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We study the existence, stability, and mobility of fundamental discrete solitons in two- and three-
dimensional nonlinear Schrodinger lattices with a combination of cubic self-focusing and quintic self-
defocusing onsite nonlinearities. Several species of stationary solutions are constructed, and bifurcations
linking their families are investigated using parameter continuation starting from the anti-continuum
limit, and also with the help of a variational approximation. In particular, a species of hybrid solitons,
intermediate between the site- and bond-centered types of the localized states (with no counterpart in the

1D model), is analyzed in 2D and 3D lattices. We also discuss the mobility of multi-dimensional discrete
PACS: solitons that can be set in motion by lending them Kkinetic energy exceeding the appropriately defined
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Peierls-Nabarro barrier; however, they eventually come to a halt, due to radiation loss.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A large number of models relevant to various fields of physics
are based on discrete nonlinear Schrodinger (DNLS) equations [1].
A realization of the one-dimensional (1D) DNLS model in arrays
of parallel optical waveguides was predicted in Ref. [2], and
later demonstrated experimentally, using an array mounted on
a common substrate [3]. Multi-channel waveguiding systems
can also be created as photonic lattices in bulk photorefractive
crystals [4]. Discrete solitons are fundamental self-supporting
modes in the DNLS system [1]. The mobility [5,6] and collisions [6,
7] of discrete solitons have been studied in 1D systems of the DNLS
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type with the simplest self-focusing cubic (Kerr) nonlinearity.
The DNLS equation with the cubic onsite nonlinearity is also a
relevant model for Bose-Einstein condensates (BECs) trapped in
deep optical lattices [8].

A more general discrete cubic nonlinearity appears in the
Salerno model [9], which combines the onsite cubic terms and
nonlinear coupling between adjacent sites. A modification of the
Salerno model, with opposite signs in front of the onsite and
inter-site cubic terms, makes it possible to study the competition
between self-focusing and defocusing discrete nonlinearities of the
same (third) power. This has been done in both 1D [10] and 2D [11]
settings.

Lattice models with saturable onsite nonlinear terms have
been studied too. The first model of that type was introduced by
Vinetskii and Kukhtarev in 1975 [12]. Bright solitons in this model
were predicted in 1D [13] and 2D [14] geometries. Lattice solitons
supported by saturable self-defocusing nonlinearity were created
in an experiment conducted in an array of optical waveguides built
in a photovoltaic medium [15]. Dark discrete solitons were also
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considered experimentally [16] and theoretically [17] in the latter
model.

Experimental observations of optical nonlinearities that may be
fitted by a combination of self-focusing cubic and self-defocusing
quintic terms have been reported in homogeneous [18] and
heterogeneous (colloidal) [19] media (in fact, other combinations
of signs of the cubic and quintic terms are possible too [19]). These
observations underscore the relevance of the dynamics of solitons
in the NLS equation with the cubic-quintic (CQ) nonlinearity.
A family of stable exact soliton solutions to the 1D continuum
NLS equation of this type is well known [20]. The possibility of
building an array of parallel waveguides using optical materials
with the CQ nonlinearity suggests considering the DNLS equation
with the onsite nonlinearity of the CQ type. In particular, this DNLS
equation arises as a limit case of the continuum CQ-NLS equation
which includes a periodic potential in the form of periodic array
of rectangular channels, i.e., the Kronig-Penney lattice. Families of
stable bright solitons were found in 1D [21] and 2D [22] versions of
the latter model (the 2D one, based on a “checkerboard” potential,
supports both fundamental and vortical solitons).

The findings of a CQ-DNLS model may also be relevant in terms
of the mean-field description of a self-attractive BECs confined
by a slab-shaped trap, combined with a sufficiently strong 2D
optical-lattice potential acting in the plane of the slab (although
quantum effects, such as a superfluid to Mott insulator transition,
are also relevant in the latter case [23]). The condensate trapped
in each elongated potential well of this configuration is described
by the Gross-Pitaevskii equation with an extra self-attractive
quintic term which accounts for the deviation of the well’s shape
from one-dimensionality [24]. The tunneling of atoms between
adjacent potential wells in this setting is approximated by the
linear coupling between sites of the respective lattice.

The simplest stationary bright solitons, of the unstaggered
type (without spatial oscillations in the solitons’ tails), have been
studied in the 1D version of the CQ-DNLS model in Ref. [25]. It was
demonstrated that this class of solitons includes infinitely many
families with distinct symmetries. The stability of the basic families
was analyzed, and bifurcations between them were explored in
a numerical form, and by means of a variational approximation.
Dark solitons in the same model were recently studied [26] and, in
another very recent work, staggered 1D bright solitons as well as
the mobility of unstaggered ones have been investigated [27].

