18,20]) Consider w € S,, and let RS(w) = (P, Q) be its image under
the classical Robinson-Schensted map. Then

sign(w) = (—1)¢-sign(P) - sign(Q).

In [6], building on the work of Barbasch and Vogan in [1], Garfinkle introduced
a generalization of the Robinson-Schensted algorithm relating elements of the other
classical Weyl groups and same-shape pairs of domino tableaux. This algorithm was
further extended to a one-parameter family of maps G, by van Leeuwen using domino
tableaux with non-empty core. For large values of r, van Leeuwen’s maps recover yet
another generalization of the Robinson-Schensted maps in this setting introduced by
Stanley [21, §6]. The aim of this paper is to address the natural question whether it
is again possible to recover the parity of the length function, which we call its sign,
from the tableaux images of these maps.

In fact, this has already been done for Stanley’s map in [15] in the more general
context of complex reflection groups. For the family of maps G,, our main result
relies on three domino tableaux statistics d, spin, and sign defined in Section 2.3.

Let H, be the Weyl group of type B,,.

* We would like to thank Skidmore College for its hospitality during the writing of this manuscript.
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Theorem 1.2. Consider w € H,, and let G.(w) = (P, Q) be its image among the
same-shape standard domino tableaux of rank r. Then

sign(w) = (—1)d . (—l)sPin(P)“pi"(Q) -sign(P) - sign(Q).

The proof involves three steps. We first verify the equation for large r by translat-
ing between Stanley’s map and G, and appealing to the formula established in [15].
It is then possible to extend the result to involutions in H, for arbitrary r by using
a relation between consecutive maps G, described in [17], and finally to all signed
permutations by tracking the behavior of the established sign formula under Tagkin’s
plactic relations introduced in [23].

The domino tableaux Robinson-Schensted algorithms appear in the work classi-
fying Kazhdan-Lusztig cells in unequal parameter Iwahori-Hecke algebras of type B,
see [3]. At least conjecturally, for certain values of the parameter, one-sided cells
correspond to plactic and coplactic classes for the maps G,. As corollary to the above
sign formula, we note that the Mobius function for the Bruhat order, ubiquitous in
Kazhdan-Lusztig theory, is well-behaved with respect to these cells. First described
by Verma in [24], the Mobius function u takes the form

(v, w) = (1) 00,

where ¢ is the length function on the Weyl group. In type B, the values of i can be
readily read off from the tableaux of v and w arising from the maps G,. Further, we
have the following result.

Corollary 1.3. Consider x,x',y,y € Hy, and fix a map G,. Suppose that the left
tableaux of the pair x and y as well as x' and y' are the same, and the right tableaux
of the pairs x, x' and y,y' similarly agree. Then, we have

wix, y) = p(x',y).
2. Preliminaries

We define the notions of standard and domino tableaux, describe a family of Robinson-
Schensted maps, and detail several tableaux statistics which will be necessary for our
work.

2.1. Partitions and Tableaux

Our first objective is to define the notions of standard Young, bi-, and domino tableaux.
A non-increasing sequence of positive integers A = (11, A2,..., A;) is called a par-
tition of the integer n = Y'; A;. We will write A b n and |A| = n. Partition notation
can often be abbreviated by using exponents to denote multiplicity; for instance,
(4,4,3,3,3, 1) can be written as (4%,3% 1). We will identify a partition with its
Young diagram [A], or a left-justified array of squares containing A; squares in row .

If the rightmost square s of a row in a Young diagram [A] can be removed while
leaving another Young diagram [A];, then it will be called a corner of [A]. Beginning
with [A], one can start successively removing corners until this process inevitably
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Figure 1: (a) The Young diagram of the partition (4, 3%, 1), (b) a standard bitableau
of shape ((3,2, 1), (2, 1)), and (c) a standard domino tableau of rank 2.

terminates after n steps with the empty partition. If the square removed at the ith
step of this procedure is labeled with the number n — i + 1, then the result is called
a standard Young tableau. For a tableau T, we will write sh(T') for the underlying
partition, |T'| for |sh(T")|, SYT (A) for the set of all standard Young tableaux of shape
A, and SYT (n) for the set of standard Young tableaux with n boxes.

