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Abstract We present a formula for the values of the sign representations of a complex
reflection group G(r, p,n) in terms of its image under a generalized Robinson—
Schensted algorithm.
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1 Introduction

The classical Robinson-Schensted algorithm establishes a bijection between permu-
tations w € S, and ordered pairs of same-shape standard Young tableaux of size n.
This map has proven particularly well-suited to certain questions in the representation
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theory of both S, and the semisimple Lie groups of type A. For instance, Kazhdan-
Lusztig cells as well as the primitive spectra of semisimple Lie algebras can be readily
described in terms of images of this correspondence.

Other sometimes more elementary representation-theoretic information requires
more work to extract from standard Young tableaux. For instance, in independent
work, Reifegerste (2004) and Sjostrand (2005) developed a method for reading the
value of the sign representation of a permutation w € S, based on two tableaux
statistics. Let w € S, and write RS(w) = (P, Q) for its image under the classical
Robinson-Schensted map. If we write e for the number of squares in the even-indexed
rows of P, let sign(T') be the sign of a tableau T derived from its inversion number,
and let sgn be the usual sign representation on S,,, then

sgn(w) = (—1)¢ - sign(P) - sign(Q). (1.1)

The focus of this note is to extend this result to the complex reflection groups
G(r, p, n). Its two main ingredients generalize readily to this setting. First, the classi-
cal Robinson-Schensted algorithm admits a straightforward extension mapping each
element w € G(r, p, n) to a same-shape pair of r-multitableaux, see Stanley (1982,
Sect. 6) and lancu (2003). At the same time, the sign of a permutation in S, extends to
a family of r one-dimensional representations of G (r, p, n). After defining new spin
and sign statistics on r-multitableaux, we offer a short proof of the following:

Theorem Let w € G(r, p,n) and write RS(w) = (P, Q) for its image under the

generalized Robinson-Schensted map. Given a primitive r'" root of unity ¢ and the
. . r—1 .

associated family {sgn;};_ of representations of G(r, p, n), we have

sgn;(w) = (—1)°® . (¢HPin®1+spinQ) . gion(P) . sign(Q),

where e(P) is the total sum of the lengths of the even-indexed rows of the component
tableaux of P.

A weaker version of this theorem has been used to verify a formula for the sign
representation of the classical Weyl groups in type B for a family of domino tableaux
Robinson-Schensted maps, see (Pietraho 2014). For classical Weyl groups, all of which
appear among complex reflection groups, values of the sign representation can be used
to compute the Mobius function of Bruhat order (Verma 1971). The above sign formu-
las show that the Mobius function is well-behaved with respect to the characterization
of Kazhdan-Lusztig cells by equivalence classes of tableaux and multitableaux as in
Joseph (1977), Ariki (2000) and Bonnafé and Tancu (2003).

2 Preliminaries
After defining the family of complex reflection groups and their one-dimensional

representations, we define multipartitions, a generalization of the Robinson-Schensted
algorithm, and tableaux statistics that we will use to describe these representations.
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2.1 Sign representations

Consider positive integers r, p, and n with p dividing r and let ¢ be the primitive
root of unity exp(2w+/—1)/r). We define the complex reflection groups G (r, p, n) as
subgroups of G L, (C) consisting of matrices such that

— The entries are either O or powers of ¢,
— There is exactly one nonzero entry in each row and column,
— The (r/p)-th power of the product of all nonzero entries is 1.

Together with the thirty-four exceptional groups, the groups G (r, p, n) account for
all finite groups generated by complex reflections (Shephard and Todd 1954), and
include among them all the classical Weyl groups. In our work the parameter r will
generally be fixed allowing us to write simply W, for the group G(r, 1, n). In order to
establish succinct notation, we will write

[0, £%0n, ..., 0" 0y]

for the matrix whose nonzero entry in the ith column is {% and appears in row oj.
Utilizing this notation, define the set S = {so, ..., s,—1} where

so=1[¢-1,2,3,...,n], and
si=[1,2,...,i—1,i+1,i,i +2,...,n].

Furthermore, let S’ = {s(l)7 , 505150, 8; | 1 <i <n — 1}. The set S generates W,, with
presentation given as

W = (si 156, 530 (5500 Gos)*s (i) om = 1, 1j =kl > 1,0 € [1n = 2]).

Subject to similar relations, S’ generates a subgroup G(r, p, n) of W, of index p,
see Ariki (1995). Let 0 = [o7q, ...0,] € S, and define Inv(o) to be the set of pairs
(0i,0j) withi < j and 0; > o;.

There are exactly 2r one-dimensional representations of W,,; they divide naturally
into two families.