The aim of the present work is to study the existence, stability,
and mobility of bright discrete solitons in two- and three-
dimensional (2D and 3D) NLS lattices with the nonlinearity of
the CQ type. As suggested by previous works, especially Ref. [25],
the competition of the self-focusing cubic and self-defocusing
quintic nonlinearities in the setting of the discrete model may
readily give rise to multi-stability of discrete solitons, which is not
possible in the ordinary cubic DNLS model [28], nor in the discrete
CQ model where both nonlinear terms are self-focusing [29]. In
addition to that, one may expect that the CQ model shares many
features with those including saturable nonlinearity [30,14], such
as enhanced mobility of multidimensional discrete solitons (as
mentioned above, mobile discrete solitons can be readily found in
the 1D CQ-DNLS equation [27]).

The paper is organized as follows. In the next section, we
introduce the model and outline the method used to construct
the multi-dimensional discrete solitons. In Section 3, we focus on
stability and existence regions for 2D discrete solitons, and the
respective bifurcations. Mobility of the 2D solitons on the lattice
is studied in Section 4. Section 5 reports extensions of these results
to 3D latices. In Section 6 we report analytical results obtained by
means of a variational approximation, and Section 7 concludes the

paper.

2. The model

In dimensionless form, the 2D DNLS equation with the onsite
nonlinearity of the CQ type is:

1anm + CA(Z)l/fn,m + zlwn,m|2‘ﬁn.m - |Wn,m|41ﬁn,m = 0» (1)

where ¥, 1, is the complex field at site {n, m} (the amplitude of
the electromagnetic field in an optical fiber, or the local mean-field
wave function in BEC), ¥ = dy/dt, and C > 0 is the coupling
constant of the lattice model. We assume an isotropic medium,
hence the discrete Laplacian is taken as

A(2)1/[11,m = wnJrl,m + wnfl,m + 1;[fn,nﬂ»l + 1p//n,m—l - 41//n,m~ (2)

The CQ nonlinearity is represented by the last two terms in Eq. (1).
Eq. (1) conserves two dynamical invariants: norm (or power, in
terms of optics),

M= Z ‘Wn.m

and energy (Hamiltonian),

2

; (3)

H=Y" [cuwnﬂ,m = Yuml® + [Vnme1 — Yoml?)

n,m

1
— [nml* + §|¢/n,m|6:| : (4)

The conserved quantities play an important role in the analysis of
the mobility of discrete solitons, see Section 4.

Steady state solutions are sought for in the usual form,
Yam = Unmexp(—iut), where pu is the real frequency, and the
real stationary lattice field u,,, satisfies the following discrete
equation:
iy + CAPuy 1 + Zui’m —w =0. (5)

n,m

More general solutions carrying topological charge, for which the
stationary field u, , is complex, fall outside of the scope of the
present work, and will be considered elsewhere.

In one dimension, bright-soliton solutions of Eq. (5) can be
found as homoclinic orbits of the corresponding two-dimensional
discrete map [31]. This technique was used to construct 1D soliton
solutions to the CQ-DNLS model in Ref. [25]. Since this method
is not available in higher dimensions, we construct the solutions
starting from the anti-continuum limit, C — 0, and perform
parameter continuation to C > 0. A multidimensional version
of the variational approximation can also be used to construct
solutions for small values of C, see Section 6.

In Ref. [25], two fundamental types of solutions were studied:
site-centered and bond-centered solitons. Each family of solutions
was further subdivided into two sub-families, which represent
“tall” and “short” solutions for given parameter values. Moreover,
each sub-family contains, depending on the value of C, wider
solutions that may be built by appending extra excited sites to the
soliton. The reason for the co-existence of the tall and short sub-
families is clearly seen in the anti-continuum. If C = 0, Eq. (5)
reduces to the following algebraic equation:

Hunm + 2”?,,," - U?,,m =0, (6)

which has at most five real solutions, viz., four nontrivial ones,

Unm =+ 1+ 141, (7

and u, ,; = 0 (note that these are also fixed points of the above-
mentioned discrete map in the 1D case). Obviously, Eq. (7) gives, at
most, two different non-trivial amplitudes, that may be continued
to C > 0, giving rise to tall and short solitons respectively. To build
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Fig. 1. (Color online) Solutions to Eq. (1) for (u, C) = (—0.7, 0), which are used as
seeds to find nontrivial solutions at C > 0 (only a 1D slice is shown, see Fig. 3 for
profiles in two dimensions). Top left: “Tall” (blue cross markers) and “short” (red
plus markers) site-centered solutions. Top right: “Tall” and “short” bond-centered
solutions. Bottom: Wider extensions of the “tall” site-centered solution.
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Fig. 2. (Color online) The continuation to C = 0.1 of the solutions shown in Fig. 1.

wider solutions, one has to consider multiple contiguous sites with
nonzero field. Using the C = 0 solutions as seeds, we are able to
generate a large family of solutions in the (u, C) parameter plane,
as shown in Figs. 1 and 2. It is found that all the wide solutions tend
to disappear through saddle-node collisions between the tall and
short solutions as C increases, similarly to what is the case for the
cubic DNLS problem, as discussed in Ref. [32].