We will call an ordered pair of partitions (4, 1) a bipartition of nif |A|+ 1| = n.
A square of ([A], [1]) is a corner if it is a corner of either [A] or [u]. Successive re-
moval of corners starting with ([A], [¢t]) terminates after n steps, and if the square re-
moved at the ith step is labeled with n — i+ 1, then the result will be called a standard
bitableau. The shape of a bitableau is the pair of its underlying partitions; we will
write SBT (A, u) for the set of all standard bitableaux of shape (A4, ut), and SBT (n)
for the set of standard bitableaux with n boxes.

Two squares of a Young diagram are adjacent if they share a common side. Ad-
jacent squares s, ¢ in [A] form a domino corner if s is a corner for [A] and 7 is a corner
for [A];. Beginning with [A], one can start successively removing domino corners
and continue until this is no longer possible, say after n steps. The resulting shape
is a staircase partition 8, = (r,r —1,r—2,..., 1) for some r > 0 and is independent
of the order of removal of domino corners, see [14]. The partition 8, is known as
the 2-core of A. If the squares of [A] corresponding to the 2-core are labeled with 0
and the domino removed at the ith step is labeled with n — i+ 1, then the result is a
standard domino tableau of rank r. The set of all standard domino tableaux of shape
A with 2-core §, will be denoted by SDT,.(A1) while SDT,(n) will denote the set of all
standard domino tableaux consisting of the 2-core &, and n dominos. We will call the
set of squares in a domino tableau T labeled with O the core of T.

2.2. Robinson-Schensted Maps

Consider a permutation w € S,,. We will write it in one-line notation as wiwy - - - wy,
with each entry w; € N,,. The classical Robinson-Schensted map establishes a bijec-
tion between permutations in S, and same-shape pairs of standard Young tableaux
in SYT(n) x SYT(n) via an insertion and a recording algorithm. We assume the
reader is familiar with the basics; details can be found in [5] or [22]. We will write
RS(w) = (P(w), Q(w)) for the image of a permutation under this map.

A signed permutation is a permutation together with a choice of sign for each of
its entries. We will again use one-line notation, using a bar over a letter to denote the
choice of a negative sign. The set of signed permutations on n letters forms a group
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under composition and multiplication of signs; it is isomorphic to the hyperoctahedral
group H, = 7,1 S, and is generated by

si=12--i4+1 i---n and r=12---n,

for 1 <i < n. Let ¢ be the length function on H,, defined in terms of this generating
set and write sign(w) = (—1)/™),

We are interested in two generalizations of the Robinson-Schensted map in this
setting. The first establishes a map

Go: Hy, — SBT (n) x SBT (n),

which is a bijection onto same-shape pairs of bitableaux. Given a signed permutation,
the insertion bitableau for w € H,, is constructed by a variant of the classical insertion
algorithm. Positive letters are inserted into the first tableau and negative into the sec-
ond following their order of appearance in the one-line notation for w. The recording
bitableau tracks the shape of the insertion bitableau at each step. See [21].

Example 2.1. Consider the signed permutation w = (4321) € Hy. The sequence of
bitableaux constructed by successive insertion of the letters of w is:

3 2 3 1 3
(g7@)4)(@7)—><®,>*><’>~><,>.

Keeping track of the shapes appearing in this sequence, we can construct another
bitableau of the same shape:

- ((BL.H), (FH))

The second generalization of the classical Robinson-Schensted algorithm to the
hyperoctahedral groups map has image within same-shape pairs of domino tableaux.
In fact, for every non-negative integer r, there is a map

G,: H, — SDT,(n) x SDT,(n),

which is a bijection onto same-shape pair of domino tableaux of rank r. Starting with
the diagram [J,], a tableau is constructed via a domino insertion procedure inspired
by the classical algorithm. Positive letters are inserted as horizontal dominos in the
first row of the tableau while negative ones are inserted as vertical dominos in its first
column. As long as the two types of dominos do not interact, the procedure is very
similar to classical insertion; when they do, a more complicated bumping procedure
becomes necessary.