Definition 2.1 For each integer i between 0 and r — 1, we define representations ¢;
and sgn; of W), by specifying their values on the generating set S. Let

N K4 if j =0, and
Tf(sf)_[(—l)f ifj=1,....,n—1

and define ¢; = rio and sgn; = ril. Each becomes a representation of the subgroup
G (r, p, n) by restriction.
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2.2 Multitableaux

We write a partition A of an integer m as a nonincreasing sequence of positive integers
(A1, A2, ..., M) and define its rank as |A| = m. A Young diagram [\] of A is a left-
justified array of boxes containing A; boxes in its ith row. The shape of a Young
diagram will refer to its underlying partition. With the integer r fixed, a multipartition
of rank n is an r-tuple

x:(/\o,xl,...,x’—l)

of partitions the sum of whose individual ranks equals n. The Young diagram [A]
of A is the r-tuple ([AO], e, [)»”‘]). We refer to A as the shape of the diagram [A]
and define |A| = n. We will follow a convention of denoting objects derived from
multipartitions in boldface while writing those derived from single partitions using a
normal weight font.

A standard Young tableaux of shape A is the Young diagram [A] of rank n together
with a labeling of each of its boxes with the elements of N,, := {1,2,...,n} in
such a way that each number is used exactly once, and the labels of the boxes within
each component Young diagram [A/] increase along its rows and down its columns.
Remembering that r is fixed, we will write SYT,, for the set of all standard Young
tableaux of rank » whose shape is a multipartition with » components.

Example 2.1 Take r = 3. The following standard Young tableau T is of rank 11 and
has the shape A = ((2, 1), (1, 1), (3, 3)):

T ([el] 2[4]9
“\[8] " [7] (35010

Following Stanley (1982, Sect. 6) and Iancu (2003), we define a map from W,, to
same-shape pairs of r-tuples of standard Young tableaux. Consider an element

w= [0y, %0y, ..., %"0,] € W,

and define the ordered sets w® = (o; la; = k) for0 <k < r.LetInvp w®, wh)
consist of (i, j) € Inv(c) withi € w® and j € w®  and let Ian(w(k), w®) consist
of (i, j) € Inv(o) withi € w® and j € w® . Moreover, write invp(w®, w(l)) and
invg (w(k), w(l)) for the respective cardinalities of these sets.

Let RS(w®) = (P, Q) be the image of the sequence w® under the classical
Robinson-Schensted map, labeling squares of O according to the relative positions
of i € w® within w, and define

P:=Pw)=(Po, P1,...,P—1) and Q:=Qw)=(Qo, 01,...,0r1).

The multitableaux Robinson-Schensted map is defined by RS(w) = (P, Q). It maps
W, onto the set of same-shape pairs of elements of SYT,, and is in fact a bijection.
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2.3 Tableaux and multitableaux statistics

Our goal is to describe values of the sign representations on W,, under the above
generalization of the Robinson-Schensted map. To do so, we rely on a few statistics
that can be readily computed from multitableaux.

Definition 2.2 An inversion in a Young tableau 7 is a pair (i, j) with j > i for which
the box labeled by i is contained in a row strictly below the box labeled j. Let Inv(T') be
the set of inversions in T, and write inv(T) for its cardinality. If T = (Ty, T, ... Ty—1)
is a multitableau, we extend this notion and define:

Inv(T) = | | Inv(Ti) u || Inv(Ti., Th)
k

k<l

where Inv(Ty, T;) = {(j,i)|j > i, jisalabelin T, iis a label in 7;}. We will be
interested mainly in the parity of the size of this set and define

sign(T) = (—=1)™D.

Definition 2.3 For a Young tableau 7', write e(7") for the total number of boxes in its
rows of even index. For a multitableau T = (T, Ty, ... T,—1), we write sh(Ty) for
the shape of the Young diagram underlying 7} and define the statistics e and spin as
follows:

r—1

1 r—1
e(M) = e(Ty) and spin(T) = 3 > k- [sh(Ty)l.

k=0 k=0
The spin statistic provides a simple description of the image of the subgroup
G (r, p, n) under the r-multitableaux Robinson-Schensted map. The following is easy

to verify:

Proposition 2.1 (P, Q) € RS(G(r, p, n)) if and only if 2 spin(P) = 0 (mod p).