Another fundamental type of solution that arises in higher-
dimensional lattices is a hybrid between the site-centered and
the bond-centered solutions along the two spatial directions, see
bottom panels in Fig. 3. This type of hybrid solution was considered
previously in the case of the cubic DNLS model in Ref. [33]. We only
consider these three symmetric types of localized states, namely
the bond-centered, site-centered, and hybrid ones (see Fig. 3),
together with their intermediate asymmetric counterparts (see
Fig. 8(c) for an example). The hybrid solution admits other natural
variations, namely any combination of the various types of bond-
centered solutions along one axis and any site-centered profile
along the other. Since their behaviors are very similar, we consider
only one such type of solutions.

m -5 -5 n
1
0.5
3
0
R 5
0 0
m -5 -5 n

Fig. 3. Left (from top to bottom): Contour plots of solutions of the site-
centered, bond-centered, and hybrid types for (u, C) = (—0.7, 0.1). Right: The
corresponding 3D plots.

3. The existence and stability of stationary solutions

Detailed existence and stability regions of all above-mentioned
solutions are quite intricate and particularly hard to detect. As
described for the 1D case in Ref. [25] and mentioned above, we
expect in the 2D case the existence of a large family of solutions
at low values of C, which gradually annihilate, through a series of
bifurcations, as C — oo (see Ref. [32] for a detailed description
of the termination scenario, typically through saddle-node or
pitchfork bifurcations, for the various families of the basic discrete
solitons as the coupling parameter is increased). By plotting the
power M for various types of the solutions (site-centered, bond-
centered, and hybrid, each with various widths) at fixed values of
C against frequency u, it is possible to trace the trend followed
by the solutions (see Fig. 4). For C = 0, the exact power for
each solution can be found. A snake like pattern extending from
u = —1tou = 0 exists and continues for arbitrarily large
powers. This “snaking” is also displayed for different values of
C > 0in Fig. 4. Branches of the M (u) curve with higher powers
correspond to wider solutions. A typical progression observed
as one follows the M(u) curve from bottom (low power) to
top (high power) is switching between short and tall solutions
with gradually increasing width. For example, the first branch,
which represents short narrow solutions, collides with a branch
of tall narrow solutions, which then collides with a set of short
wide solutions, and so on. As the coupling strength increases, the
power curve gets stretched upward. Following the stretching, the
solutions gradually vanish, until there remains a single profile.
Similar to what was found in cubic DNLS equation in Ref. [34] the
bright stationary solutions in the CQ model also bifurcate from
plane waves (near © = 0 for the CQ model). It is worthwhile
highlighting here the increased level of complexity of the M ()
curves in the cubic—quintic model (due to the interplay of short
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10

| ©

Fig. 4. (Color online) (a) Power (M) versus u for C = 0.1, and respective profiles. Bottom (from left to right): Power diagrams, for (b) C = 0.3, (c) C = 0.4, and (d) C = 2.0,
of the bond-centered and site-centered solutions. For low values of C the co-existence of multiple solutions at different values of u is obvious. The “snaking” pattern gets
stretched as C increases, slowly diminishing the number of solutions until a single solution is left. Stable and unstable solutions are represented by solid blue and dashed

red curves, respectively.

and tall solution branches) in comparison to its cubic counterpart
of Ref. [33], which features a single change of monotonicity (and
correspondingly of stability) between narrow and tall (stable) and
wide and short (unstable) solutions.

Ref. [34] provides heuristic arguments for the existence of
energy thresholds for a large class of discrete systems with
dimension higher than some critical value. This claim was proved
in Ref. [35] for DNLS models with the nonlinearities of the form
[Ya|2° 19, and for a system of coupled NLS equations. As can be
discerned in Fig. 4, such thresholds also exist in the case of the
cubic-quintic nonlinearity.

In Ref. [25] a stability diagram for the discrete solitons in the
1D model was presented in the (u, C) plane, which gave a clear
overview of the situation. However, in the present situation, the
M () curves for various fixed values of C, such as those displayed
in Fig. 4, provide for a better understanding of the relationships
between different solutions. For example, in the (u, C) diagram, it
would appear that the taller solutions cease to exist at (u, C) ~
(—0.6,0.4). However, the respective M(u) curve shows that
narrow and wide solitons become indistinguishable at this point,

and deciding which solution, short or tall, is annihilated becomes
quite arbitrary.

A numerical linear stability analysis was performed in the usual
way (see Ref. [25] for details) to investigate the stability of each of
the solution branches. As one follows a M(u) curve from bottom
to top, the stability is typically swapped around each turning point,
as seen in Fig. 4. However, the stability is not switched exactly at
these points, as this happens via asymmetric solutions (see below).