Example 2.2. Let r =2 and w = (4321) € Hy. The sequence of domino tableaux
constructed by successive insertion of the letters of w into the 2-core [,] is:

0]0] 0]

0
0 —>i —

0 0] 2 |

4 —

0

4| —

| 1
2
4

0
0
3

~

|u|oo

IEEE
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Keeping track of the shapes appearing in this sequence, we can construct another
domino tableau of the same shape:

o] 1] [o
2 0]
1

Gy(w) = )

An initial version of the hyperoctahedral Robinson-Schensted maps Go and G
is due to Barbasch and Vogan [1], but was only described later in terms of domino
insertion by Garfinkle [6]. Van Leeuwen showed that the bijection holds for all r and
described the map using growth diagrams [11]. For a more formal description of G,
where all the details of the insertion and bumping procedures may be found, see [6]
or [19].

When r is sufficiently large relative to n, inserted dominos corresponding to the
positive and negative letters of w do not interact and it is easy to see that it is possible
to recover Goo(w) from G,(w). Thus in this sense, G is an asymptotic version of G,.

L1y 1|23 [ 1 123 | L] 3 |
2 2 14 1 2 2|4
3 4 3 4 N )
r=20 r=1 r=2
| L] | 3 ]
2 | 4 ]
: :
3 1
r=23 T = 00

Figure 2: Images of w = (4321) under the domino Robinson-Schensted maps G,.

2.3. Tableaux Statistics

Our ultimate goal is to read off the sign character of a signed permutation from its
image under the various Robinson-Schensted maps. To do so, we first define and
extend a few tableaux statistics.

Definition 2.3. Let T € SYT (n). A pair of entries (i, j) is an inversion in T if j < i
and j is contained in a row strictly below the row of i.

We first extend the definitions of inversions and sign to bitableaux as well as
domino tableaux.
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Definition 2.4. Let T = (T1, T») € SBT (n). A pair of entries (i, j) is an inversion in
T if it is either an inversion in the standard Young tableaux Ty or T, or j < iand j is
contained in Ty while i is contained in Ty. We define spin(T) = |T»| /2.

Definition 2.5. Let T € SDT (n). We will say that a square of T is marked if the sum
of its coordinates is even. A pair of positive entries (i, j) is an inversion in T if j < i
and j labels a marked square in a row strictly below the marked square with label i.

For a standard Young, bi-, or domino tableau 7', we will write Inv(T') for the set of
its inversions and inv(T) for the cardinality of this set. The sign of the tableau T will
then be defined as sign(T) = (—1)"(), Note that when applied to domino tableaux,
the present notion of sign differs in general from the traditional one as defined in [25],
for example. In particular, with the present definition, the sign of a domino tableau
depends on more than just the underlying domino tiling of the domino tableau shape,
see [25, Prop. 9].

Example 2.6. Consider the following three tableaux:

2]4] 2[3]6] [1]5] ofo] 1 |
: S=<47 i>’ U= o] 2 | .
8

w

~
Il

‘Lllb)»—a
(o)}

According to the above definitions, their sets of inversions are Inv(T) = {(4
8,5

(6,5)}, Iv(8) = {(2,1),(3,1), (4, 1), (7,1), (8,1),(6,4), (6,5), (7,5), (8,
and Inv(U) = @.

We also define a few statistics special to domino tableaux. Let v(7') be the number
of vertical dominos in T and let spin(T) = v(T)/2. For a signed permutation w, the
total color t¢(w) is the number of negative letters in its one-line notation. This statistic
is particularly well behaved with respect to the domino Robinson-Schensted maps G,.

Theorem 2.7. ([10, 19]) Consider a signed permutation w € H, and further let
G,(w) = (P, Q) be its image under the domino Robinson-Schensted map G, among
same-shape pairs of domino tableaux with 2-core 6,. Then

te(w) = spin(P) + spin(Q).

This result is clear when r > n — 1. It was verified for » = 0 in [19] and extended
to all r in [10]. Of particular interest to us is the immediate observation that the sum
of the spins of the recording and tracking tableaux for the maps G, is independent
of r.

For a standard domino tableau T, let en(T') and ev(T) denote the number of hori-
zontal dominos in even index rows and vertical dominos in even index columns of 7',
respectively. If we let d(T') denote the number of squares with a positive label which
lie both in an even row and an even column of 7, then eh(T) + ev(T) = d(T).
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2.4. The Type A Sign Character

We can now state the result of Reifegerste and Sjostrand which our main results gen-
eralize.