2.4 A set of functions and an example
We define a family of functions on W,,. In the next section we will show that they

coincide with the sign representations on W,,. Again, forw € W,,,let RS(w) = (P, Q).
For 0 <i < r, we will write

mi(w) = (—1)°® . )y Pn®TQ . sign(P) - sign(Q).
Example 2.2 Consider w = [¢15,1,¢23,6,¢27,¢c14,2,8]in G(4, 1, 8). Recalling

the notation in Sect. 2.2, we have w® = (1, 6,2, 8), w) = (5,4), w® = (3,7),
and w® = @. Furthermore,
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oy _ ([112]8] [2]4]8] My —
RS(w )_<£ ] RS(wM) = 5 6]
RSw?) = ([3]7) [3]5)) RSw™) = (0,0).

From these we construct the Robinson-Schensted image of w:

2[8]  [4] 204[8] [1]
PEE emoe). (B Bmov)).

—_

RS(w) = (P,Q) = ( (

We read off ;'nv(P) =10, inv(Q) = 14, e(P) = 2, and spin(P) = spin(Q) = 3. Hence
i (w) = (;l)2 which coincides with sgn; (w).

3 Sign under the Robinson-Schensted map

With the appropriate definitions of the tableaux statistics in place, we can now verify
the claimed formulas for the family of sign representations {sgn; }. Recall our notation
w = [(Yo, (%0, ..., %"0,] € W, where 0 = 07 ...0, € S,. Directly from the
definitions of Invp and Invg, we obtain the following partition:

r—I1
o) = || mv@®)| | 1vp@®, w)| [imvo@® w®). 3.1
k=0 k<l k<l
Applying this to sgn;, we have:
r—1
Sgni (w) — (;-l')zz=| ai . Hsgn(w(k)) . H(_1)invp(w<"),w(’))+iﬂVQ(w(k>,w(1)). (32)
k=0 k<l

Write the reverse of o € S, as 0™ := 0,0,,—1 ...01 € S, and for fixed integers k, [
suchthat0 <k <l <r —1,let

I =Invp(w®, wh) = {(i, Jj) € nv(o)li € w®  and J € w(k)},
Iy = Ivo(w®, wh) = {(i, Hetwv@))icw® and je w(l)} . and

I3 = {(i, ) elv@™))iew® and je w(l)}.

Lemma 3.1 For fixed integers k and | as above, we have
Inv(Py, Pr) = S U S5 and |Inv(Qk, Q)| = |1 U H3].

Proof To prove the first claim, let (07, 0;) € Inv(Pg, P;). Then o; > 0, 0; € w®,
and o; € wh . If i < j then (oy, 0j) € Inv(o) and hence lies in #. On the other
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hand if i > j, then (07, 0;) € Inv(c"™) and hence lies in .#3. To prove the second
claim, let (j,i) € Inv(Qx, Q;). Then j > i, 0; € w®, and o; € wD. If 0; > 0},
then (0;,0;) € Inv(o) and hence lies in .#1. On the other hand if 0; < o}, then
(0j,07) € Inv(c™") and hence lies in .#3. Thus each (j, i) € Inv(Qk, Q;) corresponds
to either a (07, 0;) € S ora (o), 0;) € H3.

Immediately, we obtain:

Corollary 3.1 Forany k <,
invp (w(k), w(l)) + ian(w(k), w(l)) = inv(Py, P;) + inv(Qyg, Q;) (mod 2).

We are now ready to prove that the functions ; defined in Sect. 2.4 coincide with
sgn;, hence proving our main theorem.

Theorem 3.1 Letw € W, andwrite RS(w) = (P, Q) for its image under the general-

ized Robinson-Schensted map. Given a primitive r'* root of unity ¢ and the associated
family {sgni}?;é of representations of Wy, we have

sgn;(w) = (=D)® - ¢y Pr®HrnQ sign(P) - sign(Q).
Proof Observe that the functions 7; can be decomposed as follows
mi(w) = (=D® . ¢y PP EPQ - sign(P) - sign(Q)

r—1 r—1

= (_1)22;(1) e(Pi) (g1 i1 ak H sign(Py) H sign(Qy) H(_l)iﬂV(Pk,Pl)-FinV(Qk,Q1)

k=0 k=0 k<l
r—1
= HZi=1 % T (D sign(Poysign(Qp) ) - [T (=1 e Fo+in (0.0
k=0 k<l

Since each (—1)*Psign(Py)sign(Qy) coincides with sgn(w®) by Eq. (1.1), we
have

r—1
7 (w) = (gi)zzzl ay Hsgn(w(k)) . H(_l)inV(Pk,P/)-i-inV(Qk,Qz)
k=0 k<l
o ® 0 ® D
— (é.l)zk=]ak . Hsgn(w(k)) . H(_l)lnvP(w w D) +invo (w™, w')
k=0 k<l

= sgn; (w)

where the second equality holds as a consequence of Corollary 3.1 and the final equality
holds by Eq. (3.2).
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