Similar to the 1D model, a pitchfork-like bifurcation occurs
between the site- and bond-centered discrete solitons. This is
more clearly seen in Fig. 5. For C = 0.5, the bond-centered
solution loses its stability in a neighborhood of © =~ —0.53,
and asymmetric solutions are created there. There are multiple
asymmetric solutions in this case, but only one curve appears
in Fig. 5, since each one is just a rotation of the other, hence
they have the same power. The bond-centered solution loses its
stability before the site-centered solution regains its stability; in
fact, the site-centered soliton regains the stability exactly when the
asymmetric solutions collide with it. This sort of stability exchange
occurs throughout the M () curve. The top panel of Fig. 5 shows
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Fig. 5. (Color online) Top: Pitchfork bifurcations of the bond-centered solutions
and site-centered solutions for lattice coupling constant C = 0.5. Hybrid solutions
are omitted here for clarity. Bottom: Zoom of the bifurcation scenario depicted by
the rectangular region in the top panel.
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Fig. 6. (Color online) Top: Bifurcations for C = 0.4 showing that all three

fundamental modes (site-centered, bond-centered, and hybrid) are connected to
each other via stability exchange with asymmetric solutions. Two asymmetric
solutions are created where the bond-centered solution loses stability at the
bifurcation point labeled by ‘a’ in the diagram. One of these asymmetric solutions
is connected to the hybrid solution at ‘b’ and the other is connected to the site-
centered solution at point ‘c’. A third type of asymmetric solution also emanates
from the bifurcation point ‘¢’ which is connected to the hybrid solution at ‘d’.
Bottom: The four smallest-magnitude eigenvalues of each solution corresponding
to the bifurcation labeled ‘a’ in the top panel. Each asymmetric solution (red dashed
lines and blue dashed lines) has two branches, one positive and one negative.
The bond-centered branch (green solid line) changes sign where the asymmetric
branches are created showing that the bifurcation is of the pitchfork type.

two such bifurcations, with a zoom of one of them shown in the
bottom panel.

The top panel of Fig. 6 shows again a site-centered solution
connected to a bond-centered solution but also features a
connection of the site- and bond-centered solutions via a hybrid
solution. So not only are all variations (tall, short, narrow, etc.)

within each mode connected, as shown by the snake like power
curves, but all the fundamental modes (bond-centered, site-
centered, hybrid) are also connected. The bottom panel of Fig. 6
shows the relevant eigenvalues corresponding to the bifurcation
labeled ‘a’ in the top panel. The square of the eigenvalue is shown,
so that negative values correspond to stability (purely imaginary
eigenvalue) and positive to instability (pairs of opposite signed
real eigenvalues). For values of u less than the bifurcation point
u =~ —0.415 the bond-centered solution is stable. However, as
the bifurcation point is approached, a double pair of eigenvalues
of this bond-centered solution approaches the origin. As the
instability threshold is crossed, two new branches of solutions
emerge through a non-standard pitchfork bifurcation scenario. The
two bifurcating branches of asymmetric solutions are represented
by dashed lines, indicating their instability. This is because of
the double multiplicity of the relevant eigenvalue pair (of the
bond-centered solution) which leads, for each of the newly arising
branches, to a splitting to one real and one imaginary pair, as is
clearly illustrated in the bottom panel of Fig. 6.

We stress that the stability regions of the above-mentioned
fundamental modes are almost always disjoint in regions where
they each have roughly the same power and, unlike the 1D model,
the asymmetric solutions are unstable. These features can be seen
inFigs. 5 and 6. Note that the multi-stability of symmetric solutions
still occurs in this case due to the existence of arbitrarily wide
solutions at fixed values of C (see Fig. 4). As a general comment, it
should be noted that many of the features of the 2D cubic-quintic
model (such as e.g., the existence of unstable asymmetric solutions,
and their connecting the fundamental modes) can also be observed
in the case of the saturable model [ 14], although in the present case
of the cubic-quintic model, the phenomenology is even richer due
to, for instance, the existence of multiple (i.e., tall and short) steady
states.

4. The mobility

In one dimension, traveling solutions can be found in the form

Y = u(n — vt)e', (8)

where v is a real velocity. Substitution of this expression in the
1D DNLS model yields the following advance-delay differential
equation

0 = —i[vi(z) + ipu@)] + 2u@)*uz) — [u@@)|*u(2)
+Cluiz+1) +uz -1 —2u@@)], 9)

where z = n— vt. Stationary solutions are said to be translationally
invariant if the function u, = u(nh), where h is the lattice
spacing, can be extended to a one-parameter family of continuous
solutions, u(z — s), of the advance-delay Eq. (9) with v = 0.
Solutions of this type have been found in other lattice models (see
Refs. [36,37] and references therein). Localized solutions with non-
oscillatory tails in similar models for v # 0, have been found
in Refs. [30,38] by solving a respective counterpart of Eq. (9). If
translationally invariant solutions exist, then sundry modes (bond-
centered, site-centered, etc.) are generated by the same continuous
function u(z — s), each with a corresponding value of s. The
translationally invariant solutions occur (i) at transparency points,
which are points in the parameter space where solutions exchange
their stability, and (ii) if the Peierls-Nabarro (PN) barrier vanishes,
the barrier being defined as the difference in energy between the
site-centered and bond-centered solutions. Note that (i) and (ii)
are necessary but not sufficient conditions for the existence of
translationally invariant solutions. For higher-dimensional lattices,
translationally invariant solutions for DNLS-like models have not
been found yet. However, effectively mobile lattice solitons have
been found in 2D models in regions of the parameter space where
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Fig. 7. (Color online) Resulting density plots, of a one-dimensional slice along the
axis of propagation, from imprinting momentum to a stationary soliton by means of
the “kick” defined in Eq.(10).(a) k < Kgepin: The solution remains pinned at its initial
position. (b) Kgepin < kn < Kaisperse: The solution becomes mobile, but eventually
comes to a halt due to radiation loss. (¢) k > Kisperse: The Kick is so strong that the
solution disperses.