Theorem 2.8. ([18,20]) Consider a permutation w € S, and let RS(w) = (P, Q) be
its image under the classical Robinson-Schensted map. Then

sign(w) = (=1)¢-sign(P) - sign(Q),
where e = e(P) is the sum of the lengths of all the even-index rows of P.

The following is a special case of a result on the sign characters of the complex
reflection groups G(r, p, n).

Theorem 2.9. ([15]) Consider w € H, and let G(w) = (P, Q) be its image among
same-shape standard bitableaux, where P = (Py, P;) and Q = (Q1, Q2). Then

sign(w) = (=1)°- (=170 sign(P) - sign(0),

where e = e(Py) + e(P,) is the sum of the lengths of all the even-index rows of the
constituent tableaux of P.

2.5. Cycles

The most technical aspect of this work lies in the notion of a cycle in a domino
tableau. First defined in [6], cycles have appeared in various settings, including [4],
[12],[13], and [17]. We provide a brief introduction, beginning with a few definitions.

For a standard domino tableau T € SDT,(n), we will say the square s; j in row i
and column j of T is variable when i+ j = r mod 2; otherwise, we will call it fixed.
Following [6], we further differentiate variable squares by saying s;; is of type X if i
is odd and of rype W otherwise. Write D(k, T) for the domino labeled by the positive
integer k in T and suppD(k, T) for its underlying squares. Write labels;; for the
integer label of s;; in T and let label s;; = 0 if either i or j is less than or equal to zero,
and [abel s;; = o if i and j are positive but s;; is not a square in 7" .

Definition 2.10. Let suppD(k, T) = {sij, sit1,j} or {si j-1, sij} and suppose that
the square s;j is fixed. Define a new domino D'(k) labeled by the integer k by letting
suppD'(k, T) be equal to

(1) {sij7 Sl'*hj} lfk < labels,;hjjq,

2) {S,’j, Si,j+1} ifk > labels,-,LjH.

If suppD(k, T') = {sij, si—1,j} or {si j41, sij} and the square s;; is fixed, then define
suppD'(k, T) to be

(1) {sijs si,j—1} if k < label siy1,j-1,

) {sij; siv1.} ifk > labelsiy j-1.

Definition 2.11. For T € SDT,(n), the cycle ¢ = c(k, T') through k is the set of integers
defined by the condition that | € c if either
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(D) =k
(2) suppD(1, T)NsuppD'(m, T) # 0, for some m € c, or
(3) suppD'(1, T)NsuppD(m, T) # 0, for some m € c.

We identify the labels contained in a cycle with their underlying dominos.

If cisacycle in T, then it is possible to construct a tableau MT (T, ¢) by replacing
every domino D(I, T) € c by the shifted domino D’(I, T) defined above. This map
produces a standard domino tableau, preserves the labels of the fixed squares of T,
and changes the labels of the variable squares in ¢. The shape of MT (T, c) either
equals the original shape of T, or has one square removed (or added to the core) and
one added. In the first case, the cycle c is called closed; otherwise, it is called open.
For an open cycle ¢ of a tableau T', we will write S,(c) for the square that has been
removed (or added to the core) by moving through c. It is the beginning square of c.
Similarly, we will write S¢(c) for the square that is added to the shape of T, the final
square of c. Note that S;(c) and S¢(c) are always variable squares.

Example 2.12. Below are two diagrams of a standard domino tableau of rank 2, the
first unadorned, and then with its cycles highlighted and the final squares of the open
cycles displayed as dashed boxes. There is one closed cycle, ¢ = {11, 12}.

Each square adjacent to the core in T € SDT,(n) is the beginning square for some
open cycle. We denote the set of all such open cycles A(T).

Proposition 2.13. ([6, 16]) Consider T € SDT,(n). If ¢ € A(T), then the variable
squares Sp(c) and Sy(c) are both of type X or both of type W. In particular, Sj(c) lies
in an even row and column of T if and only if S(c) does as well.

The order in which one applies the moving through map to cycles in a set U
is immaterial by [6, Cor. 1.5.29], allowing us to write MT (T, U) for the tableau
obtained by moving through all of the cycles in the set U.

3. Sign of Colored Permutations

Based on the definitions of domino tableaux statistics in Section 2.3 we are ready to
state a formula for reading the sign of a colored permutation from its image under
any of the domino Robinson-Schensted maps.
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Theorem 3.1. Consider a signed permutation w € H, and let G.(w) = (P, Q) be its
image among same-shape standard domino tableaux of rank r. Then

sign(w) = (—l)d . (—1)“pi”(P)+“'pi”(Q) -sign(P) - sign(Q),

where d = d(P) denotes the number of non-core squares which lie concurrently in an
even row and even column of P, and spin denotes the spin of a tableau.

Our first goal is to verify the theorem for involutions in H,. There are two main
tools, i.e., the sign formula for colored permutations under G, derived from [15] and
a description of the relationship between the maps G, and G, obtained in [17].
When r is large relative to n, the relationship between G., and G, is simple and it is
a trivial task to translate one sign formula into the other. Using the map of [17], we
then extend the result on involutions to all r.

Under the maps G, the left and right tableaux for an involution in H,, coincide,
see [11]. To complete our proof, we examine the behavior of the sign character
under the plactic relations on H, obtained in [23]. As plactic relations generate the
equivalence classes of having the same left tableau under G,, this extends the theorem
to all of H,,.

3.1. Involutions

The goal of this section is to verify the claimed sign formula for involutions in H,,.
We follow the approach outlined above and start by translating the formula for the
asymptotic map G to the maps G, forr > n—1.

Lemma 3.2. Let i € H,, be an involution and write G,(i) = (P, P). Forr > n— 1,
szgn(l) _ (_1)d . (_l)Zspin(P)’

where d = d(P) denotes the number of non-core squares which lie concurrently in an
even row and even column of P, and spin denotes the spin of a tableau.

Proof. Let G (i) = (R, R). By Theorem 2.9, if we write R = (R, R;), then sign(i) =
(=1)¢HIR2l where e = ¢(R}) + ¢(R>) is the sum of the lengths of all the even-index
rows of the constituent tableaux of R. Now note that tc(i) = |Ry| = 2spin(P), so it
remains to show that d = e. The squares in even-indexed rows of R correspond to
horizontal dominos in even rows of P and the squares in even-indexed rows of R,
correspond to vertical dominos in even columns of P. Equality follows. |

Next, we extend this formula to all values of r. Let r and r’ be non-negative
integers and suppose that T € SDT,.(n). Following [17], we define a map

ty,r: SDT(n) — SDT,/(n)

by setting #, ,+(T) = T" whenever G; ' (T, T) = G,' (T’, T"). When r and r’ are con-
secutive integers, this map has a particularly simple description in terms of cycles
in a domino tableau. Given T' € SDT,(n), it is easy to produce a domino tableau of
rank r + 1 by moving through open cycles; simply move through all the open cycles
in A(T). It is clear that the 2-core of the resulting tableau is 8. What is perhaps
surprising is that this map coincides with #, . 1:
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Theorem 3.3. ([17]) Let t,. 11 : SDT,(n) — SDT,.(n) be defined as above. Then
byl (T) = MT(Ta A(T))

Example 3.4. Consider the involution i = (5971116310284) € Hy;. Its image
under the domino Robinson-Schensted algorithm G is a pair of tableaux (P, P) with
P as below.

ofo] 1 ] 2 | ojoJo[ 1 | 2]
0] 5 ] 6| ojo] 5 [ 6]
P= 3|72 : P= 9,179
10[11 31011
4|8 — 8
4 |—

There are three open cycles in A(P), namely, {1, 2}, {3,4}, and {5,6}. Moving
through all three cycles produces the tableau P’. As claimed by Theorem 3.3, this is
also the image of i under Gs; namely, G3(i) = (P', P').

In order to extend the involution sign formula to all values of r, it suffices to
check that our tableau statistics are well-behaved with respect to the maps ¢, 1 for
all values of r.

Lemma 3.5. Let i € H, be an involution and write G,(i) = (P, P). For r >0,
sign(i) = (—=1)7- (1)),

where d = d(P) denotes the number of non-core squares which lie concurrently in an
even row and even column of P, and spin denotes the spin of a tableau.

Proof. Let P' =1, ,.1(P). We verify that d(P) = d(P’) and spin(P) = spin(P’),
showing that the right-hand side of the claimed equation is independent of r. Since
the theorem holds for large r by Lemma 3.2, the result will follow.