the PN barrier is low (enhanced mobility). This has been the
case both for quadratic nonlinearities [39] and in the vicinity
of stability exchanges for saturable models [14]. The resulting
mobile solutions radiate energy and eventually come to a halt.
Exact solutions of the corresponding advance-delay differential
equation, if they exist, would experience no radiation losses and
propagate indefinitely, which is why they are called radiationless
solutions [30]. As mentioned above for translationally invariant
solutions, radiationless solutions have also not been yet been found
in higher-dimensional lattices. In fact, it is an important open
question whether such solutions exist typically, since the single
tail resonance appropriately made to vanish in Ref. [30] to obtain
such exponentially localized traveling solutions in 1D settings,
acquires infinite multiplicity in higher dimensional settings. Thus,
the admittedly straightforward technique of identifying regions
of enhanced mobility may be the only possible method in higher
dimensional DNLS problems.

The goal is to “kick” the stationary solutions into motion. From a
Hamiltonian point of view, the real part of the solution corresponds
to position and the imaginary part to momentum [28]. Therefore,
in order to set it into motion one should apply a perturbation that
will alter the imaginary part of the solution in an asymmetric way,
thus providing it with the necessary momentum to move. To this
end, we apply a “kick” of the form

Un,m(0) = un,mei(knn+l(mm)» (10)

where up,, is a stationary solution, and k,, and k,, are real
wavenumbers. This method has been used in numerous studies
in one-dimensional settings (cf. Refs. [28,40]) and recently in two-
dimensions [14]. Bright mobile solutions were studied in this way
in the 1D CQ model in Ref. [29] and in greater detail (and for
staggered solutions) in Ref. [27]. We first present results for a site-
centered solution moving along a single axis. Therefore we set
k, # 0 and k, = 0. There are three qualitative scenarios that
we have observed as result of the kick: (a) the kick is below some
threshold value, k, < Kgepin, and so the corresponding energy
increase is too low to depin the solution, (b) the kick is greater than
this threshold value, k; > Kgepin, and the solution is set in motion
but eventually halts, or (c) the initial kick is so strong, k;, > Kdisperse.
that the solution disperses. See Fig. 7 for examples of these three
scenarios.

We are interested in areas of parameter space that provide
good conditions for mobility for the kicked solutions. The PN
barrier should provide some insight as to where these regions
may be. While there is no standard formal definition of the PN
barrier in higher dimensions, one may adopt a natural definition
(as used in Ref. [14]), according to which the barrier is the largest
energy difference, for a fixed norm of the soliton, between two
stationary solutions of the system close to configurations that
a discrete soliton must pass when moving adiabatically along

Fig. 8. (Color online) Evolution of a site-centered soliton kicked along a diagonal. In
the course of its motion, the traveling object takes on the (a) site-centered, (b) bond-
centered, and (c) asymmetric profiles. This progression repeats starting again with
(d) the site-centered profile until motion ceases due to radiation loss.

100

80

60 |

max

40 + Kdepin

Fig. 9. The maximum distance traveled as a function of the kicking strength kj,
for (u,C) = (—0.225,0.4) and t € [0, 800]. The area labeled (a) in the graph
represents values of k, that could not depin the solution (see Fig. 7(a)). The area
labeled by (b) consists of values of k, that yield a mobile solution (see Fig. 7(b)) and
in (c) the kick is so strong that the solution disperses (see Fig. 7(c)). The threshold
values, kgepin and Kgisperse are also shown.

the chosen lattice direction. This set of configurations includes
asymmetric solutions, and, importantly in higher dimensions, the
hybrid solutions too. For example, for a stationary site-centered
soliton to become mobile along an axis, it must overcome barriers
created by the asymmetric and hybrid states, since, in the course
of its motion, its profile will change as follows: site-centered —
asymmetric — hybrid — asymmetric — site-centered. If we chose
to kick the soliton along the diagonal, then the same progression
should be considered with the bond-centered state replacing the
hybrid one (see Fig. 8). Here we use, for the definition of the
PN barrier, fixed frequency p rather than fixed norm M. We also
consider the free energy G = H — uM instead of the Hamiltonian
as in Ref. [30] (note that Eq. (6) can be derived as 9G/dv ,, = 0).

We kicked the site-centered solutions for various values of k;,
and estimated the corresponding threshold values. In Fig. 9 the
maximum distance traveled,

Dmax(k) = sup [(m)(t)] — L{n)(0)], (11)

te[0,To]

where the center of mass is computed by

(n)(t) = ann,m(r)ﬁ/z Y1, (12)

n,m

is plotted versus the kicking strength. The corresponding threshold
values are also identified there.
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Fig. 10. (Color online) Left: Plot of AG for various values of u and fixed C = 0.4. The remaining panels (i)-(viii) correspond to the maximum distance traveled versus kicking

strength plots. See text for more details.