First, note that spin(P) = spin(P’) since both equal fc(i) by Theorem 2.7. Since
P' = MT(P,A(P)) by Theorem 3.3, the difference between the shapes of the two
tableaux are the beginning and final squares for the open cycles in A(P). In this
process, d(P) is reduced by one for each cycle whose beginning square lies in an even
row and an even column. It increases by one for each cycle whose final square lies in
an even row and an even column. But by Proposition 2.13, cycles in A(P) whose final
square lies in an even row and column are precisely those whose beginning square
lies in an even row and an even column. Thus d(P) = d(P'). |

3.2. Extension to H),

In this section we complete the proof of Theorem 3.1. Each of the Robinson-Schen-
sted algorithms G, suggests an equivalence relation on H,, with two colored per-
mutations equivalent if and only if they share the same left tableau in the image of
G,. While this family of relations has significance in representation theory and the
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Kazhdan-Lusztig theory of cells, see [6] and [3], we have an opportunity to use it
toward our more modest purpose. In [23], Tagkin described a set of generators for
each of the above equivalence relations. To prove Theorem 3.1, we track the action
of each generator on left tableaux as well as the sign of the corresponding colored
permutation.

We reproduce the definitions of five operators on H,, originally appearing in [23].
The first is derived from the original Knuth relations of [9]. Precursors to the next two
appear in [2] and [7] as plactic relations for G. and Gy. The final two are designed
to deal with two specific situations appearing among domino tableaux, especially of
higher rank. Write w = wywy - --w,, for a colored permutation and adopt the conven-
tion that 7 = z.

1. Ifw; <wiyp <wipq orw; <wi—1 < wiy for some i < n, then

‘ Di(w) =wi - wi_t (Wi 1wi)Wigo---w

2. If r > 0 and if there exists O < i < r such that w; and w; | have opposite
signs, then

‘ DE(W) =wi- Wit (Wip i wi)wiga - wy

3. Suppose that |w; | > |w;| forall 1 <i<r+2andw;---w,;, is obtained
by concatenating some positive decreasing sequence to the end of some
negative increasing sequence (or vice versa), where at least one of the
sequences is nonempty. Then

‘Dg(w):W]wz---w

4. Letk > 1 such thatt = (k+ 1)(r+k+ 1) < m and suppose
w=C& Gy ZWrp1 e W,

where each ¢; is a sequence of the form &; = a; j1,---a; 1b; ;- b; 1 for
1 <i<kand €1 = agy1,k+r - ars1,1- Further suppose that the inte-
gers a;,j and b; ;, whenever they appear among wy ---wy_1 = € --- gy
satisfy the following conditions:

a;, j > 0and b; ; <0 (or vice versa),
lai 1] < laij| < |ais1, ;| and |b; ;1| < |b, il < |bz+1 jls
‘bl ,| < |Cll+1 r+z+1‘ < ‘ i+1, l+1| foralli= ] k— 1.

Let n = max{|wi|,..., [w;—1|} and suppose that w; = z satisfies one of
the following:

(1) |b,k| = n and z is an integer between ay1,; and by 1,
(2) |@rs1,7+k| = n and z is an integer between ay | and by i,
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(3) |@ks1,r+k| =n, zis an integer between ay | and g1 1, and |ag; 1 ;| <
|lak,i1| for some 1 <i<k—1.

Then set Q:_k = bk,kak7k+, 3 lbk,k—l v bk’1 and define

Dy =¢C & 1 Gy 12wt Wy

5. Letk > 1 suchthatz = (k+ 1)(r+k+2) < m and suppose
w=C &1 ZWip1 Wy,

where each €; is a sequence of the form €; = a; ;1 ,---a;1b;;i--- b1
for 1 <i<kand €y = a1 k4r1° " Akt1,1bk41,k - bry1,1- Further
suppose that the integers a; ; and b; ;, whenever they appear among
wi - wip = €y -+ &g, satisfy the following conditions:

a; ;> 0and b; ; <0 (or vice versa),
|ai j—1| <lai ;| <laiy1, ;| and |b; j—1| < |bi,j| <[bit1,l,

\ai,ryil < |bii| <|a@ip1,ryivr| foralli=1,... k
Let n = max{|wi|,..., |w;—1|} and suppose that w; = z satisfies one of
the following:

(D) |ak+17r+k+1| = n and z is an integer between a1 1 and by, 1,

(2) |b+1,k) = n and z is an integer between a1 and by 1,

(3) |bit1.k| = n, zis an integer between by and by 11, and |byy ;| <
|bg i+1| for some 1 <i<k—1.

Then we set €;Chi1 = Qg prr A 10k i1 trP kP 1 Gt forr -
Qk+1,1bk41,k - -~ brg1,1 and define

Dy =& - G 1 G 12Wipy - W

As promised, these generate the equivalence relations described above.

Theorem 3.6. ([23]) Two colored permutations w and v have the same left tableau
in the image of the map G, if and only if one can be obtained from the other via a
sequence of operators DY fori=1,2,...,5.

We proceed with a case-by-case examination of the action of each of the above
generators on right tableaux and their effect on sign. Consider a signed permutation
w € H, and let G,(w) = (P, Q) be its image among the same-shape standard domino
tableaux of rank r. Define

F(w) = (=1)- (= 1)PE05rn(@) - sign(P) - sign(Q).
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3.2.1.

We first examine the operators D). Note that D} (w) =
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for some i. Thus in all

Si
cases sign(D}(w)) = —sign(w). We verify that F(D](w)) = —F (w). Let Q' be the
right tableau of D (w). There are two possibilities:

1. Suppose that the action of D) on the right tableau of w exchanges a
block of dominos

k [ k

I |m!| with , or m with ,

while keeping the rest of the tableau fixed. For the sake of typesetting
we are writing [ = k+ 1 and m = k+ 2. Then this operation preserves
the d statistic as well as spin. We examine sign(Q) = (—1)"(@), Recall
that within domino tableaux, inversions are defined in terms of marked
squares. First assume that D] changes

l k

S=1|k p” into §' = "

and that the top left-most box of k is marked. Then (k+2,k+1) €
Inv(Q') but not in Inv(Q). The only other changes in Inv(Q) occur when
p is a marked square lying in the same rows as S in Q but outside of
S. Then an inversion of the form (x, p) or (p, x) is exchanged for an
inversion of the form (y, p) or (p, y) where x, y € {k,k+ 1, k+2}. Con-
sequently, sign(Q) = —sign(Q’). The other possibilities are similarly
routine.

2. If the action of D is not by exchange of one of the above configura-
tions, then by [7, Theorem 2.1.19] and [16, Prop. 4.6], Q and Q’ differ
by an exchange of labels of two consecutive dominos. It is clear that this
changes inv(Q) by one. The other statistics are constant.

In either case, F (D] (w)) = —F(w), as desired.

3.2.2.

The case of the operator D} is very similar. Again, we have D5(w) = s;w for some
i and consequently sign (D5 (w)) = —sign(w). The description of the action of this
operator on Q is implicit in the proof of [23, Theorem 3.1]. It exchanges two con-
secutive dominos. As above, this changes inv(Q) by one, with the other statistics
constant, and again, F (D} (w)) = —F (w), as desired.
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3.2.3.

In the case of D, we have D5 (w) = tw. Consequently, sign(D5(w)) = —sign(w). The
action of D% on right tableaux is more intricate. Our description is based on [16, Cor
4.4 et seq.]. Within Q, the operator exchanges the subtableaux

‘ 1 | | g |

063| 062|

[22)

a
@ Bi|a

B B2
§= ——b— and §'= ——B—

By 1

where the labels in S and S’ coincide with N, ,, & = r+ 2, and p may be zero. The
rest of Q is fixed. Note that the d statistic is fixed by this operation and spin(Q)
changes by one. We examine sign(Q). First assume that r is odd and consequently
the squares adjacent to the core are not marked squares. We have to consider the
effect this transformation has on the set of inversions in Q. We consider two subsets,
i.e., the inversions /nv(S) among entries in S, and those occurring between entries in
S and the rest of Q. The order of the latter set is fixed by D} as labels in S and S” are
just N, ». We compare the size of the former set in S and S’. By inspection,

Inv(S")\ Inv(S) = { (e, 1)} ge1 U{(Bis 1) i

Thus inv(S’) = inv(S) + (r+ 1). Since r is odd, this means sign(Q) = sign(Q’). Sim-
ilar analysis applies in the case when r is even. In either case, we have the equality
F(D5(w)) = —F(w), as desired.