It turns out that the values of the thresholds are related to the
PN barrier. The left panel in Fig. 10 shows the difference in free
energy, AG = Gsjte — Ghybria between the site-centered solution
and the hybrid solution for fixed C = 0.4 and u© € [—0.3, —0.1].
In each subpanel of the figure, Dy,.x, as defined in Eq. (11), is plotted
against the kicking strength for t € [0, 800] for fixed p. In panel
(i) the site-centered solution has more energy than the hybrid
solution but is unstable and moves away from its initial position
even for k, ~ 0. Panel (ii) represents parameter values where the
site-centered solution has greater energy and is stable. In this small
“transparency window” (a region between changes of the stability
of the corresponding solutions) of parameter space, there is also a
pair of unstable asymmetric solutions. In this region, we observed
the best mobility (see Fig. 11). This is consistent with what was
found in the saturable 2D DNLS [14] where good mobility was
found when asymmetric solutions exist. In panel (iii) the threshold
kdisperse is visible and the sign of AG has switched. In (iv) we see
that the value of kgepin is increasing and Kgisperse 1S decreasing as
the PN barrier increases. Panel (v) corresponds to the maximum
energy difference. This is also where the largest Kgepin OCcurs. As the
energy difference decreases once again as seen in (vi) the threshold
kdisperse continues to decrease. This is also the case in panel (vii) as
both thresholds approach k, = 0. Finally, for the unstable region
in (viii) Kgepin iS ONCe again zero.

We also include results from kicking a bond-centered solution
along an axis (so that it will travel through a hybrid solution)
in a region where the PN barrier is qualitatively different from
the above mentioned barrier for the site-centered solution (see
Fig. 12). Again, there is no transparency point since the stability
changes of the solutions do not coincide (see Fig. 6). Unlike the
first scenario described for the site-centered solution, the bond-
centered solution is unstable in the “transparency window”. In
order to become mobile, the bond-centered solution must always
overcome some barrier. The value of kgepin is once again related to
the PN barrier as seen in Fig. 12. There, the additional free energy
corresponding to Kqepin is shown along with the PN barrier. We see
that the PN barrier overestimates the additional energy needed and
that kqepin = O coincides with the change in stability rather than
with AG = 0. Results for mobility of the hybrid solution were
similar to this case.

We were unable to identify true transparency points in
the present model (the 2D DNLS lattice with the CQ onsite
nonlinearity), which seems to preclude the possibility of finding
exact translationally invariant solutions. However, enhanced
mobility was achieved by lending stationary solutions kinetic
energy in cases where the PN barrier was low. These moving states
gradually lose energy and get eventually trapped at some positions
in the lattice. Solving higher-dimensional counterparts of Eq. (9) in

800
700
600
500
400
300
200
100

AG

1 hybrid

AG

lasymm 1

—-0.2835 -0.2825 -0.2815 -0.2805
u

Fig. 11. (Color online) Top: Density plot for the site-centered soliton set in motion
along the lattice axis for (u, C) = (—0.282,0.4) and k, = 0.5. The choice of
parameters falls in a “transparency window” where good mobility is observed,
possibly due to the existence of a pair of asymmetric solutions. A one-dimensional
slice along the axis of propagation (at m = 10) is shown here. Bottom: Zoom
of the left panel of Fig. 10 near the “transparency window” where AGhypia =
Gsite — Ghybrid- The difference of free energy of the site-centered solution and the
pair of asymmetric solutions AGusymmj = Gsite — Gasymmj Withj = 1,2 is also
shown. The energy added from the kick exceeds both of these differences.

the higher-dimensional lattice might reveal moving radiationless
solutions, although, as we pointed out above, solutions to this
(quite difficult) problem may not typically exist. It is worth
mentioning in passing that the energy loss in the 1D discrete
sine-Gordon lattice has been recently described using an averaged
Lagrangian approach in Ref. [41].

5. Three-dimensional solutions

We will now briefly consider a 3D version of the CQ DNLS model.
The respective counterpart of Eq. (1) is

ilan,m,l + CAG)wn,m,l + 2|]//n,m,l|21//n,m,l
- |WH.m,l|4Wn,m,l = O, (13)
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Fig. 12. (Color online) Plot of the PN barrier (line) that the bond-centered solution
must overcome to obtain mobility along an axis. Here AG = Gpong — Ghybria- The
solid blue line and dashed red line correspond to stability and instability of the
bond-centered solution respectively. The additional free energy needed to move
the solution by at least one site is also shown (markers). This energy requirement
is lower than that predicted by the PN barrier, AG, and becomes zero where the
bond-centered solution becomes unstable rather than where AG = 0.

where v, 1, is the complex field at site {n, m, I}. In an isotropic
medium, the discrete Laplacian is

A(a) 1ﬁn,m,l = ¢n+],m,l + 'Wn—l,m,l + wn,m+1,l + Wn,mel
+ l»an,m,l+1 + wn,m,l—l - Gwn,m,b (14)

We search for stationary solutions, ¥, m; = Upnmexp(—iut),
using the same method as in Section 2. The 2D soliton species
have their natural 3D counterparts. As shown in Fig. 13, the extra
dimension admits an additional type of a hybrid soliton.

Fig. 14 shows M(u) curves for 3D bond-centered and site-
centered solitons for C = 0.1 and C = 0.7. The figure

/\

demonstrates that in the 3D case, similarly to the 2D case,
the snake-like patterns are present for small values of coupling
constant C and are stretched as C is increased. Similar results were
obtained for the 3D hybrid solutions (results not shown here).

6. Variational approximation

Following the pattern of the variational approximation (VA)
developed in Ref. [25] for 1D discrete solitons in the CQ-DNLS
model, it is possible to construct analytical approximations for the
discrete solitons, and compare them to the numerical solutions
described above. We present this approach for the 2D model, but
the procedure is essentially the same in three dimensions. It is
relevant to mention that the VA for 1D discrete solitons in models
of the DNLS type was first developed in Ref. [42].

Solutions to the stationary version Eq. (1) are local extrema of
the corresponding Lagrangian,

o0 1
2 4 6
L= 2 : KUy m + Upm = FUnm

n,m=—o00 3

—C [(un+l,m - Un,rn)2 + (Unms1 — un,m)z] (15)

[recall Yy m = unmexp(—iunt)]. We approximate each soliton by
a localized ansatz which makes it possible to evaluate the infinite
sums in Eq. (15) in an explicit form. First, the following ansatz is
used for the site-centered (sc) solution:

ifm=n=0,

otherwise (16)

(sc) __ ﬂ
Unn = {Ae—aﬂmmnn

Fig. 13. (Color online) Plot of the basic configurations in the 3D lattices using iso-contours. Top: Plot of 3D site-centered (left) and bond-centered (right) solitons. Larger
diamonds correspond to larger local amplitudes. Bottom: Two different types of 3D hybrid solutions. The different colors (arranged in a 3D checkerboard pattern) are solely

used for clarity of presentation.
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Fig. 14. (Color online) The power of the site- and bond-centered solitons versus
the frequency for C = 0.1 (top) and C = 0.7 (bottom) in the 3D lattice.

where A, 8, and « are real constants to be found from the
Euler-Lagrange equations,

OLest  Oler  OLer 0
9A  da 9B

Legs standing for Lagrangian (15) evaluated with ansatz (16). In
particular, « is treated here as one of the variational parameters,
in contrast to the 1D case, where it was expressed in terms of
w and C by means of a relation obtained from the consideration
of the linearized stationary equation for decaying “tails” of the
soliton [25],

(17)

a
a=In{=-+

‘ (2)2_1 , a=2—pu/C. (18)

2

We have observed, based on numerous calculations, that treating
o as a variational parameter yields the same relation for « in
both the 2D and 3D models. This is consistent with solutions in
the continuum model where it is known that the factor in the
exponential tail is independent of the dimension.?

Solutions predicted by the VA based on ansatz (16) provide
a good fit to the short and tall narrow solutions and the first
subfamily of wide short solitons of the site-centered type, (see
Fig. 15). For larger values of C, the VA-predicted solutions
depart from the numerical ones, which is not surprising, as the
exponential cusp implied by the ansatz is not featured by the
discrete solitons in the strong-coupling (quasi-continuum) model.

Other solution types can be approximated by appropriately
modified ansdtze. In particular, the bond-centered (bc) soliton is
based on a frame built of four points with equal amplitudes (see
Fig. 3(b)), whereas the hybrid (hy) soliton has just two points in its
frame (see Fig. 3(c)). Accordingly, the solitons of these types can be

21n the continuum model the tail decays as r~/2e7b" in the 2D case and as
r~'e~P" in the 3D case where the factor b is independent of the dimension.
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Fig. 15. Numerical solutions (solid line) and the variational approximation
(triangles) for the site-centered solitons at C = 0.1 in the 2D lattice model. The
approximation based on ansatz (16) is able to capture subfamilies of tall and short
narrow solitons, and the branch of short wide solitons too.

Fig. 16. Numerical solutions (solid line) and the variational approximation for the
bond-centered (squares) and hybrid (circles) solitons at C = 0.1 in the 2D lattice
model. The approximations based on the ansdtze given in (19) and (20) respectively
are able to capture subfamilies of tall and short narrow solitons.

modeled by the following modifications of ansatz (16):

m,n € {0, 1}
Aee(ImiFimD ifm,n <0
uld = JAe~em=1HnDifm > 1,0 <0 (19)
' Ae~«(ml+In=1) ifm<0,n>1
Ae~«Um=1+In=1D " otherwise
and
n=0,me {0, 1}
uM = §Ae=@(mHD - ifm n| < 0 (20)
Ae—eUm=1+I")  otherwise.