3.2.4.

At first glance, the operators D), and D5 seem much more daunting than the prior
three, but at least on the level of tableaux, they are in some sense just more intricate
versions of D%. We first note that by the construction of D), adopting notation from
its definition,

sign (Dy(w) = (—1)"sign(w).

The effect of the operators D), and D5 on right tableaux is described in the proof of
[23, Theorem 3.1]. There are four cases in our analysis of F (D;(w)) distinguished by
the sign of the a;; and the parity of r, which influences the choice of marked squares.
First assuming that the a;; are negative, the right tableaux Q of w and Q' of D/ (w)
differ within the subtableaux
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S = : and S'=

)
k I

corresponding to the dominos inserted from the subword €, z. Here we define
l=k+r+Y* ! 2i+rt=(k+1)(r+k+1),and adopt the shorthand /; = [ + j. Note
that these tableaux are independent of the cases (1)-(3) in the definition of D}. The
same subtableau results in all three.

It is clear that d(Q) = d(Q’) as this statistic only depends on the underlying
tableau shape. Further, spin(Q) and spin(Q’) differ by one. We analyze inv(Q).
If A is a subtableau of B, then we will write B\ A for the boxes in B not included in A,
and B(t) for the subtableau of B consisting of dominos with labels less than or equal
to ¢. Note that

inv(Q) = inv(S) +inv(Q(r) \ ) +inv(Q(1) \ S, S)
+imv(Q\ Q1)) +inv(Q\ O(1), O(1))-

The only values in this decomposition that can potentially change in the transforma-
tion from Q to Q' are inv(S) and inv(Q(¢) \ S, S).

When r is 0dd, the top rightmost squares of S and S’ are unmarked and inv(S’) —
inv(S) = k—1, while inv(Q'(t) \ S’, S") —inv(Q(¢) \ S, S) = 0. When r is even, then
the top rightmost squares of S and S’ are marked and inv(S’) —inv(S) = k, while again
iv(Q'(1)\S', S") —imv(Q(t)\ S, S) =0.

When the a;; are positive, the tableaux Q and Q' differ in subtableaux that are
transposes of S and S’. While the analysis is a little different, the above results are
exactly the same: inv(Q') —inv(Q) = k— 1 when r is odd and k when r is even. Hence
in all the cases, inv(Q') — inv(Q) =k +r mod?2 and sign(Q’) = (—1)"sign(Q).
Consequently,

F(Dy(w)) = (=1 F(w).

and we find that F (w) transforms in step with sign(w), as desired.

32.5. DL

The analysis of this operator follows a similar outline as that of D). We first note that
by its construction, again adopting notation from the definition of D%,

sign(D5(w)) = (—1) " Lsign(w).
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Again there are four cases in our analysis of F(D%(w)). First assuming that the a;;
are positive, the right tableaux Q of w and Q’ of D (w) differ within the subtableaux

S = . and S’ =

A 7

1 |t

corresponding to the dominos inserted from the subword €;&; | z. Here we define / =
Y (2i+r),t = (k+1)(r+k+2), and for integers j, [; = [+ j, and !, =1+k+r+j.
Again, d(Q) = d(Q') and spin(Q) differs from spin(Q’) by 1. We analyse inv(Q).

When r is odd, the top rightmost squares of S and S’ are marked and inv(S') —
iv(S) =k+r+1, and inv(Q'(t) \ S', §’) — inv(Q(¢) \ S, S) = 0. When r is even, the
top rightmost squares of S and S’ are unmarked and inv(S’) — inv(S) = k+ r, and
again inv(Q'(1)\ S’, §") —inv(Q(1) \ S, S) = 0.

When the a;; are negative, the tableaux Q and Q' differ in subtableaux that are
transposes of S and S’. We again have inv(Q') — inv(Q) = k+r+ 1 when r is odd and
k+ r when r is even with the other inversion statistics unchanged. Hence in all the
cases, inv(Q') — inv(Q) =k mod 2 and sign(Q’) = (—1)*sign(Q). Consequently,

F (D5(w)) = (D F (w).

The proof of Theorem 3.1 is complete.
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