Further analysis demonstrates that the modified ansdtze
produce a good approximation for the short and tall narrow
solutions at small C but not any of the wide families (see Fig. 16).

We were also able to predict complicated bifurcations of
the system by introducing the appropriately chosen asymmetric
(asym) ansatz:

Bi n=0m=0
B2 n=0m=1
™ = 1P n=1m=0 (21)
4 n=1m=1
Ae~Um=¢1+In=¢D  gtherwise.

The intention here is to capture the bifurcations where the
site-centered and bond-centered solutions are connected via an
asymmetric solution. Therefore we have some idea a priori what
the asymmetric solutions should look like and have chosen ansatz
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Fig. 17. Bifurcations featuring the bond-centered, site-centered, and asymmetric
solutions for C = 0.22 in the 2D DNLS. Numerical solutions (lines) and its
predicted counterparts using the VA based on the ansatz (21) (markers) are in good
agreement. The asymmetric VA solution captures the main qualitative features of
the M () curve (e.g. the dramatic increase of power around ;« & —0.55) but slightly
underestimates the power at the bifurcation points.
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Fig. 18. Numerical solution (solid line) and the variational approximation
(triangles) for the site-centered solitons with C = 0.1 using the ansatz given in
(22) in the 3D DNLS lattice with cubic-quintic nonlinearities.

(21) accordingly. For ¢ = 0 the ansatz has the form of a
site-centered solution whereas for ¢ = 0.5 it will represent a
bond-centered solution. All intermediate values of ¢ represent
asymmetric solutions that are somewhere between a site-centered
and bond-centered solution. Indeed, the computed value of ¢ based
on the variational approximation starts near { = 0.5 for parameter
values where the asymmetric solution is almost connected to
bond-centered solution, and slowly decreases to { = 0 as we alter
the parameters until it collides with the site-centered solution (see
Fig. 17).

Finally we apply the same method to 3D lattice solitons using
the following site-centered ansatz

ifm=n=1=0,
otherwise

(sc)

Unn1 = {Ae—a<\m|+|n|+m> (22)

where, for C small enough, it also works well, see Fig. 18.

7. Conclusions

In this work, we have examined the existence, stability,
and mobility of discrete solitons in 2D and 3D NLS lattices
with competing (cubic-quintic, CQ) onsite nonlinearities. Some
properties of the discrete solitons, such as the existence of the
solutions of tall and short types, each narrow and/or wide,
resemble properties recently found in discrete solitons in the 1D
counterpart of this model [25], as well as the 2D properties of
models such as the one with the saturable nonlinearity [14]. We
have found pitchfork bifurcations connecting the site-centered
and bond-centered solitons via unstable asymmetric ones, in

contrast with the 1D model, where the connecting asymmetric
solutions were stable. Another fundamental soliton species that
was studied in this work, viz., hybrid solutions, exists only in the
higher-dimensional lattice. We have found, in some regions of
the parameter space, that the site-centered and bond-centered
solitons were also connected via the hybrid states. At small values
of the inter-site coupling constant, C, various types of the 2D and
3D stationary discrete solitons are well described by the variational
approximation (VA).

We have also showed that enhanced mobility of 2D discrete
solitons in the CQ lattice can be realized by imparting to
them kinetic energy exceeding the Peierls-Nabarro (PN) barrier.
Nevertheless, the moving solitons eventually come to a halt, due
to radiation loss. In that connection, we were unable to find exact
transparency points at which translationally invariant solutions
would be able to exist. However, looking for carefully crafted
radiationless solutions for moving solitons in 2D and 3D lattice
models remains a challenging open problem. It would also be
interesting to study the mobility of the discrete solitons by means
of a dynamical version of the VA (in the 1D model with the cubic
onsite nonlinearity, a dynamical VA was adapted to the analysis
of collisions between moving discrete solitons in Ref. [6], and to
capture the stationary site-centered and bond-centered solutions
with a single ansatz in Ref. [43]).

Getting back to stationary 2D and 3D discrete solitons in the
cubic-quintic NLS lattice, remaining topics of interest are to search
for staggered solitons similarly e.g., to the work of Ref. [44] for the
cubic lattice, as well as lattice solitons with intrinsic vorticity. Thus
far, discrete lattice solitons and vortices were studied in 2D [45]
and 3D DNLS equation with the cubic nonlinearity [46].

It would be quite interesting to seek dynamical effects pre-
dicted in this work in experiments with optical fields in 2D
arrays of waveguides built of materials featuring the CQ nonlin-
earity [18,19], and also in Bose-Einstein condensates trapped in
appropriately designed external potentials (combinations of a
slab-shaped trap and a strong transverse 2D optical lattice). In the
latter case, the quintic nonlinearity is effectively generated by the
deviation of the condensate trapped in individual potential “tubes”
from the one-dimensionality [24]. These physical settings may be
suitable for the creation of the site-centered, potentially stable
bond-centered, and hybrid modes predicted above. In particular,
transitions between the discrete solitons of different types with
the increase of the optical power may find potential applications
to the design of all-optical switching schemes.
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